MA/CSSE 474 Day 38 Announcements and Summary
1) HW15 Feb 18 (nothing to turn in). HW16 Feb 21 (nothing to turn in). Available soon.
2) Final Exam Wednesday Feb 26, 8:00 AM. (A-M: G315, O-Y: G317)
a) Covers the entire term, but heavier emphasis on Turing Machines and decidability.
b) [bookmark: _GoBack]You may bring four sheets of paper, plus the handout on TM macros.
Main ideas from today (some undecidability and non-SD proofs)
1) Example: L2 = {<M, q> : M reaches q on some input}
a) Reduction diagram: Reduce HANY to L2.

b) R takes a TM description <M> as input and returns <M#, h>, where M# is defined by:

c) C is correct: M# reaches it halting state h iff
i) If <M> HANY , then

ii) If <M>∉ HANY , then

2) There is a computable function, obtainSelf. When any TM M calls it as a subroutine, it writes <M> on M's tape.
a) This is a result of the Recursion Theorem, which is in Chapter 25.
b) Quines are related to obtainSelf.
3) Non-SD languages. Usually involve "double infinity"
a) H = {<M, w> : TM M does not halt on w}.
b) {<M> : L(M) = *}.
c) {<M> : TM M halts on nothing}.
d) Different ways to show non-SD:
i) Contradiction
ii) L is the complement of an SD/D Language.
iii) Reduction from a known non-SD language.
4) TMMIN = {<M>: Turing machine M is minimal}

5) If L is in SD, and at least one of L or L is not in D, then L is not in SD.
a) Example that we have seen before: H is in not in SD, since (H) = H is in SD and not in D)
6) Example: Aanbn = {<M> : L(M) = AnBn}
a) Rice's Theorem says "not in D". We want to show it's also not in SD. Reduce H to Aanbn
b) Reduction 1: Reduction 2: Reduction 3:
[image:][image:][image:]

7) HALL = {<M> : TM halts on *}

image1.png
R(<M, w>) =
1. Construct the description <M#>,
where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape.
1.3.Run Mon w.
1.4. Accept.
2. Return <M#>.

image2.png
R(<M, w>) =
1. Construct the description <M#>,
fwhere M#(x) operates as follows:
1.1 Copy the input x to another track for later.
1.2. Erase the tape.
1.3. Write w on the tape.
1.4.Run Mon w.
1.5. Put x back on the tape.
1.6. If x € A"B" then accept, else loop.
2. Return <M#>.

image3.png
R(<M, w>) reduces —H t0 A, pn:

1. Construct the description <M#>:
1.1. If x € A"B" then accept. Else:
1.2. Erase the tape.
1.3. Write w on the tape.
1.4.Run Mon w.
1.5. Accept.

2. Return <M#>.

