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1) Reducibility Special case: Language L1 (over alphabet 1) is reducible to language L2 (over alphabet 2) and we write L1  L2 if there is a Turing-computable function  f : 1*  2* such that x  1*, x  L1  if and only if f(x)  L2 
a) If P1 is reducible to P2, then
i) If P2 is decidable, so is P1.
ii) If P1 is not decidable, neither is P2.
b) The second part is the one that we will use most.
2) Another way to say it:
a) A reduction R from language  L1 to language  L2 is one or more Turing  machines such that: 
b) If there exists a Turing machine Oracle that decides (or semidecides) L2, 
c)    then the TMs in R can be composed with Oracle  to build a deciding (or semideciding) TM for L1. 
3) Using Reduction for Undecidability 
a) (R is a reduction from L1 to L2)  (L2 is in D)  (L1 is in D)
b) Contrapositive: If (L1 is in D) is false, then at least one of the two antecedents of that implication must be false.  So: If  (R is a reduction from L1 to L2) is true and  (L1 is in D) is false,  then 	(L2 is in D) must be false.
c) Application:  If L2 is a language that is known to not be in D, and we can find a reduction from L2 to L1, then L1 is also not in D.
4) A framework for using reduction to show undecidability.  To show language L2 undecidable: 
a) Choose a language L1 that is already known not to be in D, and show  that L1  can be reduced to L2.
b) Define the reduction R and show that it can be implemented by a TM.
c) Describe the composition C of R with Oracle (the purported TM that decides L1).
d) Show that C does correctly decide L1 iff Oracle exists.  We do this by showing that C is correct.  I.e., 
i) If x  L1, then C(x) accepts, and
ii) If x  L1, then C(x) rejects.

5) Example:  H = {<M> : TM M halts on }.  
a) H is in SD.  

b) 

c) H is not in D.   Prove this by showing H   H.  Details on slides.  A place for notes:






d) The block diagram for C gives some insight into how the reduction shows that H decidable implies H decidable.






e) R can be implemented by a TM.
f) Languages we are dealing with:  H, H, the language on which some machine M halts.
g) Machines we are dealing with: Oracle, R, C, M, M#
h) View the reduction as a C-like procedure.  Reads input, writes output, both of which involve TM encodings/
6) Important elements of a reduction proof
a) A clear declaration of the reduction “from” and “to” languages.
b) A clear description of R.
c) If R is doing anything nontrivial, argue that it can be    implemented as a TM.
d) Note that machine diagrams are not necessary or even sufficient in these proofs.  Use them as thought devices, where needed.
e) Run through the logic that demonstrates how the “from” language is being decided by the composition of R and Oracle.  You must do both accepting and rejecting cases.
f) Declare that the reduction proves that your “to” language is not in D.
7) Don't do the reduction backwards!



8) HANY = {<M> : there exists at least one string on which TM M halts} 
a) In SD



b) Not in D.  Two different reductions.  
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Undecidable problems and languages:
	The Problem View
	The Language View

	Does TM M halt on w?
	H = {<M, w> :  M halts on w}

	Does TM M not halt on w?
	H  = {<M, w> :   M does not halt on w}

	Does TM M halt on the empty tape?
	H =   {<M> : M halts on }

	Is there any string on which TM M halts?
	HANY = {<M> : there exists at least one string on which TM M halts }

	Does TM M accept all strings?
	AALL =   {<M> : L(M) = *}

	Do TMs Ma and Mb accept the same languages?
	EqTMs  =    {<Ma, Mb> : L(Ma) = L(Mb)}

	Is the language that TM M accepts regular?
	TMreg =   {<M>:L(M) is regular}




















