| MA/CS | SE 474 – Theory of ComputationQuiz and Reading Guide –submit before the end of Day 02 | | | |--------------------|---|--|--| | Name: | Section (circle one): 01 (9:00) 02 (9:55) 03 (10:45) | | | | electro
differe | iz, is due at the beginning of the second day of class. Please either print it and complete it by hand, or complete it nically and then print it. A lot of this reading material should be familiar; some of Elaine Rich's notation may be nt than you have seen before; you need to understand and use her notation. This quiz is mostly about definitions tation. Please print 2-sided. | | | | Chapte | r 2. | | | | 1. | We consistently use the symbol Σ to denote the from which we compose strings. | | | | | According to the textbook's definition, can Σ ever be infinite? | | | | | According to the textbook's definition, can a string have infinite length? | | | | | Σ^* is the of all strings including the empty string whose symbols come from Σ . | | | | 2. | 2. Let Σ be $\{a, b, c\}$, and let $s \in \Sigma^*$ be abcbcc. What is the value of each of the following expressions? | | | | | s | | | | | sa | | | | | s^0 | | | | | S^2 | | | | | S ^R | | | | | $\#_b(s)$ | | | | | How many different proper prefixes does s have? | | | | | How many different proper substrings does s have? | | | | 3. | A (formal) <i>language</i> is a of strings over an | | | | 4. | Are \emptyset and $\{\epsilon\}$ the same language? Explain briefly. | | | | | If the ordering of the symbols in $\{a, b, c\}$ is the order given here, arrange the following strings into lexicographic order, according to the textbook's definition: b ba abc cac ϵ ab If $L_1 = \{a, ab\}$ and $L_2 = \{a, c, \epsilon\}$, how many different strings are in the language L_1L_2 ? | | | | 7. | f L =Ø , what is L*? | | | |---|---|----|--| | 8. | Give an example of a language L for which $L^+ \neq L^* - \{\epsilon\}$. $L = \underline{\hspace{1cm}}$ | | | | 9. | Consider Exercise 2.2 On page 19. List here the letters (chosen from {a, b, c, d})of the given strings that are | in | | | | .1L ₂ : | | | | | 2) Let $L_1 = \{a^mb^n : n > 0\}$. Let $L_2 = \{c^n : n > 0\}$. For each of the following strings, state whether or not it is an element of L_1L_2 : | | | | | a) ε. No. b) aabbcc. Yes. c) abbcc. No. | | | | | d) aabbcccc. Yes. | | | | 11. | Can a language (set of strings over an alphabet) ever be uncountably infinite? What are the possibilities for the cardinality of the set of all languages over a given alphabet? Answer: and What is the relationship between {0}*{1}* and {01}*? (circle one) | | | | | = C ⊃ | | | | Good problems to think about, but not to turn in (not yet, some may be assigned later): Exercises 2.3, 2.5a, 2.7abde, 2.8 | | | | | | | | | MA/CSSE 474 – Theory of ComputationQuiz and Reading Guide –submit before the end of Day 02