MA/CS	SE 474 – Theory of ComputationQuiz and Reading Guide –submit before the end of Day 02		
Name:	Section (circle one): 01 (9:00) 02 (9:55) 03 (10:45)		
electro differe	iz, is due at the beginning of the second day of class. Please either print it and complete it by hand, or complete it nically and then print it. A lot of this reading material should be familiar; some of Elaine Rich's notation may be nt than you have seen before; you need to understand and use her notation. This quiz is mostly about definitions tation. Please print 2-sided.		
Chapte	r 2.		
1.	We consistently use the symbol Σ to denote the from which we compose strings.		
	According to the textbook's definition, can Σ ever be infinite?		
	According to the textbook's definition, can a string have infinite length?		
	Σ^* is the of all strings including the empty string whose symbols come from Σ .		
2.	2. Let Σ be $\{a, b, c\}$, and let $s \in \Sigma^*$ be abcbcc. What is the value of each of the following expressions?		
	s		
	sa		
	s^0		
	S^2		
	S ^R		
	$\#_b(s)$		
	How many different proper prefixes does s have?		
	How many different proper substrings does s have?		
3.	A (formal) <i>language</i> is a of strings over an		
4.	Are \emptyset and $\{\epsilon\}$ the same language? Explain briefly.		
	If the ordering of the symbols in $\{a, b, c\}$ is the order given here, arrange the following strings into lexicographic order, according to the textbook's definition: b ba abc cac ϵ ab If $L_1 = \{a, ab\}$ and $L_2 = \{a, c, \epsilon\}$, how many different strings are in the language L_1L_2 ?		

7.	f L =Ø , what is L*?		
8.	Give an example of a language L for which $L^+ \neq L^* - \{\epsilon\}$. $L = \underline{\hspace{1cm}}$		
9.	Consider Exercise 2.2 On page 19. List here the letters (chosen from {a, b, c, d})of the given strings that are	in	
	.1L ₂ :		
	2) Let $L_1 = \{a^mb^n : n > 0\}$. Let $L_2 = \{c^n : n > 0\}$. For each of the following strings, state whether or not it is an element of L_1L_2 :		
	a) ε. No. b) aabbcc. Yes. c) abbcc. No.		
	d) aabbcccc. Yes.		
11.	Can a language (set of strings over an alphabet) ever be uncountably infinite? What are the possibilities for the cardinality of the set of all languages over a given alphabet? Answer: and What is the relationship between {0}*{1}* and {01}*? (circle one)		
	= C ⊃		
Good problems to think about, but not to turn in (not yet, some may be assigned later): Exercises 2.3, 2.5a, 2.7abde, 2.8			

MA/CSSE 474 – Theory of ComputationQuiz and Reading Guide –submit before the end of Day 02