SRS

A ¥ LR U |
o A DAY
f"lltZ\'A?\" ¢ PR

B

gs
£
«

R T

MA/CSSE 474
Theory of Computation

NS

Remove Useless Nonterminals
Ambiguity
Normal forms

Your Questions?

* Previous class days'
material

* Reading Assignments

« HW 9, 10 problems
* Anything else

EUCLID, WOULD V) — WELL, T
YOU SAY oo “ WOULDN'T
THAT TwO $AY THAT
NEGATIVES THEY DON'T. .
MAKE A

- POSITIVE]

IE-rrad; ThinvesOna-@ el com
18 Thaves. Dist. by Univessal eick

8

4/17/2018



Prove the Correctness of a Grammar
A"Bn={a"b": n > 0}

G=({S, a, b}, {a, b}, R, S),

R={S—>aShb
S—>¢
}

e Prove that G generates only strings in L.

e Prove that G generates all the strings in L.

Simplify Context-Free Grammars

Remove non-productive and unreachable non-terminals.

4/17/2018



4/17/2018

Remove Unproductive Nonterminals

removeunproductive(G: CFG) =
1. G'=G.
2. Mark every nonterminal symbol in G' as unproductive.
3. Mark every terminal symbol in G’ as productive.
4. Until one entire pass has been made without any new
nonterminal symbol being marked do:
For each rule X —» o in R do:
If every symbol in o has been marked as
productive and X has not yet been marked as
productive then:
Mark X as productive.
. Remove from G’ every unproductive symbol.
. Remove from G’ every rule that contains an
unproductive symbol.
7. Return G'.

o O

Remove Unreachable Nonterminals

removeunreachable(G: CFG) =
1. G'=G.
2. Mark S as reachabile.
3. Mark every other nonterminal symbol as unreachable.
4. Until one entire pass has been made without any new
symbol being marked do:
For each rule X — aAB (where A € V - %) in R do:
If X has been marked as reachable and A has not, then:
Mark A as reachable.
. Remove from G’ every unreachable symbol.
. Remove from G’ every rule with an unreachable symbol on
the left-hand side.
7. Return G'.

o O




Derivations and parse trees
Parse trees capture essential structure:

1 2 3 4 5 6
S=SS=(S)S=(S)S= (NS = (0NS)= (1)
S=SS §> (S)s §> ((S)S = ((S)(S) ? (OX)S) i; (0

1

Parse Trees

A parse tree, (derivation tree) derived from a grammar
G=(V,Z% R,S),isarooted, ordered tree in which:

e Every leaf node is labeled with an element of £ U {g},
e The root node is labeled S,

» Every other node is labeled with an element
of N=V-ZXand

e If m is a non-leaf node labeled X and the (ordered)
children of m are labeled x4, Xx,, ..., X,,, then R contains
the rule

X = X4 Xg ... X

4/17/2018



4/17/2018

Structure in English

S

VP

RN

\% NP
Nominal
N
the smart cat smells chocolate

Generative Capacity

Because parse trees matter, it makes sense, given a
grammar G, to distinguish between:

e G’'s weak generative capacity, defined to be the
set of strings, L(G), that G generates, and

e G’s strong generative capacity, defined to be the
set of parse trees that G generates.




Algorithms Care How We Search or Derive

- ———

Algorithms for generation and recognition must be
systematic. They typically use either the leftmost
derivation or the rightmost derivation.

Derivations of The Smart Cat

* A left-most derivation is:
S = NP VP = the Nominal VP = the Adjs N VP =
the Adj N VP = the smart N VP = the smart cat VP =
the smart cat V NP = the smart cat smells NP =
the smart cat smells Nominal = the smart cat smells N =
the smart cat smells chocolate

* Aright-most derivation is:
S=NPVP = NPV NP = NP V Nominal = NPV N =

NP V chocolate = NP smells chocolate =

the Nominal smells chocolate =

the Adjs N smells chocolate =

the Adjs cat smells chocolate =

the Adj cat smells chocolate =

the smart cat smells chocolate

4/17/2018




Ambiguity

A grammar is ambiguous iff there is at least one string in
L(G) for which G produces more than one parse tree”.

For many applications of context-free grammars, this is a
problem.

Example: A programming language.

*If there can be two different structures for a string in the
language, there can be two different meanings.

*Not good!

* Equivalently, more than one leftmost derivation, or more
than one rightmost derivation.

An Arithmetic Expression Grammar

E—->E+E
E—>E=+*E
E - (E)
E—id

E
T P —
E E E E
. A
id 4 id id
2 3 5

id . id id

4/17/2018



Inherent Ambiguity

Some CF languages have the property that every
grammar for them is ambiguous. We call such
languages inherently ambiguous.

Example:

L ={a"b"c™: n, m >0} U {a"b™c™: n, m > 0}.

Inherent Ambiguity

L = {a"b"c™ n, m > 0} u {a"b™c™: n, m > 0}.

One grammar for L has these rules:

S—>S,]S,
S,—>S,c|A I* Generate all strings in {a"b"c™}.
A —>aAb|e
S,—»>aS,|B /* Generate all strings in {a"b™c™}.
B—>bBc|e

Consider any string of the form a"b"c".

It turns out that L is inherently ambiguous.

4/17/2018



4/17/2018

Ambiguity and undecidability

Both of the following problems are undecidable*:
» Given a context-free grammar G, is G ambiguous?

» Given a context-free language L, is L inherently
ambiguous?

Informal definition of undecidable for the first problem:
There is no algorithm (procedure that is guaranteed to
always halt) that, given a grammar G, determines whether

G is ambiguous.




