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MA/CSSE 474

Theory of Computation

Minimizing DFSMs

Your Questions?
• Previous class days' 

material

• Reading Assignments

• HW4 or HW5 problems
• Tuesday's Exam
• Anything else

Computer science
• Heap (data 

structure), a data 
structure commonly 
used to implement a 
priority queue

• Heap (programming) 
(or free store), an 
area of memory used 
for dynamic memory 
allocation

Even in the relatively narrow area of Computer 
science, the term "Heap" is ambiguous.  From 
Wikipedia:
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For practice later: A Simple Example of L

 = {a, b}
L = {w  * : |w| is even}

 bb aabb
a aba bbaa
b aab aabaa
aa bbb

baa

The equivalence classes of L:

Recall that x L y     iff    z  * (xz  L ↔ yz  L).

Another Example of L

 = {a, b}
L = aab*a

 bb aabaa
a aba aabbba
b aab aabbaa
aa baa

aabb

The equivalence classes of L:

Do this one 
for practice 
later

Recall that x L y     iff    z  * (xz  L ↔ yz  L).
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More Than One Class Can Contain Strings in L

 = {a, b}
L = {w  * : no two adjacent characters are the same}

The equivalence classes of L:

[1] []
[2] [a, aba, ababa, …]
[3] [b, ab, bab, abab, …]
[4] [aa, abaa, ababb…]

Recall that x L y     iff    z  * (xz  L ↔ yz  L).

One More Example of L

 = {a, b}
L = AnBn = {anbn : n  0}

 aa aaaa
a aba aaaaa
b aaa

The equivalence classes of L:

Recall that x L y     iff    z  * (xz  L ↔ yz  L).
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Important results 
(we may prove some of them later)

• Let M be a DFSM that accepts the regular 
language L. The number of states in M is greater 
than or equal to the number of equivalence 
classes of L.

• Theorem: Let L be a regular language over some 
alphabet .  Then there is a DFSM M with L(M)=L and 
that has precisely n states where n is the number of 
equivalence classes of L.  Any other FSM that accepts L
must either have more states than M or it must be 
equivalent to M except for state names. 

Construct DFSM from L

M = (K, , , s, A), where: 
● K contains one state for each equivalence class of  L.
● s = [], the equivalence class of  under L.
● A = {[x] : x  L}. [Aside: what is the union of all of these classes?]

● ([x], a) = [xa].  (if M is in state containing x, then, after 
reading the next symbol, a, it goes to state containing xa).

We can show (but we won't right now):

• K is finite..
•  is a well-defined function*.  i.e. ∀x,y∊Σ*,a∊Σ ([x]=[y] → [xa]=[ya])

• L = L(M).  
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Example

 = {a, b}
L = {w  * : no two adjacent characters are the same}

The equivalence classes of L:
1: [] 
2: [a, ba, aba, baba, ababa, ...]  (b)(ab)*a
3: [b, ab, bab, abab, ...] (a)(ba)*b
4: [bb, aa, bba, bbb, ...] the rest

● Equivalence classes become states
● Start state is []
● Accepting states are all equivalence classes in L
● ([x], a) = [xa]

The Myhill-Nerode Theorem

Theorem: A language is regular iff the number of 
equivalence classes of L is finite.  

Proof: Show the two directions of the implication:

L regular  the number of equivalence 
classes of L is finite: If L is regular, then 

The number of equivalence classes of L is 
finite  L regular: If the cardinality of L is finite, 
then 
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So Where Do We Stand?
1. We know that for any regular language L there exists a minimal 

accepting machine ML.

2. We know that |K| of ML equals the number of equivalence 
classes of L.

3. We know how to construct ML from L.

4. We know that ML is unique up to the naming of its states.

But is this good enough?

Consider:

1. Begin with M and collapse redundant states, 
getting rid of one at a time until the resulting 
machine is minimal.

2. Begin by overclustering the states of M into 
just two groups, accepting and nonaccepting.  
Then iteratively split those groups apart until all 
the distinguishable states have been 
distinguished.

Minimizing an Existing DFSM 
(Without Knowing L)

Two approaches:
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The Overclustering Approach

We need a definition for “equivalent”, i.e., mergeable
states.

Define p  q iff for every string w  *, either w takes M
to an accepting state from both q and p or it takes M
to a rejecting state from both q and p.

Is ≡ an equivalence relation?

Construct  as the Limit of a Sequence of 
Approximating Equivalence Relations n

(Where n is the length of the input strings that have 
been considered so far)

Consider input strings, starting with , and increasing in 
length by 1 at each iteration.  Start by overclustering 
the  states.  Then split them apart as it becomes 
apparent (with longer and longer strings) that they 
are not equivalent
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Constructing  n

• p 0 q iff they behave equivalently when they read .  In 
other words, if they are both accepting or both rejecting 
states.

• p 1 q iff p 0 q and they behave equivalently when they 
read any string of length 1, i.e., if any single character 
sends both of them to an accepting state or both of them 
to a rejecting state.  Note that this is equivalent to saying 
that any single character sends them to states that are 0

to each other. 

• p 2 q iff p 1 q and they behave equivalently when they 
read any string of length 2, which they will do if, when 
they read the first character they land in states that are 1

to each other.  By the definition of 1, they will then yield 
the same outcome when they read the single remaining 
character.

• And so forth.

Constructing , Continued

More precisely, p,q  K and any n  1, q n p
iff:
1. q n-1 p, and
2. a   ((p, a) n-1 (q, a))
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An Example

 = {a, b} 

Equivalence classes:
0 = 

1 =

2 = 

MinDFSM
MinDFSM(M: DFSM) =

1.  classes := {A, K-A};
2.  Repeat until no changes are made

2.1.  newclasses := ;
2.2.  For each equivalence class e in classes, if e contains 

more than one state do
For each state q in e do

For each character c in  do
Determine which element of classes q

goes to if c is read
If there are any two states p and q that need to be 

split, split them.  Create as many new 
equivalence classes as are necessary.  Insert 

those classes into newclasses.
If there are no states whose behavior differs, no 

splitting is necessary.  Insert e into 
newclasses.

2.3.  classes := newclasses;
3.  Return M* = (classes, , , [sM], {[q: the elements of q are in AM]}), 

where M* is constructed as follows:
if M(q, c) = p, then M*([q], c) = [p]
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Summary

● Given any regular language L, there exists a 
minimal DFSM M that accepts L.

● M is unique up to the naming of its states.

● Given any DFSM M, there exists an algorithm    
minDFSM that constructs a minimal DFSM 
that also accepts L(M).

Canonical Forms

A canonical form for some set of objects C assigns 
exactly one representative to each class of “equivalent” 
objects in C.  

Further, each such representative is distinct, so two 
objects in C share the same representation iff they are 
“equivalent” in the sense for which we define the form. 

In order for a canonical form to be useful, there must be 
a procedure which, given an object from the set, 
computes its canonical form. 
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A Canonical Form for FSMs
buildFSMcanonicalform(M: FSM) = 

1. M = ndfsmtodfsm(M).
2. M* = minDFSM(M).
3.  Create a unique assignment of names to the 

states of M*.
4.  Return M*.

Given two FSMs M1 and M2:

buildFSMcanonicalform(M1) 
= 

buildFSMcanonicalform(M2)

iff L(M1) = L(M2). 

The simple algorithm 
for unique name 
assignment is in the 
textbook; we will 
illustrate it here by 
doing an example.


