
"Ant Colony Optimization: The Traveling Salesman Problem"

Section 2.3 from Swarm Intelligence: From Natural to Artificial Systems by Bonabeau, Dorigo, and Theraulaz

Ant Colony System (ACS)

- Improvements on Ant System made by Dorigo and Gambardella
- Four modifications to AS:
 - Candidate list to restrict choices of next city
 - Different transition rule
 - O Different pheromone trail update rule
 - Local updates of pheromone trail

Candidate List



Transition Rule

- Uses a tunable parameter q₀ to adjust the probability that an ant will explore or reinforce existing paths
- If $q > q_0$, ACS transition rule is identical to AS
- If q ≤ q₀, ACS exploits knowledge available about the problem. Use best edge rather than probabilistically choosing among edges.
- Gradually increasing q₀ would allow the algorithm to favor exploration early and existing paths afterward. This is a component of simulated annealing.

Initialization

Algorithm 2.2 High-level description of ACS-TSP

/* Initialization */

For every edge (i, j) do

 $\tau_{ij}(0) = \tau_0$

End For

For k = 1 to m do

Place ant k on a randomly chosen city

End For

Let T^+ be the shortest tour found from beginning and L^+ its length

Transition Rule

/* Main loop */
For t = 1 to t_{max} do
For k = 1 to m do

Build tour $T^k(t)$ by applying n-1 times the following steps:

If exists at least one city $j \in \text{candidate list then}$

Choose the next city $j, j \in J_i^k$, among the cl cities in the candidate list as follows

$$j = \left\{ \begin{array}{ll} \arg\max_{u \in J_i^k} \left\{ \left[\tau_{iu}(t)\right] \cdot \left[\eta_{iu}\right]^\beta \right\} & \text{if } q \leq q_0; \\ J & \text{if } q > q_0, \end{array} \right.$$

where $J \in J_i^k$ is chosen according to the probability:

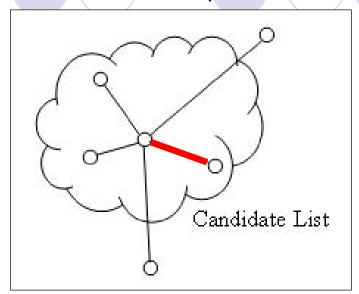
$$p_{ij}^k(t) = \frac{\left[\tau_{ij}(t)\right] \cdot \left[\eta_{ij}\right]^{\beta}}{\sum_{l \in J_i^k} \left[\tau_{il}(t)\right] \cdot \left[\eta_{il}\right]^{\beta}},$$

and where i is the current city

Else

choose the closest $j \in J_i^k$

Local Pheromone Trail Updates

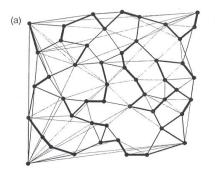

- Each time an ant moves from one city to another, the pheromone concentration on that edge is reduced
- This makes visited edges less attractive and encourages exploration
- $\bullet \tau_0$: (n * L_{nn})⁻¹
 - on: number of cities
 - L_{nn}: Length of tour as produced by nearest neighbor heurstic

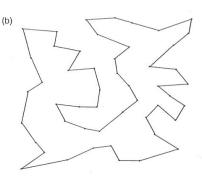
Pheromone Update

End For

```
End If  \text{After each transition ant } k \text{ applies the local update rule:}   \tau_{ij}(t) \leftarrow (1-\rho) \cdot \tau_{ij}(t) + \rho \cdot \tau_0  End For  \text{For } k=1 \text{ to } m \text{ do}  Compute the length L^k(t) of the tour T^k(t) produced by ant k End For If an improved tour is found then update T^+ and L^+ End If  \text{For every edge } (i,j) \in T^+ \text{ do}  Update pheromone trails by applying the rule:  \tau_{ij}(t) \leftarrow (1-\rho) \cdot \tau_{ij}(t) + \rho \cdot \Delta \tau_{ij}(t) \text{ where } \Delta \tau_{ij}(t) = 1/L^+  End For  \text{For every edge } (i,j) \text{ do}   \tau_{ij}(t+1) = \tau_{ij}(t)
```

Local Pheromone Update




Pheromone Trail Update Rules

- Only the ant with the best tour lays pheromones
- Encourages ants to search paths near the best found so far

Example Solution

 $FIGURE\ 2.15 \quad (a)\ An\ example\ of\ a\ trail\ configuration\ found\ by\ ACS\ in\ a\ 50-city\ problem\ (Eil50).\ Line\ thickness\ reflects\ pheromone\ concentration.\ (b)\ Best\ solution\ found\ by\ ants.$

ACS Conclusions

TABLE 2.2 Comparison of ACS-TSP with other algorithms on randomly generated prolems. Results for EN are from Durbin and Wilshaw [117] and results for SA and SOM ar from Potvin [262]. For ACS-TSP, averages are over 25 runs. Best results are in boldface From Dorigo and Gambardella [111].

	ACS-TSP	SA	EN	SOM	
City set 1 (50-city problem)	5.88	5.88	5.98	6.06	
City set 2 (50-city problem)	6.05	6.01	6.03	6.25	
City set 3 (50-city problem)	5.58	5.65	5.70	5.83	
City set 4 (50-city problem)	5.74	5.81	5.86	5.87	
City set 5 (50-city problem)	6.18	6.33	6.49	6.70	

AGML 2.2 Comparison of ACS-TSP with GA, EP, and SA on four ten for the comparison of ACS-TSP with GA, EP, and SA on four ten for the comparison of the compa

	ACS-TSP best	ACS-TSP # iter.	GA best	GA # iter.	EP best	EP # iter.	SA best	SA # iter
Eil50 (50-city problem)	425 (427.96)	1830	428 (N/A)	25000	426 (427.86)	100000	443 (N/A)	68512
Eil75 (75-city problem)	535 (542.37)	3480	545 (N/A)	80000	542 (549.18)	325000	580 (N/A)	173250
KroA100 (100-city problem)	21282 (21285.44)	4820	21761 (N/A)	103000	N/A (N/A)	N/A	N/A (N/A)	N/A

 ACS performs comparably or better than other TSP algorithms

Further Enhancements

- Added 3-opt procedure to locally minimize tour lengths between ACS iterations
 - Performed comparably with STSP algorithm that won the First International Contest on Evolutionary Optimization
- Other unimplemented improvements:
 - Allow the best r ants to update the pheromone trail, instead of a single ant
 - Remove pheromone from edges of worst tours
 - OMore powerful local search