A COMPARISON OF PARTICLE SWARM OPTIMIZATION AND THE GENETIC ALGORITHM

Sal and Xianshun

Overview

Particle swarm optimization (PSO)

Genetic algorithm (GA)

Comparison metrics and hypothesis-test

Result and conclusion

Particle Swarm Optimization

- Invented in mid 1990s to simulate motions of bird swarms
- Randomly generated solutions act as a starting point, and the swarm moves by data that is shared between the swarm
- Inspired by the ability of bird flocks to survive predators and find food with information sharing.

Genetic Algorithm

- Created mid 1970s
- Inspired by principles of genetics and evolution
- Uses principal of "survival of the fittest" to make an optimized swarm over generations

Particle Swarm Optimization

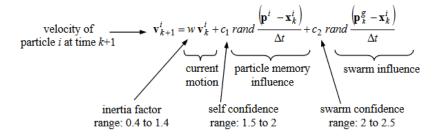
- Three steps
- Step One:
 - \circ Positions x and velocities k of each unit is generated in a bounds x(min)-x(max)

$$\mathbf{x}_0^i = \mathbf{x}_{\min} + rand(\mathbf{x}_{\max} - \mathbf{x}_{\min})$$

$$\mathbf{v}_0^i = \frac{\mathbf{x}_{\min} + rand(\mathbf{x}_{\max} - \mathbf{x}_{\min})}{\Delta t} = \frac{\text{position}}{\text{time}}$$

Particle Swarm Optimization

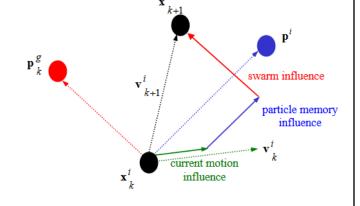
- Step 2:
 - Update velocities of all particles
 - O Determine particle with best global position, and best positions of all particles over time
 - o These values, along with velocity, are used to calculate the direction each particle should move in



Particle Swarm Optimization

- Step 3:
 - o Update each particle's position

$$\mathbf{x}_{k+1}^i = \mathbf{x}_k^i + \mathbf{v}_{k+1}^i \Delta t$$



The Genetic Algorithm

- Starts from randomly generated population that evolve over generations
- Uses three operators:
 - Selection operator acts a survival of the fittest
 - o Crossover operator mimics propagation of of population
 - Mutation operator gives diversity to population and allows an effective search without getting stuck

Comparison Metrics and Hypothesis Testing

T - test (Hypothesis test) with 5 steps:

Action	The true situation may be		
	H_{\circ} is true	H_{\circ} is false	
accept H_{\circ} , reject H_{a}	$(1-\alpha)$ significance level	β [type II error]	
reject H_{\circ} , accept H_{a}	α [type I error]	$(1-\beta)$ power of test	
Sum	1	1	

Comparison Metrics and Hypothesis Testing

Step 1: define H0 and H1

Step 2: decided on desired values for α , β and n to find out corresponding $t_{critical}($ t distribution)

Step 3: evaluate n random samples and evaluate statistical characteristics

Step 4: calculate the t-value of the null hypothesis

Step 5: compare the calculated t-value to the tabulated $t_{critical}$. If $t \le t_{critical}$, then accept null hypothesis with (1-a) confidence level

Comparison Metrics and Hypothesis Testing

Effectiveness test (finding the true global optimum):

Effectiveness Test

Objective to test whether H_a : $\mu_{Q_{sol}} > 99\%$

$$H_{\circ}: \quad \mu_{Q_{sol}} \leq 99\%$$

$$t = \frac{\overline{Q_{sol}} - 99\%}{s(\overline{Q_{sol}})}$$
 $Q_{sol} = \left| \frac{\text{solution - known solution}}{\text{known solution}} \right| \%$

taking $\alpha = 1\%$, $\beta = 1\%$, and n = 10

This is a one sided test of significance of a mean (table 6.10, Reference 7) $\rightarrow t_{critical} = 2.0$

Comparison Metrics and Hypothesis Testing

Efficiency (computational cost) result:

Efficiency Test

Objective to test whether
$$H_a$$
: PSO $\mu_{N_{eval}} < \text{GA } \mu_{N_{eval}}$

$$H_o: \text{PSO } \mu_{N_{eval}} \ge \text{GA } \mu_{N_{eval}}$$

$$t = \frac{\text{GA } \overline{\mu}_{N_{feval}} - \text{PSO } \overline{\mu}_{N_{feval}}}{\overline{s}(x)\sqrt{1/n_{\text{GA}} + 1/n_{\text{PSO}}}} \text{ where } \overline{s}(x) = \sqrt{\frac{(n_{\text{GA}} - 1)s_{\text{GA}}^2 + (n_{\text{PSO}} - 1)s_{\text{PSO}}^2}{n_{\text{GA}} + n_{\text{PSO}} - 2}}$$

taking
$$\alpha = 1\%$$
, $\beta = 1\%$, and $n_{PSO} = n_{GA} = 10$

This is a one sided test of significance of comparison of two means (table 6.11, Reference 7) $\rightarrow t_{critical} = 2.5$

Result: PSO is significantly more efficient than the GA

Benchmark Test Problems

The Banana (Rosebrock) Function (has a known global minimum at [1,1]:

Minimize
$$f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

The Eggcrate Function (has lower and upper bounds of $[-2\pi, 2\pi]$, and global minimum at [0,0]:

Minimize
$$f(\mathbf{x}) = x_1^2 + x_2^2 + 25(\sin^2 x_1 + \sin^2 x_2)$$

Golinski's Speed Reducer:

 $(Details \ are \ in \ a \ reference \ link: \ \underline{http://mdob.larc.nasa.gov/mdo.test/class2prob4.htm}, \ which \ is \ broken$

Figure 2. Golinski's Speed Reducer.

Space System Problems

Telescope Array Configuration (Scientific Application):

Array of small distributed telescope to form a large single costly telescope:

Degree of cover in the uv plane(x, y are positions): $u_{ij} = x_j - x_i$, $v_{ij} = y_j - y_i$

Number of visibility point: $N_{uv} = N_{stations} \ \left(N_{stations} - 1 \right)$

Metric for the uv plane coverage as the distance between all uv points:

Maximize
$$uv$$
 coverage =
$$\sum_{i,j,k,l} \sqrt{(u_{ij} - u_{kl})^2 + (v_{ij} - v_{kl})^2}$$

Space System Problems

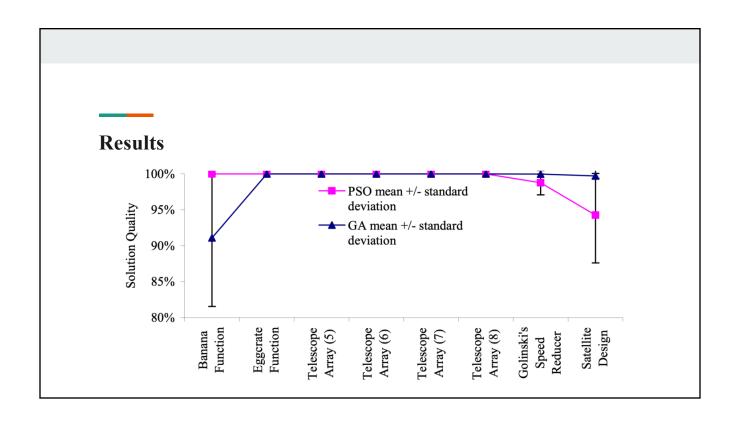
Communication Satellite Reliability-Based Design:

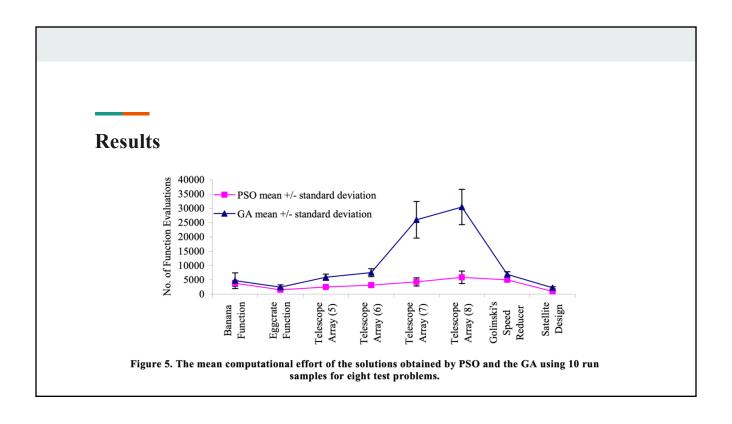
Designing the payload and bus subsystems of a commercial communication Geosynchronous satellite with given payload requirements. The goal is to minimize the spacecraft overall launch mass.

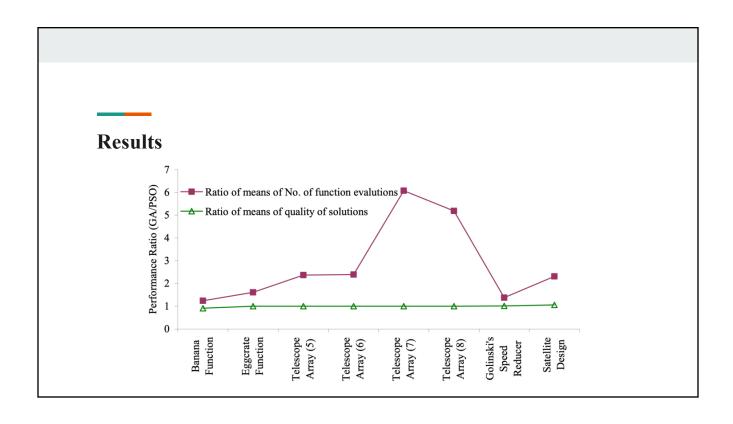
Results

Table 2: Calculated t-values for the effectiveness and efficiency hypotheses tests

	Effectiveness Test, $t_{critical} = 2.0$ Calculated t-value		Efficiency Test, $t_{critical} = 2.5$
			Calculated t-value
	PSO	GA	
1- Banana Function	8404.05	-2.49	1.9980
2- Eggcrate Function	312420.20	5214.34	7.2743
3- Telescope Array (5 Stations)	œ	∞	19.2995
4- Telescope Array (6 Stations)	∞	∞	16.8674
5- Telescope Array (7 Stations)	∞	∞	20.9451
6- Telescope Array (8 Stations)	∞	∞	23.7893
7- Golinski's Speed Reducer	-0.39	1251.28	10.3079
8- Satellite Design	-2.13	6.47	19.6993







Conclusion

PSO is similar to GA:

- They are both population-based search approach
- They both depend on information sharing among the population members

PSO is more efficient than GA based on the results from t-tests

