Decomposing Images into Layers via RGB-Space Geometry

JIANCHAO TAN, JYH-MING LIEN, and YOTAM GINGOLD

George Mason University

In digital image editing software, layers organize images. However, layers
are often not explicitly represented in the final image, and may never have
existed for a scanned physical painting or a photograph. We propose a tech-
nique to decompose an image into layers. In our decomposition, each layer
represents a single-color coat of paint applied with varying opacity. Our de-
composition is based on the image’s RGB-space geometry. In RGB-space,
the linear nature of the standard Porter-Duff [1984] “over” pixel composit-
ing operation implies a geometric structure. The vertices of the convex hull
of image pixels in RGB-space correspond to a palette of paint colors. These
colors may be “hidden” and inaccessible to algorithms based on clustering
visible colors. For our layer decomposition, users choose the palette size (de-
gree of simplification to perform on the convex hull), as well as a layer order
for the paint colors (vertices). We then solve a constrained optimization prob-
lem to find translucent, spatially coherent opacity for each layer, such that
the composition of the layers reproduces the original image. We demonstrate
the utility of the resulting decompositions for recoloring (global and local)
and object insertion. Our layers can be interpreted as generalized barycentric
coordinates; we compare to these and other recoloring approaches.

CCS Concepts: ® Computing methodologies — Image manipulation;
Image processing

Additional Key Words and Phrases: Images, colors, layers, RGB, Photoshop

ACM Reference Format:

Jianchao Tan, Jyh-Ming Lien, and Yotam Gingold. 2016. Decomposing
images into layers via RGB-space geometry. ACM Trans. Graph. 36, 1,
Article 7 (November 2016), 14 pages.

DOI: http://dx.doi.org/10.1145/2988229

1. INTRODUCTION

Digital painting software simulates the act of painting in the real
world. Artists choose paint colors and apply them with a mouse
or drawing tablet by painting with a virtual brush. These virtual

This work was supported in part by the United States National Science
Foundation (IIS-1451198, 11S-1453018, 11S-096053, CNS-1205260, EFRI-
1240459, and AFOSR FA9550-12-1-0238) and a Google research award.
Authors’ addresses: J. Tan, J.-M. Lien, and Y. Gingold, Department of
Computer Science, George Mason University, 4400 University Drive MS
4AS, Fairfax, VA 22030; emails: jtan8@gmu.edu, jmlien@cs.gmu.edu,
ygingold @gmu.edu.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions @acm.org.

© 2016 ACM 0730-0301/2016/11-ART7 $15.00

DOI: http://dx.doi.org/10.1145/2988229

brushes have varying opacity profiles, which control how the paint
color blends with the background. Digital painting software typ-
ically provides the ability to create layers, which are composited
to form the final image yet can be edited separately. Layers orga-
nize images. However, layers are often not explicitly represented
in a final digital image. Moreover, scanned physical paintings and
photographs do not have such layers. Without layers, simple edits
become extremely challenging, such as altering the color of a coat
without inadvertently affecting a scarf placed over top.

We propose a technique to decompose any image into layers
(Figure 1). In our decomposition, each layer represents a coat of
paint of a single color applied with varying opacity throughout
the image. We use the standard Porter-Duff [1984] “A over B”
compositing operation:

(A over B)rgs = AgArcp + (1 — Ay) By Brea (D

(Aover B), = A, + (1 — A,)B,, (2)

where pixel A with color Aggp and translucency A, is placed over
pixel B with color Bggp and translucency B,,. Users choose the size
of the desired palette, and our technique automatically extracts paint
colors. Given a user-provided order for the colors, our technique
computes per-pixel opacity for each layer.! The result is a sequence
of layers that reproduce the original painting when composited.

In digital painting programs, the aforementioned “over” com-
positing operation is the standard way to apply virtual paint. In
RGB-space, the pixels of such a painting reveal a hidden geometric
structure (Figure 2). This structure results from the linearity of the
“over” compositing operation. The paint color acts as a linear attrac-
tor in RGB-space. Affected pixels move toward the paint color via
linear interpolation; the paint’s transparency determines the strength
of attraction, or interpolation parameter. All possible image colors
are convex combinations of the paint colors. In RGB-space, all pos-
sible image colors lie within the convex hull of the paint colors
(Figures 2 and 4). Our approach for decomposing any image into
layers is based on this observation. Our algorithm is agnostic as to
how a pixel achieved its color and does not require or assume that
pixels were created via “over” compositing. For example, physical
paint compositing can be approximated by the Kubelka-Munk lay-
ering and mixing models [Kubelka and Munk 1931; Kubelka 1948].
However, no simple model can describe images in general. Our goal
is to decompose an image into useful layers. We choose Porter-Duff
“over” compositing for our output representation because it is the
de facto standard for image editing. For images created with “over”
compositing, the recovered layers may be similar to ground truth
(Figure 4), though we do not expect this in general. For images
best described by another model, the recovered layers will not be
as sparse or clean as they could be with a technique that operated
in the parameters of the unknown model.

Overview. The first stage in our pipeline identifies a small color
palette capable of generating all colors in an image (Section 3). We

'The ordering is necessary, because the “over” compositing operation is not
commutative.

ACM Transactions on Graphics, Vol. 36, No. 1, Article 7, Publication date: November 2016.




7:2 . J. Tan et al.

original RGB space

A

recolored RGB space

composite

Fig. 1. Given a digital painting, we analyze the geometry of its pixels in RGB-space, resulting in a translucent layer decomposition, which makes difficult

edits simple to perform. Original artwork (©) Adelle Chudleigh.

clusters onv simplified
coooe o convex hL\l“ con\})ex hull
\ coo
g . | :
® /
@
(0] @
o ® o O. ® 9
T 0 e () .0. 3
00 LIP~ AR
r
image color space

Fig. 2. In RGB-space, the pixels of a digital image (left) lie in the convex
hull of the original paint colors (right). This is due to the linearity of the
standard “over” blending operation [Porter and Duff 1984]. Our approach
computes a simplified convex hull to find a small set of generating colors
for decomposing the image into layers. This simplified convex hull often
reveals “hidden” colors inaccessible to algorithms based on clustering.

compute the exact convex hull of the image colors in RGB-space.
Its vertices are capable of reproducing any color in the image. How-
ever, this exact convex hull is a tight wrapping of the image colors
and typically has too many vertices. (As these vertices are the color
palette, having too many vertices produces an unmanageable num-
ber of layers for the user.) Therefore, we simplify the convex hull
to a user-specified palette size (vertex count) that still encloses the
image colors. This often reveals “hidden” colors inaccessible to
algorithms based on clustering. Our simplification is based on the
progressive hull algorithm [Sander et al. 2000]. Naively, a simpli-
fied convex hull may have vertices outside the cube of valid RGB
colors. We adjust the simplified vertices to find real (as opposed to
imaginary) colors.

In the second stage of our pipeline, we compute per-pixel layer
opacities, given a user-specified layer ordering of the paint col-
ors (Section 4). This results in RGBA layers that, when com-
posited, reproduce the input image. Each layer models a coat of
paint. Our computation solves an underconstrained polynomial sys-
tem of equations.The polynomial equations express the constraint
that the “over” composition of all layers reproduces the input im-
age. The system is underconstrained because, in general, there are
multiple ways to paint a pixel to arrive at a given color (Fig-
ure 6). The system is only well defined when there are exactly
four paint colors (a tetrahedron) and the desired color is in the in-
terior. This is related to barycentric coordinates only being unique
for a point inside a simplex—tetrahedron in 3D.? To solve this

2 A point inside a polyhedron with more than four vertices lies in more than
one tetrahedron (whose vertices are a subset of the polyhedron’s). To see
this, consider that we can always tetrahedralize the polyhedron’s interior
(e.g., via a Delauney tetrahedralization) to obtain one set of barycentric

ACM Transactions on Graphics, Vol. 36, No. 1, Article 7, Publication date: November 2016.

underconstrained problem, we perform energy minimization with
terms to maximize translucency—absent additional information,
fewer rather than more layers should contribute to a pixel—and
spatial coherence.

Constraints. For perfect reproduction, the color palette’s convex
hull must enclose all image colors. This may not be possible for
too-small color palettes, given that the hull vertices must be valid
colors that lie within the unit RGB cube. It is possible to use fewer
vertices if they can be “imaginary” colors outside the RGB cube.
Furthermore, we require valid opacity values that lie between 0 and
1. If we allow opacity values beyond 0 and 1, we could reproduce
colors outside the convex hull of the color palette, but that is not a
standard layer format. Finally, we assume single-color layers. Each
layer models a coat of paint of a single color applied with varying
opacity.

Our contributions are as follows:

—The geometric analysis of an image in RGB-space to determine a
small color palette capable of reproducing the image (Section 3).
Our algorithm is based on its simplified RGB-space convex hull.

—An optimization-based approach to compute per-layer, per-pixel
opacity values (Section 4) given a user-provided ordering of the
colors. The layers, when composited, reproduce the input im-
age with minimal error. Our approach regularizes an undercon-
strained problem with terms that balance translucency and spatial
coherence.

The result of these contributions is a technique that decomposes a
single image into translucent layers. Our approach can be applied to
any image, such as photographs and physical paintings, to extract a
small palette of generating colors. Our decomposition enables the
structured re-editing and recoloring of digital paintings and other
images. Furthermore, our layers can be interpreted as a generalized
barycentric coordinate representation of the image (Section 4.2).
We compare our results to recoloring and generalized barycentric
coordinate approaches (Section 5). We also consider various relax-
ations of our problem statement, such as imaginary colors, multiple
colors per layer, and opacity values outside [0, 1].

2. RELATED WORK

Single-Image Decomposition. Richardt et al. [2014] investigated
a similar problem with the goal of producing editable vector

coordinates for any point; we can also perform a tetrahedra analog of the
two-triangle edge flip operation on any tetrahedron containing a point and
one of its neighbors to obtain a different tetrahedralization of their space
and therefore different barycentric coordinates for the point.



Decomposing Images into Layers via RGB-Space Geometry . 73

Our simplifications

9 vertices 8 vertices

image RGB-space convex hull

7 vertices 6 vertices 5 vertices 4 vertices

Ground truth

A simple digital
painting

RGB-space Our simplified
convex hull hull

Fig. 4. (a) A simple digital painting’s (b) convex hull in RGB-space is
complex due to rounding. (c) The result of our simplification algorithm (d)
matches ground truth, its original paint colors as an RGB-space polyhedron.

graphics. Our goal is to produce editable layered bitmaps. They
proposed an approach in which the user selects an image region,
and the region is then decomposed into a linear or radial gradient
and the residual, background pixels. Our approach outputs bitmap
image layers, which are a less constrained domain. Our approach
also requires much less user input. For comparison, we decompose
several images from their paper (Figure 12).

Xu et al. [2006] presented an algorithm for decomposing a sin-
gle image of a Chinese painting into a collection of layered brush
strokes. Their approach is tailored to a particular style of artwork.
They recover painted colors by segmenting and fitting curves to
brush strokes. They also consider the problem of recovering per-
pixel opacity as we do. In their setting, however, they assume at
most two overlapping strokes and minimally varying transparency.
We consider a more general problem in which strokes have no
known shape and more than two strokes may overlap at once.
Fu et al. [2011] introduced a technique to determine a plausible
animated stroke order from a monochrome line drawing. Their
approach is based on cognitive principles and operates on vector
graphics. We do not determine a stroke order; rather, we extract paint
colors and per-pixel opacity and operate on raster digital paintings.

McCann and Pollard [2009, 2012] introduced two generalizations
to layering, allowing (1) pixels to have independent layer orders and
(2) layers to partially overlap each other. We solve for layer opacity
coefficients in the traditional, globally, and discretely ordered model
of layers.

Scale-space filtering [Witkin 1983] and related techniques [Subr
et al. 2009; Aujol and Kang 2006; Farbman et al. 2008] decompose
a single image into levels of varying smoothness. These decom-
positions separate the image according to levels of detail, such as
high-frequency texture and underlying low-frequency base colors.
These techniques are orthogonal to ours, as they are concerned with
spatial frequency and we are concerned with color composition.

Intrinsic image decomposition [Grosse et al. 2009; Shen et al.
2008; Bousseau et al. 2009] attempts to separate a photographed
object’s illumination (shading) and reflectance (albedo). Lawrence
et al. [2006] tackled the related physical problem of decomposing a

: J .
convex hull simplified hull with ~ projected hull  optimized hull

invalid colors

input image

Fig. 5. One of the only images in our dataset in which vertex position
optimization led to an improvement in vertex positions. The impact was
negligible on reconstruction error. Artwork (¢) Karl Northfell.

Fig. 6. A pixel can be represented as a path from the background color ¢g
toward each of the other colors ¢y, ¢, ¢3, ... in turn. The opacity values «;
determine the length of each arrow as a fraction of the entire line segment to
¢;. When there are no more than four colors (left), there is only one possible
path. With more than four colors (right), there are many possible paths.

Spatially-Varying Bidirectional Reflectance Distribution Function
into a shade tree. These decompositions are suitable for photographs
of illuminated objects, but not, for example, digital paintings.

The recoloring approach of Chang et al. [2015] extracts a color
palette from a photograph by clustering. Gerstner et al. [2013] ex-
tracted sparse palettes from arbitrary images for the purpose of
creating pixel art. Unlike approaches based on clustering the ob-
served colors, our approach has the potential to find simpler and
even “hidden” colors. Consider an image created from a blend of
two colors with varying translucency, never opaque. In the final
image, the original colors will never be present, though an entire
spectrum of other colors will be (Figure 2).

Editing History. Tan et al. [2015] and Amati and Brostow [2010]
described approaches for decomposing time-lapse videos of physi-
cal (and digital, for Tan et al. [2015]) paintings into layers. In our
scenario, we have only the final painting, though we make the sim-
plifying assumption that only Porter-Duff [1984] “over” blending
operations were performed.

Hu et al. [2013] studied the problem of reverse-engineering the
image editing operation that occurred between a pair of images. We
are similarly motivated by “inverse image editing,” though we solve
an orthogonal problem in which only a single image is provided and
the only allowable operation is painting.

A variety of approaches have been proposed to make use of
image editing history (see Nancel and Cockburn [2014] for a recent

ACM Transactions on Graphics, Vol. 36, No. 1, Article 7, Publication date: November 2016.



74 J J. Tan et al.
3 ! 1
image "g
~ . -
Y
<l L
: &
1 2 3 4 5 composite
) = J
-§ ’
3 A
3 o 0 y
3 .
1 2 3 4 b composite

Fig. 7. Different layer orders result in different decompositions. Artwork (©) Adelle Chudleigh.

adjusting w,paque

INIC IR
. v, ', 7/ .
N ' A
NC7 (&
=% .
RN
7| M
K ALANY

Fig. 8. The effect of changing the opacity optimization weights. For this
example, Wopague = -1, Wypariar = 100 produces a better result than the
values used for all other examples (Wopague = 1, Wspariar = 100).

survey). While we do not claim that our decomposition matches the
true image editing history, our approach could be used to provide
a plausible editing history. In particular, Wetpaint [Bonanni et al.
2009] proposed a tangible “scraping” interaction for visualizing the
layers of a painting.

Matting and Reflections. Smith and Blinn [1996] studied the prob-
lem of separating a potentially translucent foreground object from
known backgrounds in a photo or video (“blue screen matting”).
Zongker et al. [1999] solved a general version of this problem,
which allows for reflections and refractions. Levin et al. [2008a,
2008b] presented solutions to the natural image matting problem,
which decomposes a photograph with a natural background into
layers; Levin et al.’s solutions assume at most three layers per small
image patch and find as binary as possible opacity values. We com-
pare our output to Levin et al. [2008b] in Section 5. Layer extraction
has been studied in the context of photographs of reflecting objects,
such as windows [Szeliski et al. 2000; Farid and Adelson 1999;

ACM Transactions on Graphics, Vol. 36, No. 1, Article 7, Publication date: November 2016.

Levin et al. 2004; Sarel and Irani 2004]. These approaches make
physical assumptions about the scene in the photograph; they re-
quire a pair of photographs as input [Farid and Adelson 1999]. We
consider digital images in general, in which physical assumptions
are not valid and there are typically more than two layers.

3. IDENTIFYING PAINT COLORS

The first step in our pipeline identifies the colors used to paint the
image. In a digital painting, many pixels will have been painted
over multiple times with different paint colors. Because the paint
compositing operation is a linear blend between two paint colors
(Equation (1)), all pixels in the painting lie in the RGB-space convex
hull formed by the original paint colors. Equivalently, any pixel
color p can be expressed as the convex combination of the original

paint colors ¢;:
p=) we €)

for some weights w; € [0, 1] with >~ w; = 1. This convex combi-
nation property is true for Porter-Duff “over” compositing, but not
true for nonlinear compositing such as the Kubelka-Munk model of
pigment mixing or layering [Budsberg 2007]. Figures 1, 4, 17, 19,
21, and 12 display pairs of images and their pixels in RGB-space.
Note that the w; s in Equation (3) are not opacity values. Rather, they
are generalized barycentric coordinates and do not depend on the
layer order. The relationship between layer opacity and generalized
barycentric coordinates will be discussed in Section 4.

To identify the colors used to paint the digital image (or a set
of generating colors for any image), we first compute the RGB-
space convex hull of all observed pixel colors. The convex hull is a
tight wrapping of the colors. In practice, it will be overly complex
(too many vertices). Too many vertices would result in an unwieldy
number layers; we wish to have a manageable (user-determined)
number of layers with clearly differentiated colors (Figure 3). The
large number of vertices may be due to quantization artifacts or to
the generating colors being applied semitransparently. Semitrans-
parent paint does not produce any pixels with the paint color itself.
This manifests as “cut corners” or extra faces in the convex hull
(Figure 2).

3.1

The next stage in our pipeline simplifies the convex hull to a desired,
user-provided palette size. We considered a variety of simplification
approaches.There is a well-known convex polytope approximation
due to Dudley [1974] and Har-Peled [1999]. This approximation
strictly adds volume, so all colors will still be contained in the

Simplifying the Convex Hull



Decomposing Images into Layers via RGB-Space Geometry J 7:5

Table I. Performance
opacity optimization
image  width X runtime RMSE  median max error

height (seconds) error
apple 500 %453 330.3 1.8 0.0 323
bird 640 x 360 500.4 3.7 2.2 60.1
rowboat 589 %393 981.4 33 2.4 19.2
buildings 589 x 393 317.9 2.3 1.4 322
cup 400 x 400 40.9 3.0 0.0 343
fruit 650 x 414 212.1 1.9 0.0 22.6
girls 589 %393 152.7 2.4 1.4 29.1
hoover 500 % 500 47.1 3.9 1.0 39.2
light 504 x 538 101.6 24 1.0 25.5
robot 450 % 600 519.8 35 2.8 14.5
scrooge 410 x 542 97.6 2.6 1.4 15.7
Figure 4 500 x 500 4343 0.7 0.0 3.3
trees 606 x 404 80.2 5.9 4.2 35.0
turtle 525 %250 19.5 2.8 1.0 454
boat 480 x 600 520.0 4.2 2.2 40.2
castle 747 x 344 280.0 3.7 2.2 45.6
turquoise 480 x 585 498.7 2.0 1.4 17.8
moth 650 x 390 675.1 3.1 1.7 25.7

Running time and reconstruction error. Difference images appear almost univer-
sally black and can be found in the supplemental materials.

middle layer top layer
A- -
top layer (over black)
top layer

~

second-from-top layer

bottom layers

Fig.9. Our layer decomposition enables local image recoloring. The input
images’ layer decompositions can be seen in Figures 17, 19, and 21. Original
artworks (©) Michelle Lee, Bychkovsky et al. [2011], Michelle Lee, Adam
Saltsman, Dani Jones.

between

between

above

Fig. 10. Inserting graphics as new layers between our decomposed layers
(Figures 17, 19, and 8) produces a more natural result than pasting graphics
above. Original artworks (©) Karl Northfell, Michelle Lee.

Table II. Generalized Barycentric Coordinate Weight Sparsity
Our

image MVC LBC optimization ~ ASAP
apple 0.54 0.59 0.62 0.66

,, Towboat 0.11 0.34 0.44 0.57
5 girls 0.10 0.22 0.36 0.40
S robot 0.01 0.14 0.47 0.50
= scrooge 0.30 0.38 0.51 0.53
~ Figure 4 0.33 0.38 0.41 0.47
boat 0.08 0.24 0.49 0.60
apple 0.10 0.27 0.41 0.46

v rowboat 0.03 0.20 0.41 0.52
—g girls 0.00 0.14 0.34 0.37
< Tobot 0.00 0.18 0.39 0.47
T; scrooge 0.10 0.18 0.29 0.31
£ Figure 4 0.01 0.16 0.18 0.26
boat 0.01 0.23 0.45 0.54

Our weights are sparser than Mean-Value Coordinates [Floater et al. 2005; Ju
etal. 2005] and Local Barycentric Coordinates [Zhang et al. 2014], and almost as
sparse as the optimal as-sparse-as-possible weights. Sparsity is computed as the
fraction of near-zero values (¢ = #vle/gi]fes ). The lower half of the table (shaded
yellow) shows sparsity when imaginary colors are used, which may be further

from the pixel colors.

approximate shape. The approximation takes the form of a con-
structive proof to find a simpler polytope with 0(/%) vertices that
adds less than a factor of x volume. The constructive proof is, for
our purposes, underdetermined. Vertices are selected based on any
regular sampling of the shape’s bounding sphere. This approach is
not rotation invariant and ends up selecting a subset of the original
polytope’s faces. The selected faces are treated as half-planes, which
define a new polytope. Instead, we use a tighter, well-determined
approximation.

The progressive hull is a mesh simplification technique intro-
duced by Sander et al. [2000]. The approach is based on a sequence
of edge contractions, in which an edge is contracted to a vertex.
The vertex is placed according to a constrained optimization prob-
lem. The constraints are that the vertex must be placed outside (the
plane of) every face incident to the edge. Equivalently, every tetra-
hedron formed by connecting the new vertex to a face incident to the
edge must add volume to the shape. The progressive hull objective

ACM Transactions on Graphics, Vol. 36, No. 1, Article 7, Publication date: November 2016.



7:6 o J. Tan et al.

original [Chang et al. 2015]

DD_III

D__EII

EOOCmE
]

->

[T i
]

mE _ mm
[

Fig. 11. Recoloring images by changing palette colors with our approach
and with the approach of Chang et al. [2015]. Note that as the approaches
find different palettes, colors were modified to achieve a similar recolored
result. Our results contain fewer unrelated changes or artifacts (red arrows).
The images’ layer decompositions computed by our method can be seen in
Figures 1,4, 17, 19, and 21. Top three photographs from Bychkovsky et al.
[2011]. Bottom four original artworks () Adam Saltsman, Yotam Gingold,
Michelle Lee, Adelle Chudleigh.

ACM Transactions on Graphics, Vol. 36, No. 1, Article 7, Publication date: November 2016.

function minimizes the total added volume. The next edge to con-
tract is the one whose contraction adds the least volume. (Edges
with no solution satisfying the constraints are skipped.) This ap-
proximation strictly adds volume, so all colors are guaranteed to
be contained in every step of the progressive hull. Moreover, the
constraints and objective function are linear, since the (oriented)
volume of a tetrahedron with three fixed vertices is linear:

A 4
§n~(v—v0), 4)

where v is the free vertex, vy is any one of the fixed vertices, and n
and A are the outward unit normal and area of the triangle formed
by the three fixed vertices. As a result, the constrained optimization
for each edge contraction is a linear programming problem, which
can be solved efficiently.

There are infinitely many solutions when all faces incident to an
edge are exactly coplanar. If all faces are nearly coplanar, the so-
lution becomes unstable. We consideredalternative objective func-
tions (subject to the progressive hull constraints): the distance to
each face’s plane (the objective function used in the classic mesh
simplification approach of Garland and Heckbert [1997] and equiv-
alent to not multiplying by % in Equation (4)) and the distance to the
edge undergoing contraction (a quadratic programming problem).
We experimented with these alternative objective functions both
for determining the contracting edge’s vertex placement and as the
metric for determining the next edge to contract. All combinations
usually produced similar results. Our results were computed using
added volume to determine the next edge to contract and the total
distance to incident face’s planes in the constrained optimization,
as this combination produced stabler results than the total added
volume constrained optimization with the same running time.

We also experimented with a RANSAC plane-fitting approach,
in which we greedily fit planes to the convex hull. The simplified
polyhedron is then taken as the intersection of the half-spaces de-
fined by each plane. However, this approach is difficult to control.
The degree of simplification is limited as the planes cannot deviate
from the convex hull, and the planes’ intersections produce multiple
nearby vertices. As a result, the user cannot directly specify a de-
sired number of vertices. Moreover, there are additional parameters
to tune, such as the RANSAC inlier distance and the threshold for
collapsing nearby vertices in the planes’ intersections.

3.2 Imaginary Colors

While the vertices of the convex hull are always located within the
RGB cube, the vertices of a simplified hull may not be. Vertices
outside the RGB cube are “imaginary” colors and cannot be used as
layer colors. They can, however, still be used for recoloring based
on generalized barycentric coordinates (Section 4.2).

For our layer decomposition, we require valid colors. Constrain-
ing the linear programming optimization to only consider vertices
within the RGB cube frequently overconstrains the problem, result-
ing in no solution. Intersecting the simplified hull with the cube
(as solid shapes) increases the number of vertices, sometimes in a
manner that is difficult to control, such as when a vertex protrudes
only a small amount.

There is a tension between a small number of vertices and a
simplified hull that still encloses all image colors. Our solution is
to allow reconstruction error in order to achieve a user’s desired
color palette size. We experimented with optimization to adjust
vertex positions—minimizing the average distance of all pixels to
the hull and the distance hull vertices move—but found the added



Decomposing Images into Layers via RGB-Space Geometry J 77

P

image RGB-space simplified hull layer 1 layer 2

layer 3 layer 4 composite

Fig. 12. Our decomposition results on examples from Richardt et al. [2014] (cup, hoover, and light). Results were computed with an opaque (RGB)

background. Artworks (©) George Dolgikh, Spencer Nugent, Roman Sotola.

original original

original

. D . l . D . . [Richardt et al. 2014]

OEEE COEE OEES

EOCN EECE EECE

Fig. 13. Global recoloring results obtaining by adjusting layers colors for the examples in Figure 12. Richardt et al.’s result [2014] requires manual
segmentation. Original artworks (©) George Dolgikh, Spencer Nugent, Roman Sotola.

input 9 components

1 2 3 4 5
6 7 8 9 ;

Fig. 14. The output of Levin et al. [2008b] on our scrooge example. The
natural image assumptions are not well suited for digital paintings. Artwork
(© Dani Jones.

best alpha matte

complexity and running time to have little overall impact on the
reconstruction error (Figure 5). We also experimented with opti-
mizing vertex placement during our subsequent opacity computa-
tion (Section 4) but found it difficult to control. Ultimately, some
amount of error is unavoidable due to the small number of hull
vertices constrained to lie within the RGB cube. Simply project-
ing simplified vertices that lie outside the RGB cube to the closest
point on the cube resulted in a simple, predictable algorithm and
reconstructions with low error (Table I). After projecting hull ver-
tices, some image colors no longer lie within the hull. We project
such outside image colors to the closest point on the hull’s surface.
This is a source of reconstruction error. In Figure 15, we show an

interface in which the imaginary colors can directly be used for
image recoloring.

The next stage of our algorithm determines the per-pixel opacity
of each layer.

4. DETERMINING LAYER OPACITY

The final stage of our algorithm computes per-pixel opacity values
for each layer. This stage takes as input ordered RGB layer colors
{c;} resulting from Section 3. Then, at each pixel, the observed
color p can be expressed as the recursive application of “over”
compositing (Equation (1)), factored into the following convenient
expression:

p=c+y |(i—c)]Ja—ep], ®)
i=1 j=i

where «; is the opacity of ¢;, and the background color ¢ is opaque.
Since colors p and ¢; are three-dimensional (RGB), this is a system
of three polynomial equations with number of layers unknown. For
RGBA input images or images with an unknown background color,
premultiplied RGBA colors should be used. Equation (5) becomes
a system of four polynomial equations. The background layer ¢,
becomes transparent—the zero vector—while the remaining global
layer colors ¢; are opaque.

ACM Transactions on Graphics, Vol. 36, No. 1, Article 7, Publication date: November 2016.



7:8 .

J. Tan et al.

original i Mmyvc

ASAP

Fig. 15. Recoloring an example from Chang et al. [2015] by manipulating vertices of the polyhedron and reconstructing colors with generalized barycentric
coordinates. We compare our layers as weights (Equation (7)) to Mean-Value Coordinates [Floater et al. 2005; Ju et al. 2005], Local Barycentric Coordi-
nates [Zhang et al. 2014], and our as-sparse-as-possible coordinates. ASAP produces a very similar result to our optimization, while MVC and LBC produce
an undesirable change in the chair and the girls’ hair. The image’s layer decomposition can be seen in Figure 21. Photograph from Bychkovsky et al. [2011].

layers composite  edit B>

wre %

‘f.q'.

Ours =
¢ 1

ASAP ST o

Fig. 16. Converting generalized barycentric coordinates into layers shows
that our optimization’s layers and the As-Sparse-As-Possible weights are
much sparser than Mean-Value Coordinates [Floater et al. 2005; Ju et al.
2005] and Local Barycentric Coordinates [Zhang et al. 2014]. On close
examination, the non-smoothness of ASAP weights is apparent. Our sup-
plemental materials include additional comparisons between ASAP weights
as layers and our opacity optimization. Artwork (©) Adam Saltsman.

There will always be at least one solution to Equation (5), because
p lies within the RGB-space convex hull of the ¢;. When the number
of layers is less than or equal to four (not counting the translucent
background in case of RGBA), there is, in general, a unique solution.
It can be obtained geometrically in RGB-space by projecting p
along the line from the topmost layer color ¢, onto the simplex
formed by ¢ ...c,_, and so on recursively (Figure 6). However,
if p is identical to one of the ¢;s (other than the bottom layer) or
the number of layers is greater than four, there are infinitely many
solutions (Figure 6). For numerical reasons, it is problematic when
p is nearly identical to a layer color—a situation that arises often.

4.1 Layer Order

“Over” color compositing, while linear, is not commutative. For n
layers, there are n! orderings. Because of the large possibility space
and the unknown semantics of the colors, we do not automate the
determination of the layer order. In our experiments, we computed
opacity values for all n! layer orders with the algorithm described
in this section and attempted to find automatic sorting criteria. We
experimented with the total opacity, gradient of opacity, and Lapla-
cian of opacity, but none matched human preference. As aresult, we
require the user to choose the layer order for the extracted colors.

ACM Transactions on Graphics, Vol. 36, No. 1, Article 7, Publication date: November 2016.

An alternative layer order for the example in Figure 1 is shown in
Figure 7.

4.2 Generalized Barycentric Coordinates

Generalized Barycentric Coordinates express any point p inside a
polyhedron as a weighted average of the polyhedron’s vertices c¢;
(Equation (3)). For simple recoloring applications, the RGB-space
vertices can be modified and the pixel colors then recomputed. The
sparsest possible weights have at most four nonzero w;s. In other
words, a pixel can always be expressed as the weighted average of
four colors. This corresponds to the well-defined, nongeneralized
barycentric coordinates of any tetrahedron enclosing p whose ver-
tices are a subset of the ¢;. These as sparse as possible (ASAP)
weights can be made continuous as a function of p by using a
conforming (nonoverlapping) tetrahedralization of the polyhedron.
Since the tetrahedra must be composed of vertices of the simplified
convex hull, this corresponds to choosing one color and connecting
it to every face. If the user has identified an opaque background
color as the bottommost layer, then a natural choice is to choose it;
the ASAP weights therefore define all pixels as the mixture of at
most three nonbackground colors.

Generalized barycentric coordinates w; for a pixel can be con-
verted into layer opacities «; as follows:

il ;
- }":0 - if Zj:() wj #0 6)

o = Y

otherwise.

Due to the division by zero in the general case, the conversion from
generalized barycentric coordinates to opacity values is ambiguous
and relies on an arbitrary and potentially nonsmooth choice. This
corresponds to the ambiguity that arises when an opaque layer
occludes everything underneath. Due to this ambiguity, we propose
a sparse and smooth optimization-based approach to computing
layer opacities.

Note that layer opacity values can be converted to generalized
barycentric coordinates in a well-defined manner:

[T (=) ifi =0
wi = (Mo =) = (M= —ap) ifo<i<n ()
=[]l —a) =«
We compare our optimization solutions to ASAP weights and two
other well-known generalized barycentric coordinates, Mean-Value

Coordinates [Floater et al. 2005; Ju et al. 2005] and Local Barycen-
tric Coordinates [Zhang et al. 2014], in Section 5.

ifi =n.

4.3 Optimization

To choose among the infinitely many solutions to Equation (5),
we introduce two regularization terms and solve an optimization



Decomposing Images into Layers via RGB-Space Geometry . 79

RGB-space simplified hull
—

layers

composite

e

(over black)

Sfruit

turtle

2.

scrooge

Fig. 17. Our decomposition results on digital paintings. Results were computed with an opaque (RGB) background. Layers appear in reading order (left to
right, top to bottom). Artworks (©) Karl Northfell, DeviantArt user Ranivius, Piper Thibodeau, Dani Jones, Adam Saltsman.

problem. Our first regularization term penalizes opacity; absent ad-
ditional information, a completely occluded layer should be trans-
parent:

1 n
Eopagie = = =(1 = a)?, ®)
i=1

Minimizing —(1 — «;)? rather than the more typical o results in
a far sparser solution. Intuitively, naively squaring ¢; produces an
objective function that would “prefer” to decrease «; from 1 and in-
crease some other o; away from 0. Our E a4 prefers the opposite,
resulting in a sparse solution. This unusual formulation is possible
because the ;s are bounded in the interval [0, 1].

Our second regularization term penalizes solutions that are not
spatially smooth. We use the Dirichlet energy, which penalizes the

difference in «; between each pixel and its spatial neighbors:
Eopuin =+ 3 (Va? ©
spatial n - i)

where Ve; is the spatial gradient of opacity in layer i.

We minimize these two terms subject to the polynomial con-
straints (Equation (5)) and «; € [0, 1]. We implement the polyno-
mial constraints as a least-squares penalty term per-pixel E,,opynomiai:

2
1 n n
Epolynamial = E ¢, —p+ Z (cifl - cl)l_[(l - aj) ’
i=1 j=i

(10)

ACM Transactions on Graphics, Vol. 36, No. 1, Article 7, Publication date: November 2016.



7:10 o J. Tan et al.

original

B EEN] BN EEED

Y X

EEOE

5 ¥

OmECOm

mOON

EEEEC EEEEC EEEEC BEER0

original

DJEE0 OOEED DOm0 COEEEc

i e il
| mmm [ § e R (e e (e ()

990

(EEECN (s [ DEeEs (A

Fig. 18. Global recoloring results obtaining by adjusting layer colors for the examples in Figures 1, 4, and 17. Original artworks (¢) Karl Northfell, DeviantArt
user Ranivius, Piper Thibodeau, Yotam Gingold, Dani Jones, Adam Saltsman, Adelle Chudleigh (top to bottom, left to right).

where K = 3 or 4 depending on the number of channels (RGB or
RGBA). The combined energy expression that we minimize is

wpalynomialEpolynomial + wapaqueEapaque + wspatialEspatial-

We used Wponnomiat = 375, Wopague = 1, and wypuiw = 100 for
all of our examples. Figure 8 shows an evaluation of the effect of
changing weights for our one example in which the defaults do not
produce the best output.

5. RESULTS

Implementation. We use QHull [Barber et al. 1996] for convex hull
computation, GLPK [GNU Project 2015] for solving the progressive
hull linear programs, and L-BFGS-B [Zhu et al. 1997] for opacity
optimization. Our algorithms were written in Python and vectorized
using NumPy/SciPy. Our implementation is not multithreaded.

To improve the convergence speed of the numerical optimization,
we minimize our energy on recursively downsampled images and
use the upsampled solution as the initial guess for the larger im-
ages (and, eventually, the original image). We down/upsampled by
factors of two. We used ¢; = 0.5 as the initial guess for the small-
est image. We experimented with using ASAP weights as the initial
guess, without downsampling. (Downsampling is incompatible with
a detailed guess.) With the ASAP initial guess, optimization took
longer on average while producing similar or worse (less smooth)
results.

Performance. All experiments were performed on a single core of
a 2.9GHz Intel Core i5-5257U processor. Paint color identification
(Section 3) takes a few seconds to compute the simplified convex
hull; the bottleneck is the user choosing the desired amount of sim-
plification. Computing layer opacity (Section 4) entails solving a
nonlinear optimization procedure. As we implemented our opti-
mization in a multiresolution manner, the user was able to quickly

ACM Transactions on Graphics, Vol. 36, No. 1, Article 7, Publication date: November 2016.

see a preview of the result (seconds for a 100-pixel-wide image).
This is important for experimenting with different layer orders and
energy weights. Larger images are computed progressively as the
multiresolution optimization converges on smaller images; the fi-
nal optimization can take anywhere from 1 minute to 15 minutes
to converge (Table I). Once decomposed, applications such as re-
coloring and object insertion are computed extremely efficiently as
compositing operations.

Layer Decompositions. Figures 1,7, 12, 17, 19, and 21 show the
decomposition of a variety of digital paintings. The decomposed
layers reproduce the input image without visually perceptible dif-
ferences and with low root-mean-squared error (Table I). Absolute
difference images, virtually all of which appear uniformly black,
can be found in the supplemental materials. This is because the
approximate convex hulls cover almost every pixel in RGB-space
(Section 3), and the polynomial constraints in the energy minimiza-
tion ensure that satisfying opacity values are chosen (Section 4).
The decomposed layer representations facilitate edits like spatially
isolated recoloring (Figure 9) and inserting objects between layers
(Figure 10), in addition to global recoloring by changing palette
colors (Figures 13, 18, 20, and 22).

Comparisons. We have compared the output of our results to
several alternative layer decomposition and recoloring approaches.
Figure 11 compares global recolorings using our layer decomposi-
tion and the approach of Chang et al. [2015]. Our results contain
fewer unrelated changes or artifacts. Note that the approaches find
different palettes. These recolorings were created by modifying each
approach’s palette to achieve a similar recoloring result. Only our
approach detects for example, the blue and green colors in the apple
or the blue color in scrooge. (Figure 18 shows our scrooge palette,

while Chang et al. [2015]’s palette is OO NN As Chang
et al. [2015] is based on clustering image colors, their palette colors



Decomposing Images into Layers via RGB-Space Geometry . 7:11

layers

boat (physical painting) RGB-space simplified hull

>

composite

(over black)

(over black)

i“

C

)

Fig. 19. Our decomposition results on digital and physical paintings. Results were computed with an opaque (RGB) or translucent (RGBA) background

where noted. Artworks (©) Michelle Lee.

all lie within the interior of the
pixel colors in RGB-space. Be-
cause these important colors are
infrequent, they are missed by
clustering-based methods. See in-
set on the right for bird colors de-
tected by Chang et al. [2015] in
RGB-space. Figure 21 shows the
results of our layer decomposition
algorithm on examples from Chang
et al. [2015], and Figure 22 shows
additional recoloring results. The
computational complexity of our
recolorings is extremely low; the recolored image is a per-pixel
weighted average of the color palette. See the supplemental mate-
rials for an interactive recoloring GUI.

Figure 12 shows the results of our layer-based decomposition
on examples from the vector graphics decomposition algorithm of
Richardt et al. [2014]. Our algorithms produce substantially dif-
ferent output. In Richardt et al. [2014], users manually segment

portions of each image to be decomposed into a gradient layer. Re-
coloring results for these examples are shown in Figure 13. The
RGB-space geometric structure of the circular light’s pixels show-
cases the strength of our algorithm, which achieves virtually the
same colors as ground truth.

Figure 14 shows the results of the soft matting algorithm of
Levin et al. [2008b] on one of our examples. This spectral matting
approach makes natural image assumptions and is not well suited
for digital paintings.

Generalized Barycentric Coordinates. Via Equation (7), we are
able to compare our results to generalized barycentric coordinates
and edit images even with imaginary colors. We compared to Mean-
Value Coordinates (MVCs) [Floater et al. 2005; Ju et al. 2005],
which are fast and closed form, and Local Barycentric Coordi-
nates (LBCs) [Zhang et al. 2014], which require solving an opti-
mization and aim to find sparse weights. We also compare to our
ASAP weights, which are not smooth spatially in image-space and
only C° smooth in RGB-space. Notably, our opacity optimization

ACM Transactions on Graphics, Vol. 36, No. 1, Article 7, Publication date: November 2016.



7:12 o J. Tan et al.

original original

BOOONE EOCOCOEE ROOCONE EECOOEE O0EERE OaENEE OO eeEN 0 /.
Fig. 20. Global recoloring results obtained by adjusting layer colors for the examples in Figure 19. Original artworks (©) Michelle Lee.

RGB-space simplified hull layers composite

trees (RGB model)

buildings (RGBA model)

(over black)

L

(over black)

Fig. 21. Our decomposition results on examples from Chang et al. [2015]. Results were computed with an opaque (RGB) or translucent (RGBA) background
where noted. Photographs from Bychkovsky et al. [2011].

produces sparser weights than either Mean-Value Coordinates or weights. Additional examples can be found in the supplemental
Local Barycentric Coordinates (Table II). We believe that our spar- materials. Our result is quite similar to ASAP, which can be com-
sity improvement is due to the small yet nonzero error introduced puted in seconds, but much smoother. Figure 15 compares recol-
by our optimization. Figure 16 compares layers converted from oring results with these techniques using the polyhedron vertices

ACM Transactions on Graphics, Vol. 36, No. 1, Article 7, Publication date: November 2016.



Decomposing Images into Layers via RGB-Space Geometry . 7:13

original

original

ER(/NE EN(EH EECEE

EOaEEE FOeeEE OO0 eEE.

Fig. 22. Global recoloring results obtained by adjusting layer colors for the examples in Figure 21. Photographs from Bychkovsky et al. [2011].

as handles. Our supplemental materials contain a recoloring GUI
based on manipulating the RGB-space vertices.

6. CONCLUSION

The RGB-space of an image contains a “hidden” geometric struc-
ture. Namely, the convex hull of this structure can identify a small
set of generating colors for any image. Given a set of colors and an
order, our constrained optimization decomposes the image into a
useful set of translucent layers. Our layers can be converted to a gen-
eralized barycentric coordinate representation of the input image,
yet are sparser.

Limitations. Our technique has several notable limitations. First,
selecting per-pixel layer opacity values is, in general, an under-
constrained problem. Our optimization employs two regularization
terms to bias the result toward translucent and spatially coherent
solutions. However, this still may not match user expectations. Sec-
ond, we expect a global order for layers. We use layers to represent
the application of a coat of paint. However, in the true editing his-
tory, a single color may have been applied multiple times in an
interleaved order with the other colors. Third, layer colors that lie
within the convex hull cannot be detected by our technique. We
also do not allow colors to change during optimization; we exper-
imented with an energy term allowing layer colors to change but
found it difficult to control. A related problem is images of, for
example, rainbows; when the convex hull encompasses all or much
of RGB-space, layer colors become uninformative (e.g., pure red,
green, blue, cyan, magenta, yellow, and black). Fourth, we require
user input to choose the degree of simplification for the convex hull
and to choose the layer order. Fifth, outlier colors greatly influence
the shape of the convex hull used for color palette selection. Out-
lier colors could be identified in a preprocessing step and ignored
for palette selection (Section 3). Our opacity optimization approach
will still choose values that minimize the RGB-space distance to the
outlier. Sixth, if the image colors are all coplanar or collinear, color
palette selection (Section 3) should use a 2D or 1D convex hull
and simplification algorithm. Our implementation does not test for
such a color subspace. Finally, nonlinear color-space transforma-
tions, such as gamma correction, distort the polyhedron. We ignore
gamma information stored in input images.

Future Work. In the future, we plan to studydecompositions with
nonlinear color compositing operations, such as the Kubelka-Munk
mixing and layering equations [Kubelka and Munk 1931; Kubelka
1948; Baxter et al. 2004; Lu et al. 2014; Tan et al. 2015]. This

would allow us to decompose scans of physical paintings into phys-
ically meaningful parameters. We also plan to evaluate our color
palettes with the metric of O’Donovan et al. [2011] and compare
to a model of human-extracted color palettes [Lin and Hanrahan
2013]. The metric could be used to automate recoloring by modi-
fying our palettes to become more perceptually satisfying. Finally,
we plan to apply our per-pixel layer opacity values toward segmen-
tation; layer translucency is a higher-dimensional and potentially
more meaningful feature than composited RGB color.

ACKNOWLEDGMENTS

We are grateful to Neil Epstein for an interesting conversation about
the algebraic structure of the solutions to the multilayer polynomial
system, to Sariel Har-Peled for a discussion about convex hull ap-
proximation, and to the anonymous reviewers for their feedback and
suggestions. Several experiments were run on ARGO, a research
computing cluster provided by the Office of Research Computing
at George Mason University, VA (http://orc.gmu.edu).

REFERENCES

Cristina Amati and Gabriel J. Brostow. 2010. Modeling 2.5D Plants from Ink
Paintings. In Sketch-Based Interfaces and Modeling (SBIM’10). 41-48.
Jean-Fran Aujol and Sung Ha Kang. 2006. Color image decomposition and
restoration. Journal of Visual Communication and Image Representation

17, 4 (2006), 916-928.

C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. 1996. The
Quickhull Algorithm for Convex Hulls. ACM Transactions on Mathemat-
ical Software 22, 4 (Dec. 1996), 469-483.

William V. Baxter, Jeremy Wendt, and Ming C. Lin. 2004. IMPaSTo: A
realistic, interactive model for paint. In Non-Photorealistic Animation
and Rendering (NPAR’04). 45-56.

Leonardo Bonanni, Xiao Xiao, Matthew Hockenberry, Praveen Subramani,
Hiroshi Ishii, Maurizio Seracini, and Jurgen Schulze. 2009. Wetpaint:
Scraping Through Multi-layered Images. In Proceedings of ACM SIGCHI.
571-574.

Adrien Bousseau, Sylvain Paris, and Frédo Durand. 2009. User-assisted
Intrinsic Images. ACM Transactions on Graphics 28, 5, Article 130 (Dec.
2009), 130:1-130:10.

Jetfrey B. Budsberg. 2007. Pigmented Colorants: Dependency on Media
and Time. Master’s thesis. Cornell Univrsity, Ithaca, New York, NY.

Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. 2011.
Learning photographic global tonal adjustment with a database of input /
output image pairs. In Computer Vision and Pattern Recognition (CVPR).

ACM Transactions on Graphics, Vol. 36, No. 1, Article 7, Publication date: November 2016.


http://orc.gmu.edu

7:14 o J. Tan et al.

Huiwen Chang, Ohad Fried, Yiming Liu, Stephen DiVerdi, and Adam
Finkelstein. 2015. Palette-based Photo Recoloring. ACM Transactions
on Graphics 34, 4 (Aug. 2015), 139:1-139:11.

Richard M Dudley. 1974. Metric entropy of some classes of sets with dif-
ferentiable boundaries. Journal of Approximation Theory 10, 3 (1974),
227-236.

Zeev Farbman, Raanan Fattal, Dani Lischinski, and Richard Szeliski. 2008.
Edge-preserving decompositions for multi-scale tone and detail manipu-
lation. ACM Transactions on Graphics 27, 3 (2008), 67:1-67:10.

Hany Farid and Edward H Adelson. 1999. Separating reflections from im-
ages by use of independent component analysis. Journal of the Optical
Society of America A 16,9 (1999), 2136-2145.

Michael S. Floater, Géza Kés, and Martin Reimers. 2005. Mean value coor-
dinates in 3D. Computer Aided Geometric Design 22,7 (2005), 623-631.
DO1I:http://dx.doi.org/10.1016/j.cagd.2005.06.004

Hongbo Fu, Shizhe Zhou, Ligang Liu, and Niloy J. Mitra. 2011. Ani-
mated construction of line drawings. ACM Transactions on Graphics
30, 6 (2011), 133.

Michael Garland and Paul S. Heckbert. 1997. Surface Simplification Using
Quadric Error Metrics. In Proceedings of ACM SIGGRAPH. 209-216.
Timothy Gerstner, Doug DeCarlo, Marc Alexa, Adam Finkelstein, Yotam
Gingold, and Andrew Nealen. 2013. Pixelated image abstraction with
integrated user constraints. Computers & Graphics 37, 5 (2013), 333—

347.

GNU Project. 2015. GNU Linear Programming Kit. (2015). http://www.
gnu.org/software/glpk/glpk.html Version 4.57.

Roger Grosse, Micah K. Johnson, Edward H. Adelson, and William T.
Freeman. 2009. Ground truth dataset and baseline evaluations for intrin-
sic image algorithms. In International Conference on Computer Vision
(ICCV’09). 2335-2342.

Sariel Har-Peled. 1999. Geometric Approximation Algorithms and Random-
ized Algorithms for Planar Arrangements. Ph.D. Dissertation. Tel-Aviv
University.

Shi-Min Hu, Kun Xu, Li-Qian Ma, Bin Liu, Bi-Ye Jiang, and Jue Wang.
2013. Inverse image editing: Recovering a semantic editing history from a
before-and-after image pair. ACM Transactions on Graphics 32,6 (2013),
194.

Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean value coordinates for
closed triangular meshes. ACM Transactions on Graphics 24, 3 (2005),
561-566.

Paul Kubelka. 1948. New contributions to the optics of intensely light-
scattering materials. part I. Journal of the Optical Society of America 38,
5(1948), 448-448.

Paul Kubelka and Franz Munk. 1931. An article on optics of paint layers.
Zeitschrift fiir Technische Physik 12, 593-601 (1931).

Jason Lawrence, Aner Ben-Artzi, Christopher DeCoro, Wojciech Matusik,
Hanspeter Pfister, Ravi Ramamoorthi, and Szymon Rusinkiewicz. 2006.
Inverse shade trees for non-parametric material representation and editing.
ACM Transactions on Graphics 25, 3 (July 2006), 735-745.

Anat Levin, Dani Lischinski, and Yair Weiss. 2008a. A closed-form solution
to natural image matting. I[EEE Transactions on Pattern Analysis and
Machine Intelligence 30, 2 (2008), 228-242.

Anat Levin, Alex Rav-Acha, and Dani Lischinski. 2008b. Spectral matting.
IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 10
(2008), 1699-1712.

Anat Levin, Assaf Zomet, and Yair Weiss. 2004. Separating reflections from
a single image using local features. In /EEE Conference on Computer
Vision and Pattern Recognition (CVPR’04). 306-313.

Sharon Lin and Pat Hanrahan. 2013. Modeling how people extract color
themes from images. In Proceedings of ACM SIGCHI.

ACM Transactions on Graphics, Vol. 36, No. 1, Article 7, Publication date: November 2016.

Jingwan Lu, Stephen DiVerdi, Willa A. Chen, Connelly Barnes, and Adam
Finkelstein. 2014. RealPigment: Paint compositing by example. In Non-
Photorealistic Animation and Rendering (NPAR’14). 21-30.

James McCann and Nancy Pollard. 2009. Local layering. ACM Transactions
on Graphics 28, 3 (2009), 84.

James McCann and Nancy Pollard. 2012. Soft stacking. Computer Graphics
Forum 31, 2 (2012), 469-478.

Mathieu Nancel and Andy Cockburn. 2014. Causality: A conceptual model
of interaction history. In Proceedings of ACM SIGCHI. 1777-1786.

Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. 2011. Color
Compatibility from Large Datasets. ACM Transactions on Graphics 30,
4, Article 63 (2011), 63:1-63:12.

Thomas Porter and Tom Duff. 1984. Compositing Digital Images. ACM
SIGGRAPH Computer Graphics 18, 3 (1984), 253-259.

Christian Richardt, Jorge Lopez-Moreno, Adrien Bousseau, Maneesh
Agrawala, and George Drettakis. 2014. Vectorising bitmaps into semi-
transparent gradient layers. Computer Graphics Forum (Proceedings of
EGSR) 33,4 (2014), 11-19.

Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugues Hoppe, and John
Snyder. 2000. Silhouette clipping. In Proceedings of ACM SIGGRAPH.
327-334.

Bernard Sarel and Michal Irani. 2004. Separating transparent layers through
layer information exchange. In Proceedings of the European Conference
on Computer Vision (ECCV’04).

Li Shen, Tan Ping, and Stephen Lin. 2008. Intrinsic image decomposition
with non-local texture cues. In Computer Vision and Pattern Recognition
(CVPR’08).

Alvy Ray Smith and James F. Blinn. 1996. Blue screen matting. In ACM
SIGGRAPH Conference Proceedings. 259-268.

Kartic Subr, Cyril Soler, and Frédo Durand. 2009. Edge-preserving multi-
scale image decomposition based on local extrema. ACM Transactions on
Graphics 28, 5, Article 147 (2009), 147:1-147:9.

Richard Szeliski, Shai Avidan, and P. Anandan. 2000. Layer extraction
from multiple images containing reflections and transparency. In /IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’00).

Jianchao Tan, Marek Dvoroznak, Daniel Sykora, and Yotam Gingold. 2015.
Decomposing Time-Lapse Paintings into Layers. ACM Transactions on
Graphics 34, 4 (2015), 61:1-61:10.

Ole Tange. 2011. GNU Parallel: The command-line power tool. Login:
The USENIX Magazine 36, 1 (Feb. 2011), 42-47. http://www.gnu.org/s/
parallel.

Andrew P. Witkin. 1983. Scale-space filtering. In International Joint Con-
ference on Artificial Intelligence. Palo Alto, 1019-1022.

Songhua Xu, Yingqing Xu, Sing Bing Kang, David H. Salesin, Yunhe Pan,
and Heung-Yeung Shum. 2006. Animating Chinese paintings through
stroke-based decomposition. ACM Transactions on Graphics 25,2 (2006),
239-267.

Juyong Zhang, Bailin Deng, Zishun Liu, Giuseppe Patane, Sofien Bouaziz,
Kai Hormann, and Ligang Liu. 2014. Local barycentric coordinates. ACM
Transactions on Graphics 33, 6, Article 188 (Nov. 2014), 188:1-188:12.

Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. 1997.
Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-
constrained optimization. ACM Transactions on Mathematical Software
23, 4 (Dec. 1997), 550-560.

Douglas E. Zongker, Dawn M. Werner, Brian Curless, and David H. Salesin.
1999. Environment Matting and Compositing. In ACM SIGGRAPH Con-
ference Proceedings. 205-214.

Received May 2016 revised July 2016; accepted August 2016


http://dx.doi.org/10.1016/j.cagd.2005.06.004
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/s/parallel
http://www.gnu.org/s/parallel

