
HASKELL I/O
Curt Clifton

Rose-Hulman Institute of Technology

Please SVN Update your HaskellInClass folder,
then open eieio.hs

SEPARATION OF CONCERNS

Haskell separates pure code from side-effecting code

Helps us reason about programs

Allows compiler to aggressively optimize/parallelize
pure code

EXAMPLE I/O IN HASKELL

ex1 = do
 putStr "WHAT is your name? "
 inpStr1 <- getLine
 putStr "WHAT is your quest? "
 inpStr2 <- getLine
 putStrLn ("Good luck with that, " ++ inpStr1 ++ "!")

keyword, introduces
a sequence of actions assignment, unpacks

result of getLine action

ghci> :type putStr
putStr :: String -> IO ()
ghci> :type getLine
getLine :: IO String
ghci> :type ex1
ex1 :: IO ()

Anything of type
IO something is
 an IO action Q1

transform :: String -> String
transform s = s ++ " is a lovely shade for a coconut."

ex2 :: IO ()
ex2 = do
 putStr "WHAT is your favorite color? "
 inpStr <- getLine
 let outStr = transform inpStr
 putStrLn outStr

CALLING PURE CODE
FROM ACTIONS

unpacks results
from actions

within do, use let (without in) to
get results from pure code

PURE IMPURE

Referentially transparent Different results for same
parameters are possible

No side effects May have side effects

Never alters state May alter global state of the
program, system, or world

Q2

FILE I/O

fileTransform :: IO ()
fileTransform = do
 inHandle <- openFile "eieio.hs" ReadMode
 outHandle <- openFile "shout.txt" WriteMode
 mainLoop inHandle outHandle
 hClose inHandle
 hClose outHandle

mainLoop :: Handle -> Handle -> IO ()
mainLoop inh outh = do
 atEOF <- hIsEOF inh
 if atEOF
 then return ()
 else do line <- hGetLine inh
 hPutStrLn outh (map toUpper line)
 mainLoop inh outh

return wraps a pure value in
IO, opposite of <-

Q3–5

LAZY I/O

hGetContents :: Handle -> IO String

“Reads” entire file into String lazily

Like Python’s read, but no memory leak…

…as long as we just use result once

SIMPLER STILL

ghci> :type readFile
readFile :: FilePath -> IO String
ghci> :type writeFile
writeFile :: FilePath -> String -> IO ()

bestFileTransform :: IO ()
bestFileTransform = do
 inContents = readFile "eieie.hs"
 writeFile "shout.txt" (map toUpper inContents)

MISCELLANEOUS I/O HELPERS

interact :: (String -> String) -> IO ()

Reads from stdio, applies argument function, writes to stdout

hTell, hSeek: find/set position in file

Predefined handles: stdin, stdout, stderr

System.Directory module:

removeFile, renameFile, getTemporaryDirectory

openTempFile

System.Environment module:

getArgs, getProgName, getEnv

EXERCISE

Implement an I/O action, wordProcessor :: IO (), that prompts
the user for a series of words and prints a count of the
words entered, along with the longest and shortest words.
For example:

 ghci> wordProcessor
 Enter a word, or just return to quit: dog
 Enter a word, or just return to quit: cat
 Enter a word, or just return to quit: whale
 Enter a word, or just return to quit: raptor
 Enter a word, or just return to quit:
 Number of words: 4
 Longest word: raptor
 Shortest word: cat

The pure helper functions longest and shortest are provided.

THE IO MONAD

PURITY

You’ll have to look up the alt text ;-)

CAN WE BE JUST
A LITTLE BIT IMPURE?

How are we getting side effects if Haskell is a pure
language?

Solution: Pass along an object to be “mutated”

Original: f :: Tree → Int

New: f :: (Tree, State) → (Int, State)
Original
State

“Mutated”
State

Monads automate
this pattern

MONADIC MAPS

strToMessage :: String -> String
strToMessage s = "… sir: " ++ s

putMessage :: String -> IO ()
putMessage = putStrLn . strToMessage

strings = ["Lancelot", "Robin"]

ex3 = do
 putMessage "Start me up"
 mapM_ putMessage strings
 putMessage "That's all folks!"

ghci> :type mapM
mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]
ghci> :type mapM_
mapM_ :: (Monad m) => (a -> m b) -> [a] -> m ()

THE MONAD TYPECLASS

class Monad m where
 (>>) :: m a -> m b -> m b
 (>>=) :: m a -> (a -> m b) -> m b
 return :: a -> m a
 fail :: String -> m a

Sequences two expressions
that have Monad results

Sequences two Monad
expressions binding result of

first for use in second

Wrap pure value in Monad
Q6

DA DO DO DO

The do expression in
Haskell is just a sugar
for Monad sequencing

Inside do Monad notation

e1
e2

e1 >>= _ -> e2
or e1 >> e2

x <- e1
e2 e1 >>= \x -> e2

return e1 return e1

SUGAR FREE!

ex4 = do
 putStr "WHAT is your name? "
 inpStr1 <- getLine
 putStrLn ("Bugger off, " ++ inpStr1 ++ "!")

ex5 =
 putStr "What is your name? " >>
 getLine >>=
 (\inpStr -> putStrLn ("Bugger off, " ++ inpStr ++ "!"))

desugar

ex6 =
 putStr "What is your name? " >>=
 (_ -> getLine >>=
 (\inpStr -> putStrLn ("Bugger off, " ++ inpStr ++ "!")))

desugar

