CSSE375
Midterm Exam Prestudy
Note: This material is considered part of the exam. Therefore, you can study it on your own. Do not talk about it or otherwise communicate with other people about it.
Read all the instructions, below, before you do anything.
1. In preparation for the exam on Monday, Apr 7, please open the zip file in this same directory. Make the resulting Java files into an Eclipse Project.
2. Important – Don’t modify the program. Be sure your Eclipse editor is set up to display line numbers. I plan to have test questions point to line numbers, and have you describe code from the line numbers in your answers. The last line of the file Sudoku.java should be 787.
3. Review the project and try running it.
4. Here’s what it does/is:
a. The program solves Sudoku puzzles. What are those? See http://en.wikipedia.org/wiki/Sudoku. If you have not played this game, please do so before the exam, so that you are familiar with the terminology and with how it works.
b. The program actually solves most of them. It’s only about as good as I am at solving them, only faster. Occasionally, its methods aren’t powerful enough and it seems to take forever. As a guard against runaways, it quits after a million cycles of search.
c. Basically, the program just does a depth-first search of the alternatives:
i. It follows one path of successive choices from wherever it is in the search for an answer, until either it discovers a conflict or it solves the problem. In the latter case, it backs up to the last place where it had a choice and tries another alternative. But,
ii. It has several “strategies” to choose from in doing that search. The strategy decides what alternative number / square the program actually picks next at any point. The strategies are hard coded into the constructor, and you have to change which one’s true to change strategies.
iii. It quits when it finds the first solution. Sudoku puzzles are supposed to have a unique answer.
d. This is a Java program that has only two classes:
i. sudoku.java, the main logic.
1. The most-used method is depthFIrst(int bop), which calls itself recursively until it either solves the puzzle or needs to backtrack.
a. “bop” = “board order pointer” is a square number on the 81 square Sudoku board. It’s converted to a row and column, to access the array used in consecutive game positions.
b. This method has, buried in it, the actual logic that each of the possible strategies uses, such as lookAheadSmartFlag.
ii. The other class is boardToUse.java, which includes a group of arrays that represent test case Sudoku problems to solve, and has a couple miscellaneous routines.
e. The answers and other commentary appear in the console window. The program ends when it has solved the designated problem.
f. While it’s in Java, in general, the program is not written in an OO manner. It’s more like a C program, with functions calling each other to solve the problem. You’ll see this a lot with programs written by engineers untrained in OO, and in programs written in a rush.
5. Before the exam, you do not need to do any refactorings or other changes to the program. But you should be familiar with how the program works, so you can answer questions about code smells or refactorings in this program.
6. During the exam, I won’t ask you actually to make changes to the program, only write about those.
7. Expect also questions about how you would make certain kinds of changes to the program, like adding a feature. E.g., “What would you have to refactor first, to do this enhancement without changing much?”
8. [bookmark: _GoBack]The exam will be open book, but, of course, no communication with others is allowed.
9. If you have questions, let me know!

