CSSE 375
Homework 3 – Rubric
[bookmark: _GoBack]Explanations derived from those by Dylan Sturgeon and other students in the class!

100 points total.
10 points each: 10 = “Got almost everything and explained how/why.”

A. gimpoperationcolorbalance.c file
1. How many blocks of comments are there, and what are they about?

The file has two blocks of comments. The first is boilerplate in the header of the file which describes GIMP, its license, and the file’s author. The second shows maps applied in the gimp_operation_color_balance_map function, with character-based pictures.

2. Is the rest of the program sufficiently self-documenting code, that a new contributor could figure out where to make changes? Why or why not?

No. Understanding this relies on data types not explained in this file. The actual purpose of the functions also isn’t noted. It also assumes you know about image processing, like using the bit values as rows and columns in a matrix.

3. In the function gimp_operation_color_balance_process, the line dest[RED] = r_n occurs toward the end (line 185). Do a backward slice and list, below, all the lines in this function that could have affected the value of dest[RED].

138: gfloat r_n;
147: r_n = gimp_operation_color_balance_map(…)
162: if(config->preserve_luminosity)
180: r_n = rgb.r

And, potentially, because these values are reassigned suspiciously, suggesting that functions called change them:
166: rgb.r = r_n;
169: gimp_rgb_to_hsl (&rgb, &hsl);
171: rgb.r = r;
174: gimp_rgb_to_hsl (&rgb, &hsl2);
176: hsl.l = hsl2.l;
178: gimp_hsl_to_rgb (&hsl, &rgb);

B. twain.c
4. This program contains a lot more comments than most open source code! If this plugin is ‘run’ (line 374), does it return the status to the caller?

Yes – Uses a return values structure that is passed in by the caller.

5. How does the ‘run’ function (line 374) use values from its last run?

Uses function gimp_get_data (line 413) with the name of the plugin to get values stored during its last run. The comment above the data type also suggests that it doesn’t really use of the values acquired, like this is a future feature or a remnant of something tried.

/* Data structure holding data between runs */
/* Currently unused... Eventually may be used
 * to track dialog data.
 */

6. In the function twoBytesPerSampleTransferCallback (line 715), how many embedded loops are there? Does the structure of these loops follow the guidelines we studied for code tuning?

There is a 3-nested loop of for’s. These access the contents of imageMemXfer and imageInfo inside of the loop when they could do so outside of the loop (turning them into local variables) for a performance improvement.

C. xcf-load.c
7. In the function xcf_load_image (line 132), do a forward slice of image from where it is defined (line 150), down to the second line of “xcf_progress_update(info)” (line 179). List the lines that are involved.

136: GimpImage *image;

And also include this line, because it’s “affected” by the definition, above.
150: image = gimp_create_image (gimp, width, height, image_type, FALSE);

152: gimp_image_undo_disable(image); 	// assuming it uses something in image
157: if(!xcf_load_image_props(info, image))
158: goto hard_error;
161: parasite = gimp_image_parasite_find(GIMP_IMAGE(image), …)
163: if(parasite)	// assuming image affected the return value of the last function
165: GimpGrid *grid = gimp_grid_from_parasite(parasite) // same assumption
167: if(grid)
169: GimpImagePrivate *private = GIMP_IMAGE_GET_PRIVATE(image);
171: gimp_parasite_list_remove(private->parasites, gimp_parasite_name(parasite));
	// image affected parasite’s creation and might affect this call which uses parasite
174: gimp_image_set_grid(GIMP_IMAGE(image), grid, FALSE);
175: g_object_unref(grid)	// image affected parasite which was used in creating grid

8. Why is the next line in this program, after the above, a “while(TRUE)”? What does this loop rely on, to get out of it?

The loop takes layers in the info and utilizes them until it runs out (offset = 0) and does a break to exit the loop, or until encounters an error, in which case it uses a goto to exit the loop.

9. In the function xcf_load_image_props (line 382), there’s another “while (TRUE)” that has a pretty complicated switch statement (line 393). Given that this is C, and not object oriented, how could this statement could have been made more readable, and thus easier to maintain? Explain in enough depth to make it convincing:

The refactoring for clarity would mimic “extract method” on every switch case so that the switch is readable. A more sophisticated redesign would eliminate the switch mechanism. You could have a ‘class’ (PropType) which decides the appropriate method to invoke; therefore, it would be clean to write, reusable, and easy to understand while separating the concerns of each case. This would be much easier to extend than the current strategy.

10. In the function xcf_load_layer, how does the code in this function know if it was successful in creating a new layer, and how does it provide that information to its own caller? If there are other problems discovered in the layer, where does control end up? And what is returned in these cases?

When successful, it returns a valid GimpLayer pointer, and when unsuccessful it returns a null reference. The caller can determine success with a null check. Errors cause a jump to a special section labeled error, which does some clean up and returns null.
