CSSE375 Sec 2 & 3
Individual Homework 3
Study slightly documented code!
Purpose: For you to try doing the techniques of program understanding and code tuning, and have a chance to study some open source software.
Due date: 8 am, Friday, May 16.
To Do: Take a look at the three C-language code modules included in this directory. All three are from “The Gimp” Open Source project (at http://download.gimp.org/pub/gimp/v2.8/). This is a well-known free system for image-manipulating, along the lines of Adobe Photoshop. The three modules you’ll be looking at do various things in such image manipulation.
Note: For easier reading, you might want to read these files in an editor that helps show the program structure. If you don’t have one handy for “C” at the moment, Notepad++ is a good one.
A. For the file “gimpoperationcolorbalance.c,” answer these questions:
1. How many blocks of comments are in this program, and what are they about?

2. Is the rest of this program sufficiently self-documenting code, that a new contributor could figure out where to make changes? Why or why not?

3. In the function gimp_operation_color_balance_process, the line
dest[RED] = r_n;

occurs toward the end. Do a “backward slice” and list, below, all the lines in this function that could have affected the value of dest[RED].

[bookmark: _GoBack]B. For the file “twain.c,” answer these questions:
4. This program contains a lot more comments than most open source code! If this plugin is “run,” does it return the status to the caller?

5. How does the “run” function use values from its last run?

6. In the function twoBytesPerSampleTransferCallback, how many embedded loops are there? Does the structure of these loops follow the guidelines we studied for code tuning?

C. For the file “xcf-load.c,” answer these questions:
7. In the function xcf_load_image, do a forward slice of image from where it is defined, down to the second line “xcf_progress_update (info);”. List the lines that are involved:

8. Why is the next line in this program, after the above, a “while (TRUE)”? What does this loop rely on, to get out of it?

9. In the function xcf_load_image_props, there’s another “while (TRUE)” that has a pretty complicated switch statement. Given that this is C, and not object oriented, how could this statement could have been made more readable, and thus easier to maintain? Explain in enough depth to make it convincing:

10. In the function xcf_load_layer, how does the code in this function know if it was successful in creating a new layer, and how does it provide that information to its own caller? If there are other problems discovered in the layer, where does control end up? And what is returned in these cases?

