Student Name: ________________________________

Software Design - CSSE 374
Second Exam								
Due: Monday, Feb 24th 2014, 8:00 AM	
Assumptions

1. Collaboration is not allowed. The exam is open book, and you are free to consult any non-human resources. (Although asking a question that is answered by some remote person is, of course, also collaboration.)
2. Both electronic and paper copy of the exam are acceptable, however, we must be able to read your answers. If you turn in a paper copy while we are not in our offices, please slide it under the door!
3. It is fine to draw figures by hand, scan these in, and include them with your exam. Be sure to label them carefully, as to what they are and what problem they go with, and be sure they are readable.
Setup for the Problems

Consider the following domain:

The client, I. M. Tuneful, wishes to run a business that recommends free online music sources to people with different musical tastes. The recommendations (advice) would come from clients of this service, and they would include the ability for a person, who is reading a review, to link directly to a service that you think you would like.

This service will be a step above the actual music providers that enable multiple sources, most of which already have the ability to rate each piece of music you hear (e.g., Spotify, Slacker Radio, or Songza). Client Tuneful would like to provide a service at the level of, say, a review of all these direct music services. He would like to provide advice along the lines of the PC Magazine article http://www.pcmag.com/article2/0,2817,2380776,00.asp, only coming from listeners directly, rather than from a panel of experts, and on an ongoing basis, rather than just one time. So, if, say, the Turntable service suddenly has a better feel of connecting with other users, you know about that right away.

In order to make this meta-service work smoothly, Tuneful knows he will need to let you connect directly to the real music sources like Spotify, to try them out in a meaningful way. More particularly, he’ll need to let people reading the reviews feel like they have connected to the music provider, and “replay” the musical moments that are being reviewed. This is a good trick if you can do it! It involves sampling and saving the audio and any accompanying video, which people were experiencing on something like the Music Genome Project, Last.Fm, Jango, or Grooveshark, so that this replay can be done “on demand” if someone wants to comment on it and share it.

Problems

There are seven problems, worth 10 points each, for a total of 70 points. This time, you need to do all of them! Note also that some of the later problems rely on problem 1.

1. Draw a domain diagram showing the operation of the system that Tuneful wants, as it would exist in its domain. Please use the domain description, above, to identify conceptual classes which would appear in this diagram. Define at least one hierarchy of such classes in your picture. Describe how the main flow of events would occur in the picture, both for capturing advice and for using it. Identify how time would play a role in the validity of the advice, and show how you handled that time concern.

2. Draw an activity diagram depicting how the advice givers and advice takers would interact in the above domain. In this figure and in your description of the figure, use the same names for things as used in your domain diagram of problem 1. Note: This is intended to be a problem where you have to invent things, because the interaction between these parties is indirect.

3. Suppose we build the system that Client Tuneful wants, above. The area of the system, where the various music providers interact with his system, is likely to have very high volatility. This is because those providers are very competitive and are always adding features to their systems, some of which Tuneful’s new system would have to interact with. Show a figure for how best to handle that rapid area of system change, and describe how it would work. Be sure to say which of the many flavors of indirection best describes the goal of this design work.

4. Tuneful himself had the idea, that we could invoke and record what the music providers do, by having the user interact through his service, transparently, with each music service they really use. That is, Tuneful’s new system would look like one of these real service providers, to the user; and it would look like the actual user, to those providers. So, the user thinks Tuneful’s system is Jango or last.fm, and those systems think that Tuneful’s system is the user. This way, Tuneful’s system can record everything going on, just in case the person wants to go back and save that segment and use it for a review. Draw a sequence diagram showing how this kind of indirection would work, and identify which of the GoF patterns it most closely resembles, saying why.

5. Users would dearly love to set precisely the locations of segments they are reviewing, from some music provider. Doing so requires that they be able to be in some different mode of operation from just listening to that music, and somehow identify where they want the review sample to start and end. (The user would, in effect, be editing a movie of themselves using the music service.) Which GoF pattern should we likely use for the design of a system with two totally different modes of operation, and why? Which GoF pattern should we likely use for the controls in creating a review sample, and why?

6. Now that Tuneful thinks about it, his ability to intercept user inputs and record their results seems like it could be the basis for completely different systems, too. He would like to generalize his music provider reviewing system, into being a framework for that product, and also a framework for other uses of this record-and-playback capability. Which of the SOLID principles should he most carefully observe in generalizing the system? And, describe three places in the design where carefully following this principle would enable Tuneful to build a wide range of different systems.

7. The idea of creating a specific version of a system first, then trying to generalize it later, has some well-known issues, which you surely already have experienced, because we all have to do such things frequently. Write-up this situation as a pattern (like you created a pattern in the last question of HW 8). Include in the pattern not only a statement of the problem / solution pair, but also an example of the issues that are known to arise, from your own experience. The solution, of course, should explain how you avoid this situation!

[bookmark: _GoBack]
