
CSSE 374:
Logical Architecture

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

An Engineering Decision…

Learning Outcomes: O-O Design

http://enterprisegeeks.com/blog/2009/07/

Demonstrate object-oriented
design basics like domain
models, class diagrams, and
interaction (sequence and
communication) diagrams.

  Describe Software Architecture
  Explain why architecture is important
  Get into the layers…

From Requirements to Architecture

"four bedrooms, three baths,!
lots of glass ..."!

Customer Requirements!

Architectural Design!

How do we  
get from here!
!
!
!
!
!
!
!
!
 
!
!
…to there?!

  Think for 15.26667 seconds…
  Turn to a neighbor and discuss it for a minute

Software Architecture Definitions

  The large-scale motivations, constraints,
organization, patterns, responsibilities, and
connections [between components] of the
system.

 Craig Larman 2003

  The structure or structures of the system,
which comprise software components, the
externally visible properties of those
components, and the relationships among
them.

 Bass, et al, 1998

Architectural Building Blocks

 Component – a unit of computation
 or a data store

 Connector – an architectural element that
models interactions among components and
rules that govern those interactions

 Configuration (or topology) – a
connected graph (composite) of
components and connectors
which describe architectural
structure

Q1

Why Software Architecture?
Enables the software engineer to: !
1.  Analyze the effectiveness of the

design in meeting its stated
requirements !

2.  Consider architectural alternatives
at a stage when making design
changes is still relatively easy!

3.  Reduce the risks associated with
the construction of the software!

4.  Provide key Abstractions in
reasoning about design!

5.  Establish a Design Plan!

UML Architectural Views

  Logical Architecture –
describes the system in terms
of its organization in layers,
packages, classes, interfaces
and subsystems

  Deployment Architecture –
describes the system in terms
of the allocation of processes
to processing units and
network configurations

UML Package Diagrams
  Describes grouping of elements
  Can group anything:

 Classes
 Other packages

  More general than Java
packages or
C# namespaces

Q2

Package
Names

Dependency Line

Fully qualified name is:
Domain::Sales

Alternative Nesting Notations

Q3

Traditional Nested Notation

Fully-Qualified Notation Cross-Circle Notation

Designing with Layers Solves
Problems

  Rippling source code
changes

  Intertwining of
application and UI logic

  Intertwining of
application logic and
technical services

  Difficult division of labor

Q4

Benefits of Architecture Layers

  Separation of concerns
 Reduces coupling and dependencies; improves

cohesion; increases reuse potential and clarity

  Essential complexity is encapsulated

  Can replace some layers with new
implementations (e.g., platform independence)

  Can distribute some layers

  Can divide development within/across teams

UI
(AKA Presentation, View)

Application
(AKA Workflow, Process,
Mediation, App Controller)

Domain
(AKA Business,

Application Logic, Model)

Technical Services
(AKA Technical Infrastructure,
High-level Technical Services)

Foundation
(AKA Core Services, Base Services,

Low-level Technical Services/Infrastructure)

width implies range of applicability

��� GUI windows
��� reports
��� speech interface
��� HTML, XML, XSLT, JSP, Javascript, ...

��� handles presentation layer requests
��� workflow
��� session state
��� window/page transitions
��� consolidation/transformation of disparate

data for presentation

��� handles application layer requests
��� implementation of domain rules
��� domain services (POS, Inventory)

- services may be used by just one
application, but there is also the possibility
of multi-application services

��� (relatively) high-level technical services
and frameworks

��� Persistence, Security

��� low-level technical services, utilities,
and frameworks

��� data structures, threads, math,
file, DB, and network I/O

more
app

specific

de
pe

nd
en

cy

Business Infrastructure
(AKA Low-level Business Services)

��� very general low-level business services
used in many business domains

��� CurrencyConverter

Q5

Common Layers in More Detail (1 of 2)

UI
(AKA Presentation, View)

Application
(AKA Workflow, Process,
Mediation, App Controller)

Domain
(AKA Business,

Application Logic, Model)

Technical Services
(AKA Technical Infrastructure,
High-level Technical Services)

Foundation
(AKA Core Services, Base Services,

Low-level Technical Services/Infrastructure)

width implies range of applicability

��� GUI windows
��� reports
��� speech interface
��� HTML, XML, XSLT, JSP, Javascript, ...

��� handles presentation layer requests
��� workflow
��� session state
��� window/page transitions
��� consolidation/transformation of disparate

data for presentation

��� handles application layer requests
��� implementation of domain rules
��� domain services (POS, Inventory)

- services may be used by just one
application, but there is also the possibility
of multi-application services

��� (relatively) high-level technical services
and frameworks

��� Persistence, Security

��� low-level technical services, utilities,
and frameworks

��� data structures, threads, math,
file, DB, and network I/O

more
app

specific

de
pe

nd
en

cy

Business Infrastructure
(AKA Low-level Business Services)

��� very general low-level business services
used in many business domains

��� CurrencyConverter

Common Layers in More Detail (2 of 2)

Systems will have many, but
not necessarily all, of these

Q5

Exercise on Logical Architecture
  Break up into your

project teams

  Given the following packages:
 Rental Process GUI, Rental
 Provision GUI, Provision
 Payment GUI, Payment
 Membership, Security
 Persistence, Directory Services

  Draw a BBVS Logical Architecture diagram with

the UI, Domain, and Technical Services Layers

Designing the
Domain Layer
  Create software

objects with names
and information
similar to the real-
world domain

  Assign application
logic
responsibilities

“Domain Objects”

Q6

Terminology: Layers vs. Partitions

Layers

Partitions Q7

Common Mistake:
Showing External Resources

Worse Better

Model-View Separation
Principle

  Do not connect non-UI objects directly to
UI objects
 E.g., A Sale object shouldn’t have a

reference to a UI object (e.g., Jframe)
  Do not put application logic in UI object

methods
 A UI event handler should just delegate

to the domain layer
  Note: Model è domain layer;

 View è UI layer

Easy way to spot an OO amateur!

Q8

From SSDs to Layers

Domain

UI

Swing

ProcessSale
Frame...

... Register

makeNewSale()
enterItem()
...

: Cashier

makeNewSale()
enterItem()
endSale()

makeNewSale()
enterItem()
endSale()

enterItem(id, quantity)

:System
: Cashier

endSale()

description, total

makeNewSale()

the system operations handled by the system in an SSD represent the
operation calls on the Application or Domain layer from the UI layer

 System operations on the SSDs will become the
messages sent from the UI layer to the domain layer

Q9

Common Object Design Techniques
  Just code it: design while coding,

heavy emphasis on refactoring and
powerful IDEs

  Draw, then code: sketch some UML,
then code it

  Just draw it: generate code from
diagrams

http://www.virginmedia.com/movies/galleries/previews/indiana-jones-idols.php?ssid=7

Static vs. Dynamic Modeling

  Static models
 Class diagrams

  Dynamic models

 Sequence diagrams
 Communication diagrams

Interaction
Diagrams

Spend time on interaction
diagrams, not just class diagrams

Prefer Design Skill over UML skill

  UML is only a tool for object design

  The real skill is the design,
…NOT the diagramming

  Fundamental object design requires
knowledge of:
 Principles of responsibility assignment
 Design patterns

Homework and Milestone Reminders
  Read Chapter 15 on Interaction Diagrams

  Homework 2 – Video Store SSDs and

Operations Contracts
 Due by 5:00pm on Tuesday, December 14th, 2010

  Milestone 3 – Junior Project SSDs, OCs, and
Logical Architecture
 Finish Analysis Model (SSDs, OCs)
 Logical Architecture - Package Diagrams, and
 1st (initial) Version of System
 Due by 11:59pm on Friday, January 7th, 2010

