CSSE 351
Computer Graphics

Triangle fill & interpolation
Session schedule

- Review
- Triangle fill
- Barycentric coordinates
 - Interpolation
- Scanline fill
Review

- Rasterization
- DDAs
- Line drawing
Triangle fill

- Test if each pixel is inside each triangle

\[
\text{for } x, y \\
\quad \text{if inside(tri, x, y)} \\
\quad \text{draw(x, y)}
\]
Triangle fill

- Better to bound fill

```plaintext
maxX = tri.maxX
minX = tri.minX
maxY = tri.maxY
minY = tri.minY

for y = minY to maxY
    for x = minX to maxX
        if inside(tri, x, y)
            draw(x, y)
```

Barycentric coordinates

- In graphics, we need to
 - interpolate over triangle surface
 - test if a point is inside a triangle

- Barycentric coordinates can do both!
Barycentric coordinates

- Relation of distances from vertices
- Defined over triangle plane
- Can be used for interpolation
- Can be used for containment test
Barycentric coordinates

- Given triangle of \(\mathbf{a}, \mathbf{b}, \mathbf{c}\)
- Compute barycentric basis
- Can then locate point \(\mathbf{p}\) in triangle’s barycentric coordinates
Barycentric coordinates

- Pick triangle point as origin \((a)\)
- Form bases vectors \((c-a), (b-a)\)
- Compute point \(p\) offsets from basis origin \(\alpha, \beta, \gamma\)
Barycentric coordinates

• So, \(\mathbf{p} \) can be defined:
 \[
 \mathbf{p} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a})
 \]

• Rearrange:
 \[
 \mathbf{p} = (1 - \beta - \gamma)\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c}
 \]

• Rename \(\mathbf{a} \) coefficient:
 \[
 \alpha = (1 - \beta - \gamma)
 \]

• Final form:
 \[
 \mathbf{p}(\alpha, \beta, \gamma) = \alpha\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c}
 \]
Barycentric coordinates

• Nice properties
• Components sum to 1
 \[\alpha + \beta + \gamma = 1 \]
• Inside triangle, components bound \((0, 1)\)
• On edge, components bound \([0, 1]\)
• Varies smoothly over surface
Barycentric coordinates

• Similarities to implicit line equation
 \[f(x, y) \equiv (y_0 - y_1)x + (x_1 - x_0)y + x_0y_1 - x_1y_0 = 0 \]
 • 0 on line
 • Smoothly vary +/- off line

• Can compute barycentric coordinate coefficients using line equation
 • Define line through triangle points
 • Measure point’s offset from line
 • Normalize to triangle size
Barycentric coordinates

- Computing for point p
- Use line equation $f(x_p, y_p)$

\[
\beta = \frac{f_{ac}(x_p, y_p)}{f_{ac}(x_b, y_b)}
\]

\[
\gamma = \frac{f_{ba}(x_p, y_p)}{f_{ba}(x_c, y_c)}
\]

\[
\alpha = \frac{f_{cb}(x_p, y_p)}{f_{cb}(x_a, y_a)}
\]
Barycentric fill

- Inside test
 - Check if all coefficients in range $[0, 1]$
- Interpolate
 - Use barycentric coordinates
Barycentric fill example

• For colors c1, c2, c3

for y = minY to maxY
 for x = minX to maxX
 a, b, c = tri.computeBarycentric(x, y)
 if a in [0, 1] and b in [0, 1] and c in [0, 1]
 color = a*c0 + b*c1 + c*c2
 draw(x, y, color)
Scanline fill

• Similar to line drawing
• Instead of drawing line
 • Compute interpolation values along lines
 • Fill in middle by interpolating horizontal lines
Scanline fill

- Order vertices conveniently
 - Often sort by vertical height
- Interpolate along edges
- Fill interior by horizontal rows
Interpolation

- Flat shading
 - Interpolate nothing, just fill with color
- Gouraud shading
 - Compute color at vertices
 - Interpolate color over surface
- Phong shading
 - Compute normals at vertices
 - Interpolate normals over surface
 - Compute lighting for each fragment
Interpolation

- For general shaders
 - Interpolate whatever desired varying output from vertex varying input to fragment
One small problem...
Perspective Correction

- Perspective is a non-linear transform!

 linear \[x = Az + B \]
 perspective \[x = x'z \]

 nonlinear result! \[z = B / (x' - A) \]
Perspective Correction

• Can’t use linear interpolation!

\[
\text{perspective line } z = \frac{B}{(x' - A)}
\]

take inverse
\[
\frac{1}{z} = x\left(\frac{1}{B}\right) - \frac{A}{B}
\]

• Linear in terms of \(1/z\)
Perspective Correction

- So, ‘homogenize’ all attributes (1/z)
 - Now linear in screen space
- Then, interpolate over triangle face
 - Homogenized attributes
 - 1/z factor
- Finally, divide all homogenized attributes by 1/z
 - Undoes the perspective transform
Perspective Correction

• Book has example of correct interpolation using barycentric coordinate fill

• Can make scanline fill very fast
 • Compute $1/z$ gradient for x,y
 • Compute attribute gradient for x,y
 • Increment gradient along for each fragment