Transformers – Part 1

Summary of Chapter 10 from Speech and Language Processing, Jurafsky and Martin, August 20, 2024 draft Michael Wollowski

1

Next Word Prediction

• It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a ...

Next Word Prediction

- It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a **wife**.
 - Jane Austen: Pride and Prejudice
- In my younger and more vulnerable years my father gave me some advice that I've been turning over in my mind ever ...

3

Next Word Prediction

- It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a **wife**.
 - Jane Austen: Pride and Prejudice
- In my younger and more vulnerable years my father gave me some advice that I've been turning over in my mind ever **since**.
 - F. Scott Fitzgerald, The Great Gatsby
- All this happened, more or ...

Next Word Prediction

- It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a **wife**.
 - Jane Austen: Pride and Prejudice
- In my younger and more vulnerable years my father gave me some advice that I've been turning over in my mind ever **since**.
 - F. Scott Fitzgerald, The Great Gatsby
- All this happened, more or less.
 - Kurt Vonnegut, Slaughterhouse-Five

5

Transformers: The Basics

- The transformer is the standard architecture for building large language models.
- Left-to-right (autoregressive) language modeling:
 - · Given a sequence of input tokens,
 - · Predict output tokens one by one,
 - · Conditioned on the prior context.
- Key component of a transformer:
 - self-attention also called multi-head attention.

Quick Review of Attention

- Build contextual representations of a token's meaning.
- Attending to and integrating information from surrounding tokens.
- Helping the model learn how tokens relate to each other over large spans.

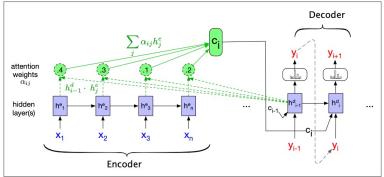


Figure 9.22 A sketch of the encoder-decoder network with attention, focusing on the computation of \mathbf{c}_i . The context value \mathbf{c}_i is one of the inputs to the computation of \mathbf{h}_i^d . It is computed by taking the weighted sum of all the encoder hidden states, each weighted by their dot product with the prior decoder hidden state \mathbf{h}_{i-1}^d .

7

Transformers: The Basic Architecture

- Unlike an RNN, a transformer processes several tokens at once.
- This called the context window.
- The basic unit of a transformer is a block.
- A block processes the entire input sequence.
- Blocks are "stacked" i.e. they run in sequence.

Basic View of Transformer Architecture

- Sequences of text as I/O
- An encoder-decoder

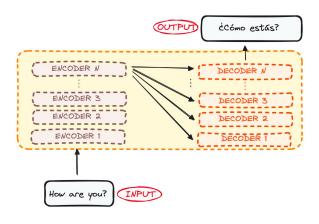


Image source: https://www.datacamp.com/tutorial/how-transformers-work

9

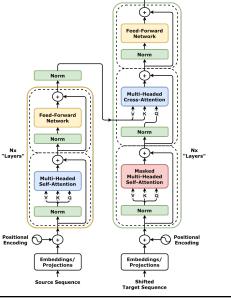
Transformer Blocks

- Each block is a multilayer network, consisting of:
 - a multi-head attention layer,
 - · feedforward networks and
 - layer normalization steps.
- Lot's of weights!
- We will investigate those in detail.

More detailed view of Transformer Architecture

- A bit complex
- But! Lots of repetition.

Image source: Wikipedia entry on transformers.



11

Transformers: The Basics

- Input encoding though embedding matrix E
- Language modeling head through unembedding matrix U.
- Number of stacked blocks: 12 to 96.
- GPT-4: 120 blocks

GPT-4

- Standard GPT-4 model offers 8,000 tokens for the context*).
- 8000 tokens amount to about 26 pages of a novel**).

- *) Source: Maximum Token length in GPT-4. https://community.openai.com/t/maximum-token-length-in-gpt-4/385914
- **) Assuming 250-300 words per book page. Source: https://hotghostwriter.com/blogs/blog/novel-length-how-long-is-long-enough It should be noted that the token count is typically larger than the word count.

13

GPT-4

- An extended 32,000 token context-length model is available*).
- 32000 tokens amount to about 106 pages of a novel**).
- Suddenly, next word prediction does not seem to be such a hard problem any longer.

^{*)} Source: Maximum Token length in GPT-4. https://community.openai.com/t/maximum-token-length-in-gpt-4/385914

^{**)} Assuming 250-300 words per book page. Source: https://hotghostwriter.com/blogs/blog/novel-length-how-long-is-long-enough It should be noted that the token count is typically larger than the word count.

Attention

- Consider the following examples.
 - The chicken didn't cross the road because it was too tired.
 - The chicken didn't cross the <u>road</u> because **it** was too wide.

16

Language and World Knowledge

- Fluent speakers of a language bring an enormous amount of knowledge to bear during comprehension and production.
- This knowledge is embodied in many forms, perhaps most obviously in the vocabulary.
- Most of this growth is not happening through direct vocabulary instruction in school.
- The bulk of this knowledge acquisition happens as a by-product of reading, as part of the rich processing and reasoning that we perform when we read.
- So, read more!

Transformers and World Knowledge

• The stacked layers in a transformer: used to build up richer and richer contextualized representations of the words in a sentence.

18

Processing Through the Layers

Early Layers (1-4)

- Focus on syntactic and surface-level features
- Detect basic linguistic patterns: punctuation, capitalization, common prefixes/suffixes
- · Identify word types, basic grammatical categories
- Handle tokenization artifacts and positional information
- Features are relatively simple and directly interpretable

Lower-Middle Layers (5-12)

- Develop grammatical and structural features
- · Parse sentence structure, identify parts of speech more sophisticatedly
- · Detect phrase boundaries, dependency relationships
- Begin to handle basic semantic relationships (synonyms, antonyms)
- Start forming more complex compositional representations

Processing Through the Layers

Middle Layers (13-20)

- · Form semantic and conceptual features
- · Represent entities, relationships, and factual knowledge
- Handle more abstract concepts (emotions, themes, topics)
- · Develop features for logical reasoning and inference
- · Begin to integrate information across longer contexts

Upper-Middle Layers (21-28)

- Focus on discourse and pragmatic features
- Understand conversational context, intent, and tone
- · Handle complex reasoning patterns and multi-step inference
- · Develop features for different writing styles and genres
- · Integrate world knowledge with current context

20

Processing Through the Layers

Final Layers (29+)

- Concentrate on task-specific and output features
- Transform representations toward the vocabulary space for prediction
- · Handle specific formatting and response generation patterns
- Fine-tune for particular behaviors (helpfulness, safety, etc.)

Key Patterns:

- Increasing abstraction: From tokens \rightarrow words \rightarrow phrases \rightarrow concepts \rightarrow discourse
- Growing receptive fields: Later layers integrate information from much larger contexts
- Task specialization: Final layers become more specialized for the model's training objectives
- Residual connections: Information from all levels can influence final outputs, not just the last layer

Example of Processing Through Layers

"The restaurant was not very good."

Layer 2-3: Surface Pattern Detection

- · Feature detects the token "not"
- Basic pattern: [word] + "not" + [word]
- · No understanding of meaning, just recognizing the negation token

Layer 6-8: Syntactic Structure

- · Feature recognizes "not" as a negation modifier
- · Understands it syntactically modifies "very good"
- · Pattern: negation + intensifier + adjective
- · Still largely structural, not semantic

Layer 12-15: Local Semantic Negation

- Feature begins to understand that "not very good" means the opposite of "very good"
- Can flip polarity: positive adjective → negative meaning
- Operates on immediate phrase: "not very good" = negative evaluation

22

Example of Processing Through Layers

"The restaurant was not very good."

Layer 18-22: Contextual Integration

- Feature integrates negation with broader context
- · Understands that "restaurant was not very good" is specifically about restaurant quality
- · Can handle more complex cases like "not unhappy" (double negation)
- Considers pragmatic implications (understatement, politeness)

Layer 25-28: Discourse-Level Understanding

- Feature understands conversational implications
- "Not very good" in a review context implies disappointment, might suggest looking elsewhere
- Can generate appropriate follow-up responses
- · Integrates with knowledge about restaurant reviews, social norms around criticism

Layer 30+: Output Preparation

- Feature helps generate contextually appropriate responses
- If asked "Should I go there?", uses negation understanding to suggest "probably not"
- · Formats response with appropriate tone and helpfulness

Example of Processing Through Layers

"The restaurant was not very good."

Evolution Pattern:

- **Scope expansion**: From single token → phrase → sentence → discourse
- **Semantic depth**: From pattern matching → meaning reversal → pragmatic implications
- Context integration: From local → global understanding
- Functional specialization: From detection → reasoning → response generation

24

Back to Chickens Though

• Consider:

The chicken didn't cross the road because it ...

- At this point we do not yet know which thing "it" is going to end up referring to.
- A representation of the input must be such that "it" can be resolved to "chicken" or "road."

Back to Chickens Though

- The self-attention weight distribution α that is part of the computation of the representation for the word "it" at layer k + 1.
- In computing the representation for it, we attend differently to the various words at layer k.
- Darker shades indicate higher self-attention values.

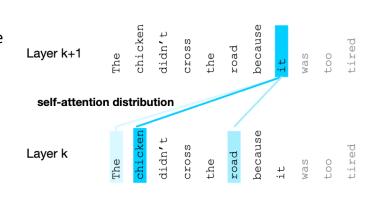
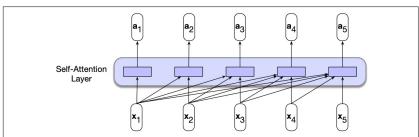


Image source: Speech and Language Processing, Jurafsky and Martin, Aug. 20, 2024 draft

26

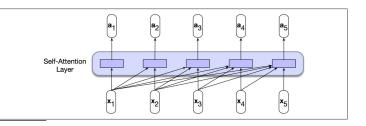
Causal or Backward-looking Self-attention



- In causal, or backward looking self-attention, the context is any of the prior words.
- In general bidirectional self-attention, the context can include future words.

Image source: Speech and Language Processing, Jurafsky and Martin, Feb. 3, 2024 draft

Self-attention more formally

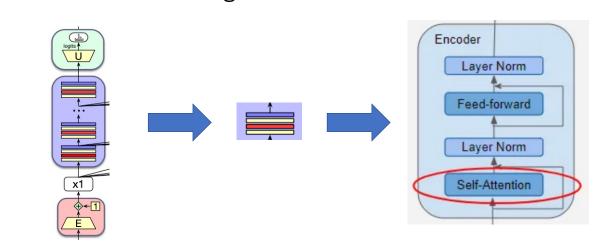


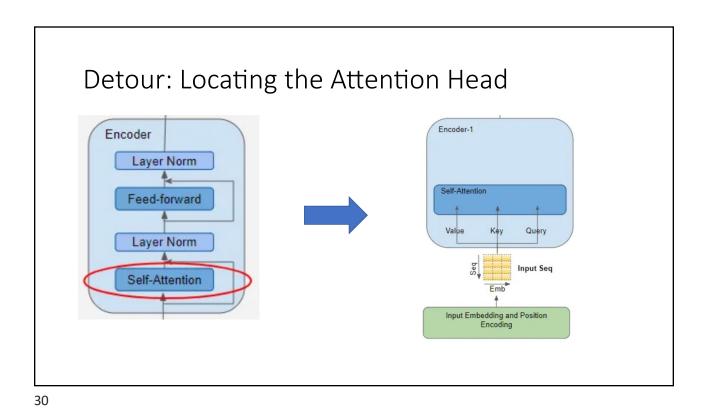
- The core intuition of attention is the idea of *comparing* an item of interest to a collection of other items in a way that reveals their relevance in the current context.
- For example, in the figure the computation of a₃ is based on a set of comparisons between the input x₃ and its preceding elements x₁ and x₂, and to x₃ itself.

Image source: Speech and Language Processing, Jurafsky and Martin, Feb. 3, 2024 draft

28

Detour: Locating the Attention Head





Version of Attention

5. Weigh each value vectors

4. Turn into weights via softmax

3. Divide score by d_k

2. Compare x3's query with the keys for x1, x2, and x3

1. Generate key, query, value vectors

2. Compare x3's query with the keys for x1, x2, and x3

Simplified Version of Attention

- We compute similarity scores via dot product, which maps two vectors into a scalar value ranging from-∞ to ∞.
- The larger the score, the more similar the vectors that are being compared.
- We'll normalize these scores with a softmax to create the vector of weights α_{ii} , $j \le i$.
- Simplified version:

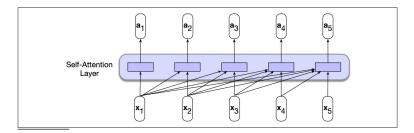
```
score(x_i, x_j) = x_i \cdot x_j

\alpha_{ij} = softmax(score(x_i, x_j)) \ \forall j \le i
```

35

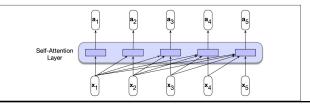
Simplified Version of Attention

- In the example from the figure, the first step in computing a_3 would be to compute three scores:
 - 1. $x_3 \cdot x_1$,
 - 2. $x_3 \cdot x_2$,
 - 3. $x_3 \cdot x_3$.



Simplified Version of Attention

- The resulting values are treated as weights
- They indicate the proportional relevance of the prior token to the current token at position *i*.
- The softmax value will likely be highest for \mathbf{x}_{i} , since it is very similar to itself.
- However, other context words may also be similar to *i*, and softmax will also assign some weight to those words.



37

Simplified Version of Attention

• Putting everything together, we get attention **a**_i:

score
$$(x_i, x_j) = x_i \cdot x_j$$

 $\alpha_{ij} = \text{softmax}(\text{score}(x_i, x_j)) \ \forall j \leq i$
 $\mathbf{a}_i = \sum_{j \leq i} \alpha_{ij} x_j$

