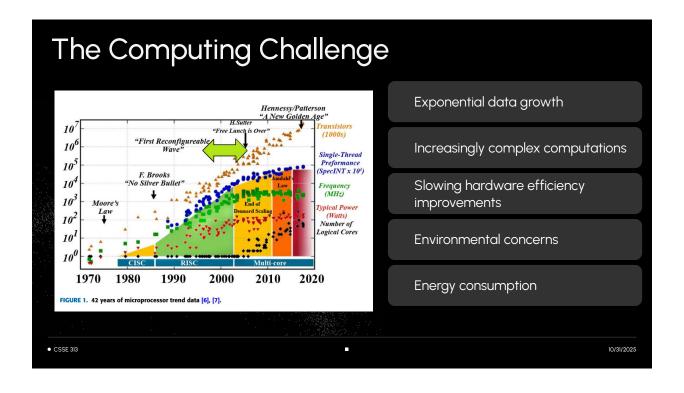
Approximate Computing [1]: Trading Accuracy for Efficiency

Alex Anisimov, Steven Johnson

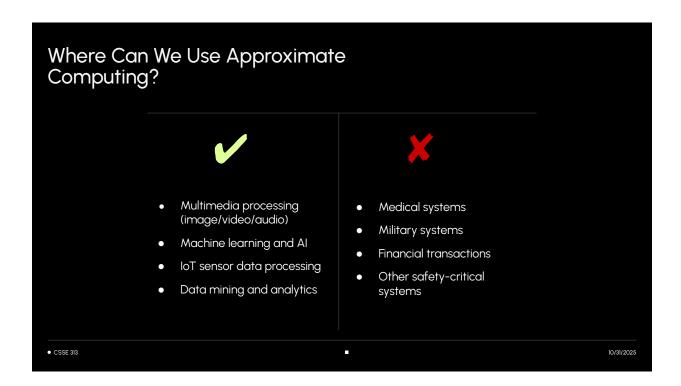
10/31/2025

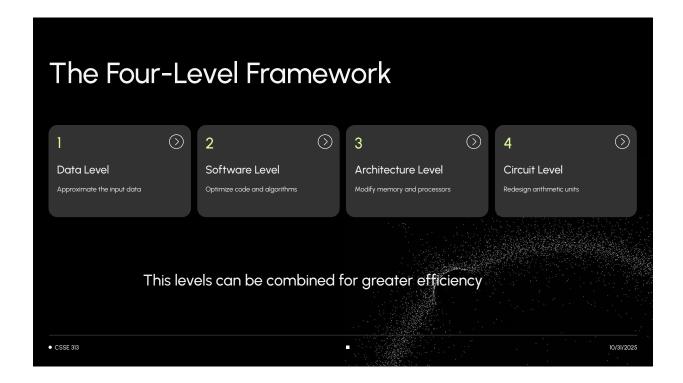
• CSSE 313

10/31/2025

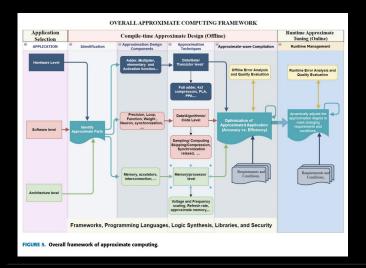

Connection to Dr. Kyle Wilson's Class

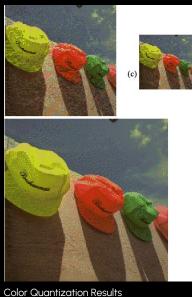
The following C code is the fast inverse square root implementation from *Quake III Arena*, stripped of C preprocessor directives, but including the exact original comment text:^[15]


```
float Q_rsqrt( float number )
{
    long i;
    float x2, y;
    const float threehalfs = 1.5F;


    x2 = number * 0.5F;
    y = number;
    i = * ( long * ) &y;
    i = 0x5f3759df - ( i >> 1 );
    y = * ( float * ) &i;
    y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
    return y;
}
```

[2, 3]




Overall Framework

Three Integrals Parts:

- Selection of Error-Tolerant **Applications**
- Offline AxC
- Online AxC

• CSSE 313 10/31/2025

Data-Level Approximations Methods

- Data sampling (process subset of data)
- Quantization (reduce precision)
- Compression
- Probabilistic data structures (e.g., Bloom Filters, HyperLogLog, MinHash, T-Digest)

• CSSE 313 10/31/2025

Software-Level Approximations Methods

- Code optimization
 - Loop perforation (skip iterations)
 - Early stopping
 - Pruning (remove unnecessary computations)
 - Function approximation
 - Approximate memoization
- Approximate parallelism and relaxed synchronization
- Specialized frameworks and languages for AxC

Original
Perforated

Original
Perforated

Original
Perforated

Results of loop perforation

• CSSE 313

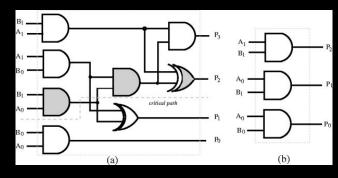
10/31/2025

fixed Vdd of of of of the power saving of of of of the power saving of of of the power saving of of of the power saving Normalized frequency

Dynamic voltage and frequency scaling power savings

Architecture-Level Approximations Methods

- Approximate memory
 - Reduced refresh rates
 - Voltage scaling
 - o Process-in-memory (PIM)
- Voltage/Frequency management
 - Dynamic voltage and frequency scaling (DVFS)
 - Near-threshold voltage operations
- Approximate processors (co-designed software/hardware units)


◆ CSSE 313

Circuit-Level Approximations Methods

Focus on arithmetic units.

Examples:

- Approximate adders
- Approximate multipliers
- Approximate dividers

a) Accurate multiplier;

b) Approximate 2-bit multiplier

• CSSE 313

10/31/2025

Why Is It Relevant?

Al's computational demands:

- Billions of parameters when training models
- Millions of requests per second

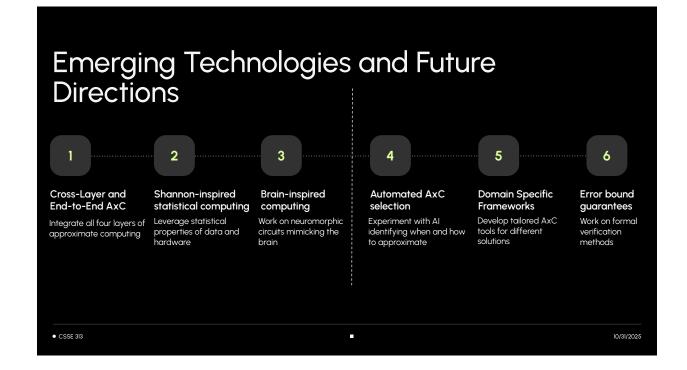
How can approximate computing help?

- Neural networks are inherently error-tolerant
- Small weight/activation changes don't significantly affect accuracy
- Training uses noisy gradient descent anyway
- Many Al applications (computer vision, NLP) tolerate some imprecision

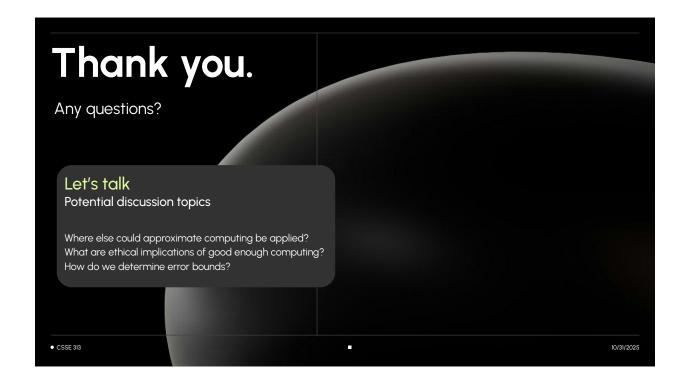
• CSSE 313

10/31/2025

Quantized MAC with Shift-and-Add


Problem: every neuron performs Σ (weight × input) + bias

- Truncate least significant bit from both inputs and weights
 - In NN's, precision in LSB contributes the least to the final answer
- Right-shift instead of multiply
- Weight elimination
 - o Skips computations entirely if weight is zero
- Iterative accumulation and status check
 - Stop after fixed number of iterations or when contribution becomes negligible


42%

27%

• CSSE 313

Significance Provides actionable Context-dependent framework and analyzes availability ways to achieve results Requires careful error Demonstrates practical analysis and quality impact (up to 42% gains) assurance . Essential for substantial Al Not applicable in critical growth industries • CSSE 313 10/31/2025

References

- [1] A. M. Dalloo, A. J. Humaidi, A. K. Al Mhdawi, and H. Al-Raweshidy, "Approximate computing: Concepts, architectures, challenges, applications, and future directions," *IEEE Access*, vol. 12, pp. 118345–118372, Sept. 2024, doi: 10.1109/ACCESS.2024.3467375.
- [2] id Software, "q_math.c," Quake III Arena code/game/q_math.c, GitHub repository (archived), July 29 2017. [Online]. Available:

 $\underline{https://web.archive.org/web/20170729072505/https://github.com/id-Software/Quake-III-Arena/blob/master/code/game/q\underline{math.c\#L552}} \ [Accessed: Jan. 21, 2017].$

[3] "Fast inverse square root," *Wikipedia, The Free Encyclopedia*, last edited 29 October 2025. [Online]. Available: https://en.wikipedia.org/wiki/Fast_inverse_square_root. [Accessed: Oct. 30 2025].