[bookmark: _Hlk535676612]CSSE 304 Exam 2 Feb 5, 2020 (day 30.5) Name_____________________________ Section 01(10:00) 02(11:00) 03(12:00)
PART 1
During the exam you may not use email, IM, or other chat tools, cell phone, PDA, headphones, ear buds, or any other communication device or software. If you have accommodations that allow one or more of these, you may use it/them.

Part 1 Suggestion: Spend no more than 75 minutes on this part. No resources allowed other than a writing implement and eraser.

Part 2, computer. You may use TSPL and EoPL, your notes, and a Scheme programming environment plus the PLC grading program and any materials that I provided online for the course. You are allowed to use your notes and any Scheme code that you have previously written.

Caution! It is possible to get so caught up in getting all of the points for one problem that you do not get to the other problems.
Don’t do that! I will give partial credit if you have the main ideas, even if a procedure does not produce correct answers for
any test cases.Sign the following statement if it is true:

No one other than the instructor has given me any information about the contents of this exam. Furthermore, I will not communicate anything to anyone about the exam’s contents or difficulty level until after 10 PM on February 5.

Signed: _________________________________

	Problem
	Max score
	Your score

	1
	10
	

	2
	10
	

	3
	3
	

	4
	8
	

	5
	10
	

	6
	5
	

	7
	4
	

	Total
	50
	

1. (10 points) Consider the following lambda-calculus expression. Fill in the table for the occurrences of each variable:
(lambda (a c e)
 (lambda (b c d)
 (lambda (a d)
 (a b c d e)))))

	
	a
	b
	c
	d
	e

	Lexical depth
	
	
	
	
	

	Lexical position
	
	
	
	
	

2. (10 points) Based on the following code, write comb-cps in proper CPS form, using “scheme procedure” continuations. All calls to fact-cps must be in tail position. You may assume that fact-cps and apply-k have already been written, and that – and / are primitives (can be called in non-tail position). To save time, you are not required to call make-k.
 (define comb (n m)
	(/ (fact n) (fact m) (fact (- n m))))

 (define comb-cps ; you fill in the rest

3. (3 points) Is the following statement true? (circle one) Yes No. Explain your answer below.
	Statement: When Scheme evaluates a lambda-expression, it creates a closure, then immediately uses that closure to
 build an extended environment that will be used when the body is executed.

4. (8 points) In our interpreters, application of most of the primitive procedures in apply-prim-proc can and should be implemented by simply applying the corresponding Scheme procedure to the arguments. But there are a few prim-procs that either cannot or should not (because there is a simpler way) be implemented that way. For each of the following primitive procedures, fill in the code for a correct and efficient implementation (an implementation whose code is as short as possible). Do not call the corresponding Scheme procedures. For this problem only, exactly correct code is required for full credit.
You are not allowed to use Scheme’s list procedure in your implementation of list. No such restriction on the others.

(define apply-prim-proc
 (lambda (prim-proc args) ; args is a list of Scheme values. prim-proc is the symbol that names the primitive procedure.
 (case prim-proc ; many cases are omitted; I only show the ones that you must implement here.
	 [(list)
Did you sign the statement on page 1?

	
	 [(apply)

	 [(procedure?)

 [(map)

5. (10 points) I am not sure if my definition of flipflop exactly matches any common electronic device. But it should be easy to see how it works.
(make-flipflop name bool-value) creates a flipflop with the given name and value.
(toggle-flipflop name) toggles the value of the flipflop with that name.
(flipflop-value name) returns the current value of that flipflop. Here is a transcript:
> (load "flipflop.ss")
> (make-flipflop ff1 #t)
> (make-flipflop ff2 #t)
> (make-flipflop ff3 #f)
> (make-flipflop ff4 #t)
> (toggle-flipflop ff2)
> (toggle-flipflop ff4)
> (map flipflop-value (list ff1 ff2 ff3 ff4))
(#t #f #f #f)
> (toggle-flipflop ff3)
> (map flipflop-value (list ff1 ff2 ff3 ff4))
(#t #f #t #f)

Show code that could be the contents of the file flipflop.ss, code that would make the above transcript be valid. Your code must not contain any of the symbols ff1, ff2, ff3, or ff4.

6. (5 points) In class, we discussed 3 approaches to creating the effect of the “circular environment” needed to implement letrec.

a. (2) Circle the approach that you used: no mutation mutation syntax-expand other

b. (3) Describe a different approach in enough detail (English and/or code) to convince me that you know how it works. If you used the no-mutation approach, describe the mutation approach. Otherwise describe the no-mutation approach.

7. (4 points) My solution for the in-class E&C exam is on the next page. I drew the diagram assuming that each application of c will create a new environment; you should assume the same thing when you answer this question. In that solution, there are four closures and six environments.

If the code define form the same as the previous example, but the second expression is changed to

(((curry (lambda(z t) (* z t 2))
	 2)
 5)
 7)

[bookmark: _GoBack]How many closures ______ and environments ______ will be created during the execution of the entire code?

[image:]
		 CSSE 304 Test #1 2/4/20 Page 2 of 5
image1.png
eons Nale) b

reverse @ (letrec

- (D) N ([c (lambda (n args)

5 ,‘-'\2 (if (zexo? n)

s (e n'(H% (apply £ (reverse args))

oty o\w E §<q‘(\ (lanbda (x)

(e (- n1)
Cuny ~/€; [' “"< YRR (oons = wce))N
@ 3 ‘ (en 0NN €ny pm\\
Apply LUW@ L—B i\u\&i\e e \e‘\v« osmsy ambis () ¢ 2 e
st ew)

TS

) kdy of

o Qe’(
0 al{k anRe
Saludie body o€ edvee
ey © N

= : E o p i@
@ £ by @ D 1S 2= s tine
v\m\m\m\ ’&

\M 50, 5o apely *QEJ
By) ¢ Cis@
S (6T o b

This is e (v {N e 15

’ valve & (comy® 1), X
St woay b alle Apply i o 5. {;m (mmgv
T ok T A v

