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Preface

Chez Scheme is both a general-purpose programming language and an implementation of
that language, with supporting tools and documentation. As a superset of the language
described in the Revised6 Report on Scheme (R6RS), Chez Scheme supports all stan-
dard features of Scheme, including first-class procedures, proper treatment of tail calls,
continuations, user-defined records, libraries, exceptions, and hygienic macro expansion.
Chez Scheme supports numerous non-R6RS features. A few of these are local and top-level
modules, local import, foreign datatypes and procedures, nonblocking I/O, an interactive
top-level, compile-time values and properties, pretty-printing, and formatted output.

The implementation includes a compiler that generates native code for each processor upon
which it runs along with a run-time system that provides automatic storage management,
foreign-language interfaces, source-level debugging, profiling support, and an extensive run-
time library.

The threaded versions of Chez Scheme support native threads, allowing Scheme programs
to take advantage of multiprocessor or multiple-core systems. Nonthreaded versions are also
available and are faster for single-threaded applications. Both 32-bit and 64-bit versions
are available for some platforms. The 64-bit versions support larger heaps, while the 32-bit
versions are faster for some applications.

Chez Scheme’s interactive programming system includes an expression editor that, like
many shells, supports command-line editing, a history mechanism, and command comple-
tion. Unlike most shells that support command-line editing, the expression editor properly
supports multiline expressions.

Chez Scheme is intended to be as reliable and efficient as possible, with reliability taking
precedence over efficiency if necessary. Reliability means behaving as designed and docu-
mented. While a Chez Scheme program can always fail to work properly because of a bug
in the program, it should never fail because of a bug in the Chez Scheme implementation.
Efficiency means performing at a high level, consuming minimal CPU time and memory.
Performance should be balanced across features, across run time and compile time, and
across programs and data of different sizes. These principles guide Chez Scheme language
and tool design as well as choice of implementation technique; for example, a language fea-
ture or debugging hook might not exist in Chez Scheme because its presence would reduce
reliability, efficiency, or both.

The compiler has been rewritten for Version 9 and generates substantially faster code than
the earlier compiler at the cost of greater compile time. This is the primary difference
between Versions 8 and 9.
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This book (CSUG) is a companion to The Scheme Programming Language, 4th Edition
(TSPL4). TSPL4 serves as an introduction to and reference for R6RS, while CSUG de-
scribes Chez Scheme features and tools that are not part of R6RS. For the reader’s con-
venience, the summary of forms and index at the back of this book contain entries from
both books, with each entry from TSPL4 marked with a “t” in front of its page number.
In the online version, the page numbers given in the summary of forms and index double
as direct links into one of the documents or the other.

Additional documentation for Chez Scheme includes release notes, a manual page, and
a number of published papers and articles that describe various aspects of the system’s
design and implementation.

Thank you for using Chez Scheme.



1. Introduction

This book describes Chez Scheme extensions to the Revised6 Report on Scheme [28]
(R6RS). It contains as well a concise summary of standard and Chez Scheme forms and
procedures, which gives the syntax of each form and the number and types of arguments ac-
cepted by each procedure. Details on standard R6RS features can be found in The Scheme
Programming Language, 4th Edition (TSPL4) [11] or the Revised6 Report on Scheme. The
Scheme Programming Language, 4th Edition also contains an extensive introduction to the
Scheme language and numerous short and extended examples.

Most of this document also applies equally to Petite Chez Scheme, which is fully com-
patible with the complete Chez Scheme system but uses a high-speed interpreter in place
of Chez Scheme’s incremental native-code compiler. Programs written for Chez Scheme
run unchanged in Petite Chez Scheme as long as they do not require the compiler to be
invoked. In fact, Petite Chez Scheme is built from the same sources as Chez Scheme, with
all but the compiler sources included. A detailed discussion of the impact of this distinction
appears in Section 2.8.

The remainder of this chapter covers Chez Scheme extensions to Scheme syntax (Sec-
tion 1.1), notational conventions used in this book (Section 1.2), the use of parameters for
system customization (Section 1.3), and where to look for more information on Chez Scheme
(Section 1.4).

Chapter 2 describes how one uses Chez Scheme for program development, scripting, and ap-
plication delivery, plus how to get the compiler to generate the most efficient code possible.
Chapter 3 describes debugging and object inspection facilities. Chapter 4 documents facil-
ities for interacting with separate processes or code written in other languages. Chapter 5
describes binding forms. Chapter 6 documents control structures. Chapter 7 documents
operations on nonnumeric objects, while Chapter 8 documents various numeric operations,
including efficient type-specific operations. Chapter 9 describes input/output operations
and generic ports, which allow the definition of ports with arbitrary input/output seman-
tics. Chapter 10 discusses how R6RS libraries and top-level programs are loaded into
Chez Scheme along with various features for controlling and tracking the loading process.
Chapter 11 describes syntactic extension and modules. Chapter 12 describes system op-
erations, such as operations for interacting with the operating system and customizing
Chez Scheme’s user interface. Chapter 13 describes how to invoke and control the stor-
age management system and documents guardians and weak pairs. Chapter 14 describes
Chez Scheme’s expression editor and how it can be customized. Chapter 15 documents
the procedures and syntactic forms that comprise the interface to Chez Scheme’s native
thread system. Finally, Chapter 16 describes various compatibility features.



2 1. Introduction

The back of this book contains a bibliography, the summary of forms, and an index. The
page numbers appearing in the summary of forms and the italicized page numbers appearing
in the index indicate the locations in the text where forms and procedures are formally
defined. The summary of forms and index includes entries from TSPL4, so that they cover
the entire set of Chez Scheme features. A TSPL4 entry is marked by a “t” prefix on the
page number.

Online versions and errata for this book and for TSPL4 can be found at www.scheme.com.

Acknowledgments: Michael Adams, Mike Ashley, Carl Bruggeman, Bob Burger, Sam
Daniel, George Davidson, Matthew Flatt, Aziz Ghuloum, Bob Hieb, Andy Keep, and Oscar
Waddell have contributed substantially to the development of Chez Scheme. Chez Scheme’s
expression editor is based on a command-line editor for Scheme developed from 1989
through 1994 by C. David Boyer. File compression is performed with the use of the zlib
compression library developed by Jean-loup Gailly and Mark Adler. Implementations of
the list and vector sorting routines are based on Olin Shiver’s opportunistic merge-sort
algorithm and implementation. Michael Lenaghan provided a number of corrections for
earlier drafts of this book. Many of the features documented in this book were suggested
by current Chez Scheme users, and numerous comments from users have also led to im-
provements in the text. Additional suggestions for improvements to Chez Scheme and to
this book are welcome.

1.1. Chez Scheme Syntax

Chez Scheme extends Scheme’s syntax both at the object (datum) level and at the level of
syntactic forms. At the object level, Chez Scheme supports additional representations for
symbols that contain nonstandard characters, nondecimal numbers expressed in floating-
point and scientific notation, vectors with explicit lengths, shared and cyclic structures,
records, boxes, and more. These extensions are described below. Form-level extensions
are described throughout the book and summarized in the Summary of Forms, which also
appears in the back of this book.

Chez Scheme extends the syntax of identifiers in several ways. First, the sequence of
characters making up an identifier’s name may start with digits, periods, plus signs, and
minus signs as long as the sequence cannot be parsed as a number. For example, 0abc,
+++, and .. are all valid identifiers in Chez Scheme. Second, the single-character sequences
{ and } are identifiers. Third, identifiers containing arbitrary characters may be printed
by escaping them with \ or with |. \ is used to escape a single character (except ’x’,
since \x marks the start of a hex scalar value), whereas | is used to escape the group of
characters that follow it up through the matching |. For example, \||\| is an identifier
with a two-character name consisting of the character | followed by the character \, and
|hit me!| is an identifier whose name contains a space.

In addition, gensyms (page 7.9) are printed with #{ and } brackets that enclose both
the “pretty” and “unique” names, e.g., #{g1426 e5g1c94g642dssw-a}. They may also be
printed using the pretty name only with the prefix #:, e.g., #:g1426.
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Arbitrary radixes from two through 36 may be specified with the prefix #nr, where n is the
radix. Case is not significant, so #nR may be used as well. Digit values from 10 through 35
are specified as either lower- or upper-case alphabetic characters, just as for hexadecimal
numbers. For example, #36rZZ is 35× 36 + 35, or 1295.

Chez Scheme also permits nondecimal numbers to be printed in floating-point or scien-
tific notation. For example, #o1.4 is equivalent to 1.5, and #b1e10 is equivalent to 4.0.
Digits take precedence over exponent specifiers, so that #x1e20 is simply the four-digit
hexadecimal number equivalent to 7712.

In addition to the standard named characters #\alarm, #\backspace, #\delete, #\esc,
#\linefeed, #\newline, #\page, #\return, #\space, and #\tab, Chez Scheme recognizes
#\bel, #\ls, #\nel, #\nul, #\rubout, and #\vt (or #\vtab). Characters whose scalar
values are less than 256 may also be printed with an octal syntax consisting of the prefix
#\ followed by a three octal-digit sequence. For example, #\000 is equivalent to #\nul.

Chez Scheme’s fxvectors, or fixnum vectors, are printed like vectors but with the prefix
#vfx( in place of #(. Vectors, bytevectors, and fxvectors may be printed with an explicit
length prefix, and when the explicit length prefix is specified, duplicate trailing elements
may be omitted. For example, #(a b c) may be printed as #3(a b c), and a vector of
length 100 containing all zeros may be printed as #100(0).

Chez Scheme’s boxes are printed with a #& prefix, e.g., #&17 is a box containing the integer
17.

Records are printed with the syntax #[type-name field ...], where the symbol type-name
is the name of the record type and field ... are the printed representations for the contents
of the fields of the record.

Shared and cyclic structure may be printed using the graph mark and reference prefixes
#n= and #n#. #n= is used to mark an item in the input, and #n# is used to refer to the
item marked n. For example, ’(#1=(a) . #1#) is a pair whose car and cdr contain the
same list, and #0=(a . #0#) is a cyclic list, i.e., its cdr is itself.

A $primitive form (see page 348) may be abbreviated in the same manner as a quote

form, using the #% prefix. For example, #%car is equivalent to ($primitive car), #2%car
to ($primitive 2 car), and #3%car to ($primitive 3 car).

Chez Scheme’s end-of-file object is printed #!eof. If the end-of-file object appears outside
of any datum within a file being loaded, load will treat it as if it were a true end of file
and stop loading at that point. Inserting #!eof into the middle of a file can thus be handy
when tracking down a load-time error.

Broken pointers in weak pairs (see page 395) are represented by the broken weak pointer
object, which is printed #!bwp.

In addition to the standard delimiters (whitespace, open and close parentheses, open and
close brackets, double quotes, semi-colon, and #), Chez Scheme also treats as delimiters
open and close braces, single quote, backward quote, and comma.

The Chez Scheme lexical extensions described above are disabled in an input stream after
an #!r6rs comment directive has been seen, unless a #!chezscheme comment directive
has been seen since. Each library loaded implicitly via import and each RNRS top-level
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program loaded via the --program command-line option, the scheme-script command, or
the load-program procedure is treated as if it begins implicitly with an #!r6rs comment
directive.

The case of symbol and character names is normally significant, as required by the Revised6

Report. Names are folded, as if by string-foldcase, following a #!fold-case comment
directive in the same input stream unless a #!no-fold-case has been seen since. Names
are also folded if neither directive has been seen and the parameter case-sensitive has
been set to #f.

The printer invoked by write, put-datum, pretty-print, and the format ~s option always
prints standard Revised6 Report objects using the standard syntax, unless a different be-
havior is requested via the setting of one of the print parameters. For example, it prints
symbols in the extended identifier syntax of Chez Scheme described above using hex scalar
value escapes, unless the parameter print-extended-identifiers is set to true. Simi-
larly, it does not print the explicit length or suppress duplicate trailing elements unless the
parameter print-vector-length is set to true.

1.2. Notational Conventions

This book follows essentially the same notational conventions as The Scheme Program-
ming Language, 4th Edition. These conventions are repeated below, with notes specific to
Chez Scheme.

When the value produced by a procedure or syntactic form is said to be unspecified, the
form or procedure may return any number of values, each of which may be any Scheme
object. Chez Scheme usually returns a single, unique void object (see void) whenever the
result is unspecified; avoid counting on this behavior, however, especially if your program
may be ported to another Scheme implementation. Printing of the void object is suppressed
by Chez Scheme’s waiter (read-evaluate-print loop).

This book uses the words “must” and “should” to describe program requirements, such as
the requirement to provide an index that is less than the length of the vector in a call to
vector-ref. If the word “must” is used, it means that the requirement is enforced by the
implementation, i.e., an exception is raised, usually with condition type &assertion. If the
word “should” is used, an exception may or may not be raised, and if not, the behavior of
the program is undefined. The phrase “syntax violation” is used to describe a situation in
which a program is malformed. Syntax violations are detected prior to program execution.
When a syntax violation is detected, an exception of type &syntax is raised and the program
is not executed.

Scheme objects are displayed in a typewriter typeface just as they are to be typed at the
keyboard. This includes identifiers, constant objects, parenthesized Scheme expressions,
and whole programs. An italic typeface is used to set off syntax variables in the descriptions
of syntactic forms and arguments in the descriptions of procedures. Italics are also used
to set off technical terms the first time they appear. The first letter of an identifier that is
not ordinarily capitalized is not capitalized when it appears at the beginning of a sentence.
The same is true for syntax variables written in italics.
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In the description of a syntactic form or procedure, a pattern shows the syntactic form
or the application of the procedure. The syntax keyword or procedure name is given in
typewriter font, as are parentheses. The remaining pieces of the syntax or arguments are
shown in italics, using names that imply the types of the expressions or arguments expected
by the syntactic form or procedure. Ellipses are used to specify zero or more occurrences
of a subexpression or argument.

1.3. Parameters

All Chez Scheme system customization is done via parameters. A parameter is a procedure
that encapsulates a hidden state variable. When invoked without arguments, a parameter
returns the value of the encapsulated variable. When invoked with one argument, the
parameter changes the value of the variable to the value of its argument. A parameter may
raise an exception if its argument is not appropriate, or it may filter the argument in some
way.

New parameters may be created and used by programs running in Chez Scheme. Pa-
rameters are used rather than global variables for program customization for two reasons:
First, unintentional redefinition of a customization variable can cause unexpected problems,
whereas unintentional redefinition of a parameter simply makes the parameter inaccessible.
For example, a program that defines *print-level* for its own purposes in early releases
of Chez Scheme would have unexpected effects on the printing of Scheme objects, whereas
a program that defines print-level for its own purposes simply loses the ability to alter
the printer’s behavior. Of course, a program that invokes print-level by accident can still
affect the system in unintended ways, but such an occurrence is less likely, and can only
happen in an incorrect program.

Second, invalid values for parameters can be detected and rejected immediately when the
“assignment” is made, rather than at the point where the first use occurs, when it is too
late to recover and reinstate the old value. For example, an assignment of *print-level*
to −1 would not have been caught until the first call to write or pretty-print, whereas
an attempted assignment of −1 to the parameter print-level, i.e., (print-level -1), is
flagged as an error immediately, before the change is actually made.

Built-in system parameters are described in different sections throughout this book and are
listed along with other syntactic forms and procedures in the Summary of Forms in the back
of this book. Parameters marked “thread parameters” have per-thread values in threaded
versions of Chez Scheme, while the values of parameters marked “global parameters” are
shared by all threads. Nonthreaded versions of Chez Scheme do not distinguish between
thread and global parameters. See Sections 12.13 and 15.6 for more information on creating
and manipulating parameters.

1.4. More Information

The articles and technical reports listed below document various features of Chez Scheme
and its implementation:
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• syntactic abstraction [14, 8, 17],

• modules [32],

• libraries [21],

• storage management [12, 13],

• threads [10],

• multiple return values [2],

• optional arguments [16],

• continuations [7, 25, 3],

• eq? hashtables [20],

• internal definitions, letrec, and letrec* [33, 22],

• equal? [1],

• engines [15],

• floating-point printing [4],

• code generation [18],

• register allocation [6],

• procedure inlining [31],

• profiling [5], and

• history of the implementation [9].

Links to abstracts and electronic versions of these publications are available at the url
http://www.cs.indiana.edu/chezscheme/pubs/.



2. Using Chez Scheme

Chez Scheme is often used interactively to support program development and debugging,

yet it may also be used to create stand-alone applications with no interactive component.

This chapter describes the various ways in which Chez Scheme is typically used and, more

generally, how to get the most out of the system. Sections 2.1, 2.2, and 2.3 describe how one

uses Chez Scheme interactively. Section 2.4 discusses how libraries and RNRS top-level pro-

grams are used in Chez Scheme. Section 2.5 covers support for writing and running Scheme

scripts, including compiled scripts and compiled RNRS top-level programs. Section 2.6 de-

scribes how to structure and compile an application to get the most efficient code possible

out of the compiler. Section 2.7 describes how one can customize the startup process, e.g.,

to alter or eliminate the command-line options, to preload Scheme or foreign code, or to

run Chez Scheme as a subordinate program of another program. Section 2.8 describes how

to build applications using Chez Scheme with Petite Chez Scheme for run-time support.

Finally, Section 2.9 covers command-line options used when invoking Chez Scheme.

2.1. Interacting with Chez Scheme

One of the simplest and most effective ways to write and test Scheme programs is to

compose them using a text editor, like vi or emacs, and test them interactively with

Chez Scheme running in a shell window. When Chez Scheme is installed with default

options, entering the command scheme at the shell’s prompt starts an interactive Scheme

session. The command petite does the same for Petite Chez Scheme. After entering this

command, you should see a short greeting followed by an angle-bracket on a line by itself,

like this:

Chez Scheme Version 9.5.1
Copyright 1984-2017 Cisco Systems, Inc.

>

You also should see that the cursor is sitting one space to the right of the angle-bracket.

The angle-bracket is a prompt issued by the system’s “REPL,” which stands for “Read

Eval Print Loop,” so called because it reads, evaluates, and prints an expression, then

loops back to read, evaluate, and print the next, and so on. (In Chez Scheme, the REPL

is also called a waiter.)
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In response to the prompt, you can type any Scheme expression. If the expression is well-

formed, the REPL will run the expression and print the value. Here are a few examples:

> 3
3
> (+ 3 4)
7
> (cons ’a ’(b c d))
(a b c d)

The reader used by the REPL is more sophisticated than an ordinary reader. In fact, it’s a

full-blown “expression editor” (“expeditor” for short) like a regular text editor but for just

one expression at a time. One thing you might soon notice is that the system automatically

indents the second and subsequent lines of an expression. For example, let’s say we want to

define fact, a procedure that implements the factorial function. If we type (define fact

followed by the enter key, the cursor should be sitting under the first e in define, so that

if we then type (lambda (x), we should see:

> (define fact
(lambda (x)

The expeditor also allows us to move around within the expression (even across lines) and

edit the expression to correct mistakes. After typing:

> (define fact
(lambda (x)

(if (= n 0)
0
(* n (fact

we might notice that the procedure’s argument is named x but we have been referencing

it as n. We can move back to the second line using the arrow keys, remove the offending x

with the backspace key, and replace it with n.

> (define fact
(lambda (n)

(if (= n 0)
0
(* n (fact

We can then return to the end of the expression with the arrow keys and complete the

definition.

> (define fact
(lambda (n)

(if (= n 0)
0
(* n (fact (- n 1))))))

Now that we have a complete form with balanced parentheses, if we hit enter with the
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cursor just after the final parenthesis, the expeditor will send it on to the evaluator. We’ll

know that it has accepted the definition when we get another right-angle prompt.

Now we can test our definition by entering, say, (fact 6) in response to the prompt:

> (fact 6)
0

The printed value isn’t what we’d hoped for, since 6! is actually 720. The problem, of

course, is that the base-case return-value 0 should have been 1. Fortunately, we don’t have

to retype the definition to correct the mistake. Instead, we can use the expeditor’s history

mechanism to retrieve the earlier definition. The up-arrow key moves backward through

the history. In this case, the first up-arrow retrieves (fact 6), and the second retrieves the

fact definition.

As we move back through the history, the expression editor shows us only the first line, so

after two up arrows, this is all we see of the definition:

> (define fact

We can force the expeditor to show the entire expression by typing ^L (control L, i.e., the

control and L keys pressed together):

> (define fact
(lambda (n)

(if (= n 0)
0
(* n (fact (- n 1))))))

Now we can move to the fourth line and change the 0 to a 1.

> (define fact
(lambda (n)

(if (= n 0)
1
(* n (fact (- n 1))))))

We’re now ready to enter the corrected definition. If the cursor is on the fourth line and

we hit enter, however, it will just open up a new line between the old fourth and fifth lines.

This is useful in other circumstances, but not now. Of course, we can work around this by

using the arrow keys to move to the end of the expression, but an easier way is to type ^J,

which forces the expression to be entered immediately no matter where the cursor is.

Finally, we can bring back (fact 6) with another two hits of the up-arrow key and try it

again:

> (fact 6)
720

To exit from the REPL and return back to the shell, we can type ^D or call the exit

procedure.
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The interaction described above uses just a few of the expeditor’s features. The expeditor’s
remaining features are described in the following section.

Running programs may be interrupted by typing the interrupt character (typically ^C).
In response, the system enters a debug handler, which prompts for input with a break>

prompt. One of several commands may be issued to the break handler (followed by a
newline), including

“e” or end-of-file to exit from the handler and continue,

“r” to stop execution and reset to the current café,

“a” to abort Chez Scheme,

“n” to enter a new café (see below),

“i” to inspect the current continuation,

“s” to display statistics about the interrupted program, and

“?” to display a list of these options.

When an exception other than a warning occurs, the default exception handler prints a
message that describes the exception to the console error port. If a REPL is running, the
exception handler then returns to the REPL, where the programmer can call the debug

procedure to start up the debug handler, if desired. The debug handler is similar to the
break handler and allows the programmer to inspect the continuation (control stack) of
the exception to help determine the cause of the problem. If no REPL is running, as is
the case for a script or top-level program run via the --script or --program command-line
options, the default exception handler exits from the script or program after printing the
message. To allow scripts and top-level programs to be debugged, the default exception
handler can be forced via the debug-on-exception parameter or the --debug-on-exception

command-line option to invoke debug directly.

Developing a large program entirely in the REPL is unmanageable, and we usually even
want to store smaller programs in a file for future use. (The expeditor’s history is saved
across Scheme sessions, but there is a limit on the number of items, so it is not a good idea
to count on a program remaining in the history indefinitely.) Thus, a Scheme programmer
typically creates a file containing Scheme source code using a text editor, such as vi, and
loads the file into Chez Scheme to test them. The conventional filename extension for
Chez Scheme source files is “.ss,” but the file can have any extension or even no extension
at all. A source file can be loaded during an interactive session by typing (load "path").
Files to be loaded can also be named on the command line when the system is started.
Any form that can be typed interactively can be placed in a file to be loaded.

Chez Scheme compiles source forms as it sees them to machine code before evaluating
them, i.e., “just in time.” In order to speed loading of a large file or group of files, each
file can be compiled ahead of time via compile-file, which puts the compiled code into
a separate object file. For example, (compile-file "path") compiles the forms in the file
path.ss and places the resulting object code in the file path.so. Loading a pre-compiled file
is essentially no different from loading the source file, except that loading is faster since
compilation has already been done.
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When compiling a file or set of files, it is often more convenient to use a shell command than
to enter Chez Scheme interactively to perform the compilation. This is easily accomplished
by “piping” in the command to compile the file as shown below.

echo ’(compile-file "filename")’ | scheme -q

The -q option suppresses the system’s greeting messages for more compact output, which
is especially useful when compiling numerous files. The single-quote marks surrounding
the compile-file call should be left off for Windows shells.

When running in this “batch” mode, especially from within “make” files, it is often desirable
to force the default exception handler to exit immediately to the shell with a nonzero exit
status. This may be accomplished by setting the reset-handler to abort.

echo ’(reset-handler abort) (compile-file "filename")’ | scheme -q

One can also redefine the base-exception-handler (Section 12.1) to achieve a similar effect
while exercising more control over the format of the messages that are produced.

2.2. Expression Editor

When Chez Scheme is used interactively in a shell window, as described above, or when
new-cafe is invoked explicitly from a top-level program or script run via --program or
--script, the waiter’s “prompt and read” procedure employs an expression editor that
permits entry and editing of single- and multiple-line expressions, automatically indents ex-
pressions as they are entered, supports identifier completion outside string constants based
on the identifiers defined in the interactive environment, and supports filename comple-
tion within string constants. The expression editor also maintains a history of expressions
typed during and across sessions and supports tcsh-like history movement and search com-
mands. Other editing commands include simple cursor movement via arrow keys, deletion
of characters via backspace and delete, and movement, deletion, and other commands using
mostly emacs key bindings.

The expression editor does not run if the TERM environment variable is not set (on
Unix-based systems), if the standard input or output files have been redirected, or if the
--eedisable command-line option (Section 2.9) has been used. The history is saved across
sessions, by default, in the file “.chezscheme history” in the user’s home directory. The
--eehistory command-line option (Section 2.9) can be used to specify a different location
for the history file or to disable the saving and restoring of the history file.

Keys for nearly all printing characters (letters, digits, and special characters) are “self
inserting” by default. The open parenthesis, close parenthesis, open bracket, and close
bracket keys are self inserting as well, but also cause the editor to “flash” to the matching
delimiter, if any. Furthermore, when a close parenthesis or close bracket is typed, it is
automatically corrected to match the corresponding open delimiter, if any.

Key bindings for other keys and key sequences initially recognized by the expression editor
are given below, organized into groups by function. Some keys or key sequences serve more



12 2. Using Chez Scheme

than one purpose depending upon context. For example, tab is used for identifier comple-

tion, filename completion, and indentation. Such bindings are shown in each applicable

functional group.

Multiple-key sequences are displayed with hyphens between the keys of the sequences, but

these hyphens should not be entered. When two or more key sequences perform the same

operation, the sequences are shown separated by commas.

Detailed descriptions of the editing commands are given in Chapter 14, which also describes

parameters that allow control over the expression editor, mechanisms for adding or changing

key bindings, and mechanisms for creating new commands.

Newlines, acceptance, exiting, and redisplay:

enter, ^M accept balanced entry if used at end of entry;
else add a newline before the cursor and indent

^J accept entry unconditionally
^O insert newline after the cursor and indent
^D exit from the waiter if entry is empty;

else delete character under cursor
^Z suspend to shell if shell supports job control
^L redisplay entry
^L-^L clear screen and redisplay entry

Basic movement and deletion:

leftarrow, ^B move cursor left
rightarrow, ^F move cursor right
uparrow, ^P move cursor up; from top of unmodified entry,

move to preceding history entry.
downarrow, ^N move cursor down; from bottom of unmodified entry,

move to next history entry
^D delete character under cursor if entry not empty,

else exit from the waiter
backspace, ^H delete character before cursor
delete delete character under cursor

Line movement and deletion:

home, ^A move cursor to beginning of line
end, ^E move cursor to end of line
^K, esc-k delete to end of line or, if cursor is at the end

of a line, join with next line
^U delete contents of current line

When used on the first line of a multiline entry of which only the first line is displayed,

i.e., immediately after history movement, ^U deletes the contents of the entire entry, like

^G (described below).
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Expression movement and deletion:

esc-^F move cursor to next expression
esc-^B move cursor to preceding expression
esc-] move cursor to matching delimiter
^] flash cursor to matching delimiter
esc-^K, esc-delete delete next expression
esc-backspace, esc-^H delete preceding expression

Entry movement and deletion:

esc-< move cursor to beginning of entry
esc-> move cursor to end of entry
^G delete current entry contents
^C delete current entry contents; reset to end of history

Indentation:

tab re-indent current line if identifier/filename prefix
not just entered; else insert completion

esc-tab re-indent current line unconditionally
esc-q, esc-Q, esc-^Q re-indent each line of entry

Identifier/filename completion:

tab insert completion if identifier/filename prefix just
entered; else re-indent current line

tab-tab show possible identifier/filename completions at end
of identifier/filename just typed, else re-indent

^R insert next identifier/filename completion

Identifier completion is performed outside of a string constant, and filename completion is
performed within a string constant. (In determining whether the cursor is within a string
constant, the expression editor looks only at the current line and so can be fooled by string
constants that span multiple lines.) If at end of existing identifier or filename, i.e., not one
just typed, the first tab re-indents, the second tab inserts identifier completion, and the
third shows possible completions.

History movement:

uparrow, ^P move to preceding entry if at top of unmodified
entry; else move up within entry

downarrow, ^N move to next entry if at bottom of unmodified
entry; else move down within entry

esc-uparrow, esc-^P move to preceding entry from unmodified entry
esc-downarrow, esc-^N move to next entry from unmodified entry
esc-p search backward through history for given prefix
esc-n search forward through history for given prefix
esc-P search backward through history for given string
esc-N search forward through history for given string

To search, enter a prefix or string followed by one of the search key sequences. Follow with
additional search key sequences to search further backward or forward in the history. For
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example, enter “(define” followed by one or more esc-p key sequences to search backward
for entries that are definitions, or “(define” followed by one or more esc-P key sequences
for entries that contain definitions.

Word and page movement:

esc-f, esc-F move cursor to end of next word
esc-b, esc-B move cursor to start of preceding word
^X-[ move cursor up one screen page
^X-] move cursor down one screen page

Inserting saved text:

^Y insert most recently deleted text
^V insert contents of window selection/paste buffer

Mark operations:

^@, ^space, ^^ set mark to current cursor position
^X-^X move cursor to mark, leave mark at old cursor position
^W delete between current cursor position and mark

Command repetition:

esc-^U repeat next command four times
esc-^U-n repeat next command n times

2.3. The Interaction Environment

In the language of the Revised6 Report, code is structured into libraries and “top-level
programs.” The Revised6 Report does not require an implementation to support interactive
use, and it does not specify how an interactive top level should operate, leaving such details
up to the implementation.

In Chez Scheme, when one enters definitions or expressions at the prompt or loads them
from a file, they operate on an interaction environment, which is a mutable environment
that initially holds bindings only for built-in keywords and primitives. It may be augmented
by user-defined identifier bindings via top-level definitions. The interaction environment
is also referred to as the top-level environment, because it is at the top level for purposes
of scoping. Programs entered at the prompt or loaded from a file via load should not be
confused with RNRS top-level programs, which are actually more similar to libraries in
their behavior. In particular, while the same identifier can be defined multiple times in the
interaction environment, to support incremental program development, an identifier can
be defined at most once in an RNRS top-level program.

The default interaction environment used for any code that occurs outside of an RNRS
top-level program or library (including such code typed at a prompt or loaded from a file)
contains all of the bindings of the (chezscheme) library (or scheme module, which exports
the same set of bindings). This set contains a number of bindings that are not in the
RNRS libraries. It also contains a number of bindings that extend the RNRS counterparts
in some way and are thus not strictly compatible with the RNRS bindings for the same
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identifiers. To replace these with bindings strictly compatible with RNRS, simply import
the rnrs libraries into the interaction environment by typing the following into the REPL
or loading it from a file:

(import
(rnrs)
(rnrs eval)
(rnrs mutable-pairs)
(rnrs mutable-strings)
(rnrs r5rs))

To obtain an interaction environment that contains all and only RNRS bindings, use the
following.

(interaction-environment
(copy-environment
(environment

’(rnrs)
’(rnrs eval)
’(rnrs mutable-pairs)
’(rnrs mutable-strings)
’(rnrs r5rs))

#t))

To be useful for most purposes, library and import should probably also be included, from
the (chezscheme) library.

(interaction-environment
(copy-environment
(environment

’(rnrs)
’(rnrs eval)
’(rnrs mutable-pairs)
’(rnrs mutable-strings)
’(rnrs r5rs)
’(only (chezscheme) library import))

#t))

It might also be useful to include debug in the set of identifiers imported from (chezscheme)

to allow the debugger to be entered after an exception is raised.

Most of the identifiers bound in the default interaction environment that are not strictly
compatible with the Revised6 Report are variables bound to procedures with extended
interfaces, i.e., optional arguments or extended argument domains. The others are keywords
bound to transformers that extend the Revised6 Report syntax in some way. This should
not be a problem except for programs that count on exceptions being raised in cases that
coincide with the extensions. For example, if a program passes the = procedure a single
numeric argument and expects an exception to be raised, it will fail in the initial interaction
environment because = returns #t when passed a single numeric argument.

Within the default interaction environment and those created as described above, variables
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that name built-in procedures are read-only, i.e., cannot be assigned, since they resolve to

the read-only bindings exported from the (chezscheme) library or some other library:

(set! cons +) ⇒ exception: cons is immutable

Before assigning a variable bound to the name of a built-in procedure, the programmer

must first define the variable. For example,

(define cons-count 0)
(define original-cons cons)
(define cons

(lambda (x y)
(set! cons-count (+ cons-count 1))
(original-cons x y)))

redefines cons to count the number of times it is called, and

(set! cons original-cons)

assigns cons to its original value. Once a variable has been defined in the interaction

environment using define, a subsequent definition of the same variable is equivalent to a

set!, so

(define cons original-cons)

has the same effect as the set! above. The expression

(import (only (chezscheme) cons))

also binds cons to its original value. It also returns it to its original read-only state.

The simpler redefinition

(define cons (let () (import scheme) cons))

turns cons into a mutable variable with the same value as it originally had. Doing so,

however, prevents the compiler from generating efficient code for calls to cons or producing

warning messages when cons is passed the wrong number of arguments.

All identifiers not bound in the initial interaction environment and not defined by the

programmer are treated as “potentially bound” as variables to facilitate the definition of

mutually recursive procedures. For example, assuming that yin and yang have not been

defined,

(define yin (lambda () (- (yang) 1)))

defines yin at top level as a variable bound to a procedure that calls the value of the

top-level variable yang, even though yang has not yet been defined. If this is followed by

(define yang (lambda () (+ (yin) 1)))

the result is a mutually recursive pair of procedures that, when called, will loop indefinitely
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or until the system runs out of space to hold the recursion stack. If yang must be defined
as anything other than a variable, its definition should precede the definition of yin, since
the compiler assumes yang is a variable in the absence of any indication to the contrary
when yang has not yet been defined.

A subtle consequence of this useful quirk of the interaction environment is that the proce-
dure free-identifier=? (Section 8.3 of The Scheme Programming Language, 4th Edition)
does not consider unbound library identifiers to be equivalent to (as yet) undefined top-
level identifiers, even if they have the same name, because the latter are actually assumed
to be valid variable bindings.

(library (A) (export a)
(import (rnrs))
(define-syntax a
(lambda (x)

(syntax-case x ()
[(_ id) (free-identifier=? #’id #’undefined)]))))

(let () (import (A)) (a undefined)) ⇒ #f

If it is necessary that they have the same binding, as in the case where an identifier is used
as an auxiliary keyword in a syntactic abstraction exported from a library and used at top
level, the library should define and export a binding for the identifier.

(library (A) (export a aux-a)
(import (rnrs) (only (chezscheme) syntax-error))
(define-syntax aux-a
(lambda (x)

(syntax-error x "invalid context")))
(define-syntax a
(lambda (x)

(syntax-case x (aux-a)
[(_ aux-a) #’’okay]
[(_ _) #’’oops]))))

(let () (import (A)) (a aux-a)) ⇒ okay
(let () (import (only (A) a)) (a aux-a)) ⇒ oops

This issue does not arise when libraries are used entirely within other libraries or within
RNRS top-level programs, since the interaction environment does not come into play.

2.4. Using Libraries and Top-Level Programs

An R6RS library can be defined directly in the REPL, loaded explicitly from a file (using
load or load-library), or loaded implicitly from a file via import. When defined directly
in the REPL or loaded explicitly from a file, a library form can be used to redefine an
existing library, but import never reloads a library once it has been defined.

A library to be loaded implicitly via import must reside in a file whose name reflects the
name of the library. For example, if the library’s name is (tools sorting), the base name
of the file must be sorting with a valid extension, and the file must be in a directory
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named tools which itself resides in one of the directories searched by import. The set of
directories searched by import is determined by the library-directories parameter, and
the set of extensions is determined by the library-extensions parameter.

The values of both parameters are lists of pairs of strings. The first string in each
library-directories pair identifies a source-file base directory, and the second iden-
tifies the corresponding object-file base directory. Similarly, the first string in each
library-extensions pair identifies a source-file extension, and the second identifies the
corresponding object-file extension. The full path of a library source or object file
consists of the source or object base followed by the components of the library name,
separated by slashes, with the library extension added on the end. For example, for
base /usr/lib/scheme, library name (app lib1), and extension .sls, the full path is
/usr/lib/scheme/app/lib1.sls. So, if (library-directories) contains the pathnames
"/usr/lib/scheme/libraries" and ".", and (library-extensions) contains the exten-
sions .ss and .sls, the path of the (tools sorting) library must be one of the following.

/usr/lib/scheme/libraries/tools/sorting.ss
/usr/lib/scheme/libraries/tools/sorting.sls
./tools/sorting.ss
./tools/sorting.sls

When searching for a library, import first constructs a partial name from the list of com-
ponents in the library name, e.g., a/b for library (a b). It then searches for the partial
name in each pair of base directories, in order, trying each of the source extensions then
each of the object extensions in turn before moving onto the next pair of base directo-
ries. If the partial name is an absolute pathname, e.g., ~/.myappinit for a library named
(~/.myappinit), only the specified absolute path is searched, first with each source ex-
tension, then with each object extension. If the expander finds both a source file and its
corresponding object file, and the object file is not older than the source file, the expander
loads the object file. If the object file does not exist, if the object file is older, or if after load-
ing the object file, the expander determines it was built using a library or include file that
has changed, the source file is loaded or compiled, depending on the value of the parameter
compile-imported-libraries. If compile-imported-libraries is set to #t, the expander
compiles the library via the value of the compile-library-handler parameter, which by
default calls compile-library (which is described below). Otherwise, the expander loads
the source file. (Loading the source file actually causes the code to be compiled, assuming
the default value of current-eval, but the compiled code is not saved to an object file.)
An exception is raised during this process if a source or object file exists but is not readable
or if an object file cannot be created.

The search process used by the expander when processing an import for a library that
has not yet been loaded can be monitored by setting the parameter import-notify to #t.
This parameter can be set from the command line via the --import-notify command-line
option.

Whenever the expander determines it must compile a library to a file or load one from
source, it adds the directory in which the file resides to the front of the source-directories

list while compiling or loading the library. This allows a library to include files stored in
or relative to its own directory.
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When import compiles a library as described above, it does not also load the compiled
library, because this would cause portions of library to be reevaluated. Because of this,
run-time expressions in the file outside of a library form will not be evaluated. If such
expressions are present and should be evaluated, the library should be compiled ahead of
time or loaded explicitly.

A file containing a library may be compiled with compile-file or compile-library. The
only difference between the two is that the latter treats the source file as if it were prefixed
by an implicit #!r6rs, which disables Chez Scheme lexical extensions unless an explicit
#!chezscheme marker appears in the file. Any libraries upon which the library depends
must be compiled first. If one of the libraries imported by the library is subsequently
recompiled (say because it was modified), the importing library must also be recompiled.
Compilation and recompilation of imported libraries must be done explicitly by default but
is done automatically when the parameter compile-imported-libraries is set to #t before
compiling the importing library.

As with compile-file, compile-library can be used in “batch” mode via a shell command:

echo ’(compile-library "filename")’ | scheme -q

with single-quote marks surrounding the compile-library call omitted for Windows shells.

An RNRS top-level-program usually resides in a file, but one can also enter one directly
into the REPL using the top-level-program forms, e.g.:

(top-level-program
(import (rnrs))
(display "What’s up?\n"))

A top-level program stored in a file does not have the top-level-program wrapper, so the
same top-level program in a file is just:

(import (rnrs))
(display "What’s up?\n")

A top-level program stored in a file can be loaded from the file via the load-program

procedure. A top-level program can also be loaded via load, but not without affecting the
semantics. A program loaded via load is scoped at top level, where it can see all top-level
bindings, whereas a top-level program loaded via load-program is self-contained, i.e., it can
see only the bindings made visible by the leading import form. Also, the variable bindings
in a program loaded via load also become top-level bindings, whereas they are local to
the program when the program is loaded via load-program. Moreover, load-program, like
load-library, treats the source file as if it were prefixed by an implicit #!r6rs, which
disables Chez Scheme lexical extensions unless an explicit #!chezscheme marker appears
in the file. A program loaded via load is also likely to be less efficient. Since the program’s
variables are not local to the program, the compiler must assume they could change at any
time, which inhibits many of its optimizations.

Top-level programs may be compiled using compile-program, which is like compile-file

but, as with load-program, properly implements the semantics and lexical restrictions
of top-level programs. compile-program also copies the leading #! line, if any, from the
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source file to the object file, resulting in an executable object file. Any libraries upon which
the top-level program depends, other than built-in libraries, must be compiled first. The
program must be recompiled if any of the libraries upon which it depends are recompiled.
Compilation and recompilation of imported libraries must be done explicitly by default but
is done automatically when the parameter compile-imported-libraries is set to #t before
compiling the importing library.

As with compile-file and compile-library, compile-program can be used in “batch”
mode via a shell command:

echo ’(compile-program "filename")’ | scheme -q

with single-quote marks surrounding the compile-program call omitted for Windows shells.

compile-program returns a list of libraries directly invoked by the compiled top-level pro-
gram. When combined with the library-requirements and library-object-filename

procedures, the list of libraries returned by compile-program can be used to determine the
set of files that must be distributed with the compiled program file.

When run, a compiled program automatically loads the run-time code for each library
upon which it depends, as if via revisit. If the program also imports one of the same
libraries at run time, e.g., via the environment procedure, the system will attempt to load
the compile-time information from the same file. The compile-time information can also
be loaded explicitly from the same or a different file via load or visit.

2.5. Scheme Shell Scripts

When the --script command-line option is present, the named file is treated as a Scheme
shell script, and the command-line is made available via the parameter command-line.
This is primarily useful on Unix-based systems, where the script file itself may be made
executable. To support executable shell scripts, the system ignores the first line of a loaded
script if it begins with #! followed by a space or forward slash. For example, assuming that
the Chez Scheme executable has been installed as /usr/bin/scheme, the following script
prints its command-line arguments.

#! /usr/bin/scheme --script
(for-each
(lambda (x) (display x) (newline))
(cdr (command-line)))

The following script implements the traditional Unix echo command.

#! /usr/bin/scheme --script
(let ([args (cdr (command-line))])

(unless (null? args)
(let-values ([(newline? args)

(if (equal? (car args) "-n")
(values #f (cdr args))
(values #t args))])
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(do ([args args (cdr args)] [sep "" " "])
((null? args))

(printf "~a~a" sep (car args)))
(when newline? (newline)))))

Scripts may be compiled using compile-script, which is like compile-file but differs in
two ways: (1) it copies the leading #! line from the source-file script into the object file,
and (2) when the #! line is present, it disables the default compression of the resulting file,
which would otherwise prevent it from being recognized as a script file.

If Petite Chez Scheme is installed, but not Chez Scheme, /usr/bin/scheme may be replaced
with /usr/bin/petite.

The --program command-line option is like --script except that the script file is treated
as an RNRS top-level program (Chapter 10). The following RNRS top-level program
implements the traditional Unix echo command, as with the script above.

#! /usr/bin/scheme --program
(import (rnrs))
(let ([args (cdr (command-line))])

(unless (null? args)
(let-values ([(newline? args)

(if (equal? (car args) "-n")
(values #f (cdr args))
(values #t args))])

(do ([args args (cdr args)] [sep "" " "])
((null? args))

(display sep)
(display (car args)))

(when newline? (newline)))))

Again, if only Petite Chez Scheme is installed, /usr/bin/scheme may be replaced with
/usr/bin/petite.

scheme-script may be used in place of scheme --program or petite --program, i.e.,

#! /usr/bin/scheme-script

scheme-script runs Chez Scheme, if available, otherwise Petite Chez Scheme.

It is also possible to use /usr/bin/env, as recommended in the Revised6 Report nonnor-
mative appendices, which allows scheme-script to appear anywhere in the user’s path.

#! /usr/bin/env scheme-script

If a top-level program depends on libraries other than those built into Chez Scheme, the
--libdirs option can be used to specify which source and object directories to search.
Similarly, if a library upon which a top-level program depends has an extension other than
one of the standard extensions, the --libexts option can be used to specify additional
extensions to search.

These options set the corresponding Chez Scheme parameters library-directories and
library-extensions, which are described in Section 2.4. The format of the arguments
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to --libdirs and --libexts is the same: a sequence of substrings separated by a single
separator character. The separator character is a colon (:), except under Windows where
it is a semi-colon (;). Between single separators, the source and object strings, if both
are specified, are separated by two separator characters. If a single separator character
appears at the end of the string, the specified pairs are added to the front of the existing
list; otherwise, the specified pairs replace the existing list.

For example, where the separator is a colon,

scheme --libdirs "/home/moi/lib:"

adds the source/object directory pair

("/home/moi/lib" . "/home/moi/lib")

to the front of the default set of library directories, and

scheme --libdirs "/home/moi/libsrc::/home/moi/libobj:"

adds the source/object directory pair

("/home/moi/libsrc" . "/home/moi/libobj")

to the front of the default set of library directories. The parameters are set after all boot
files have been loaded.

If no --libdirs option appears and the CHEZSCHEMELIBDIRS environment variable
is set, the string value of CHEZSCHEMELIBDIRS is treated as if it were specified by
a --libdirs option. Similarly, if no --libexts option appears and the CHEZSCHEME-
LIBEXTS environment variable is set, the string value of CHEZSCHEMELIBEXTS is
treated as if it were specified by a --libexts option.

2.6. Optimization

To get the most out of the Chez Scheme compiler, it is necessary to give it a little bit of help.
The most important assistance is to avoid the use of top-level (interaction-environment)
bindings. Top-level bindings are convenient and appropriate during program development,
since they simplify testing, redefinition, and tracing (Section 3.1) of individual procedures
and syntactic forms. This convenience comes at a sizable price, however.

The compiler can propagate copies (of one variable to another or of a constant to a vari-
able) and inline procedures bound to local, unassigned variables within a single top-level
expression. For the procedures it does not inline, it can avoid constructing and passing
unneeded closures, bypass argument-count checks, branch to the proper entry point in a
case-lambda, and build rest arguments (more efficiently) on the caller side, where the length
of the rest list is known at compile time. It can also discard the definitions of unreferenced
variables, so there’s no penalty for including a large library of routines, only a few of which
are actually used.
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It cannot do any of this with top-level variable bindings, since the top-level bindings can
change at any time and new references to those bindings can be introduced at any time.

Fortunately, it is easy to restructure a program to avoid top-level bindings. This is naturally
accomplished for portable code by placing the code into a single RNRS top-level program
or by placing a portion of the code in a top-level program and the remainder in one or more
separate libraries. Although not portable, one can also put all of the code into a single top-
level module form or let expression, perhaps using include to bring in portions of the code
from separate files. The compiler performs some optimization even across library bound-
aries, so the penalty for breaking a program up in this manner is generally acceptable. The
compiler also supports whole-program optimization (via compile-whole-program), which
can be used to eliminate all overhead for placing portions of a program into separate li-
braries.

Once an application’s code has been placed into a single top-level program or into a top-level
program and one or more libraries, the code can be loaded from source via load-program

or compiled via compile-program and compile-library, as described in Section 2.4. Be
sure not to use compile-file for the top-level program since this does not preserve the
semantics nor result in code that is as efficient.

With an application structured as a single top-level program or as a top-level program and
one or more libraries that do not interact frequently, we have done most of what can be
done to help the compiler, but there are still a few more things we can do.

First, we can allow the compiler to generate “unsafe” code, i.e., allow the compiler to
generate code in which the usual run-time type checks have been disabled. We do this by
using the compiler’s “optimize level 3” when compiling the program and library files. This
can be accomplished by setting the parameter optimize-level to 3 while compiling the
library or program, e.g.:

(parameterize ([optimize-level 3]) (compile-program "filename"))

or in batch mode via the --optimize-level command-line option:

echo ’(compile-program "filename")’ | scheme -q --optimize-level 3

It may also be useful to experiment with some of the other compiler control parameters
and also with the storage manager’s run-time operation. The compiler-control parameters,
including optimize-level, are described in Section 12.6, and the storage manager control
parameters are described in Section 13.1.

Finally, it is often useful to “profile” your code to determine that parts of the code that are
executed most frequently. While this will not help the system optimize your code, it can
help you identify “hot spots” where you need to concentrate your own hand-optimization
efforts. In these hot spots, consider using more efficient operators, like fixnum or flonum
operators in place of generic arithmetic operators, and using explicit loops rather than
nested combinations of linear list-processing operators like append, reverse, and map. These
operators can make code more readable when used judiciously, but they can slow down
time-critical code.

Section 12.7 describes how to use the compiler’s support for automatic profiling. Be sure
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that profiling is not enabled when you compile your production code, since the code intro-

duced into the generated code to perform the profiling adds significant run-time overhead.

2.7. Customization

Chez Scheme and Petite Chez Scheme are built from several subsystems: a “kernel” encap-

sulated in a static or shared library (dynamic link library) that contains operating-system

interface and low-level storage management code, an executable that parses command-line

arguments and calls into the kernel to initialize and run the system, a base boot file (pe-

tite.boot) that contains the bulk of the run-time library code, and an additional boot file

(scheme.boot), for Chez Scheme only, that contains the compiler.

While the kernel and base boot file are essential to the operation of all programs, the

executable may be replaced or even eliminated, and the compiler boot file need be loaded

only if the compiler is actually used. In fact, the compiler is typically not loaded for

distributed applications unless the application creates and executes code at run time.

The kernel exports a set of entry points that are used to initialize the Scheme system,

load boot or heap files, run an interactive Scheme session, run script files, and deinitialize

the system. In the threaded versions of the system, the kernel also exports entry points

for activating, deactivating, and destroying threads. These entry points may be used to

create your own executable image that has different (or no) command-line options or to

run Scheme as a subordinate program within another program, i.e., for use as an extension

language.

These entry points are described in Section 4.8, along with other entry points for accessing

and modifying Scheme data structures and calling Scheme procedures.

The file main.c in the ’c’ subdirectory contains the “main” routine for the distributed

executable image; look at this file to gain an understanding of how the system startup

entry points are used.

2.8. Building and Distributing Applications

Although useful as a stand-alone Scheme system, Petite Chez Scheme was conceived as

a run-time system for compiled Chez Scheme applications. The remainder of this section

describes how to create and distribute such applications using Petite Chez Scheme. It

begins with a discussion of the characteristics of Petite Chez Scheme and how it compares

with Chez Scheme, then describes how to prepare application source code, how to build

and run applications, and how to distribute them.

Petite Chez Scheme Characteristics. Although interpreter-based, Petite Chez Scheme

evaluates Scheme source code faster than might be expected. Some of the reasons for this

are listed below.
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• The run-time system is fully compiled, so library implementations of primitives rang-
ing from + and car to sort and printf are just as efficient as in Chez Scheme,
although they cannot be open-coded as in code compiled by Chez Scheme.

• The interpreter is itself a compiled Scheme application. Because it is written in
Scheme, it directly benefits from various characteristics of Scheme that would have
to be dealt with explicitly and with additional overhead in most other languages, in-
cluding proper treatment of tail calls, first-class procedures, automatic storage man-
agement, and continuations.

• The interpreter employs a preprocessor that converts the code into a form that can be
interpreted efficiently. In fact, the preprocessor shares its front end with the compiler,
and this front end performs a variety of source-level optimizations.

Nevertheless, compiled code is still more efficient for most applications. The difference
between the speed of interpreted and compiled code varies significantly from one application
to another, but often amounts to a factor of five and sometimes to a factor of ten or more.

Several additional limitations result from the fact that Petite Chez Scheme does not include
the compiler:

• The compiler must be present to process foreign-procedure and foreign-callable

expressions, even when these forms are evaluated by the interpreter. These forms
cannot be processed by the interpreter alone, so they cannot appear in source code
to be processed by Petite Chez Scheme. Compiled versions of foreign-procedure

and foreign-callable forms may, however, be included in compiled code loaded into
Petite Chez Scheme.

• Inspector information is attached to code objects, which are generated only by the
compiler, so source information and variable names are not available for interpreted
procedures or continuations into interpreted procedures. This makes the inspector
less effective for debugging interpreted code than it is for debugging compiled code.

• Procedure names are also attached to code objects, so while the compiler associates
a name with each procedure when an appropriate name can be determined, the
interpreter does not do so. This mostly impacts the quality of error messages, e.g.,
an error message might read “incorrect number of arguments to #<procedure>” rather
than the likely more useful “incorrect number of arguments to #<procedure name>.”

• The compiler detects, at compile time, some potential errors that the interpreter does
not detect and reports them via compile-time warnings that identify the expression
or the location in the source file, if any, where the expression appears.

• Automatic profiling cannot be enabled for interpreted code as it is for compiled code
when compile-profile is set to #t.

Except as noted above, Petite Chez Scheme does not restrict what programs can do, and
like Chez Scheme, it places essentially no limits on the size of programs or the memory
images they create, beyond the inherent limitations of the underlying hardware or operating
system.

Compiled scripts and programs.
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One simple mechanism for distributing an application is to structure it as a script or RNRS
top-level program, use compile-script or compile-program, as appropriate to compile it
as described in Section 2.5, and distribute the resulting object file along with a complete
distribution of Petite Chez Scheme. When this mechanism is used on Unix-based systems,
if the source file begins with #! and the path that follows is the path to the Chez Scheme
executable, e.g., /usr/bin/scheme, the one at the front of the object file should be re-
placed with the path to the Petite Chez Scheme executable, e.g., /usr/bin/petite. The
path may have to be adjusted by the application’s installation program based on where
Petite Chez Scheme is installed on the target system. When used under Windows, the
application’s installation program should set up an appropriate shortcut that starts Pe-
tite Chez Scheme with the --script or --program option, as appropriate, followed by the
path to the object file.

The remainder of this section describes how to distribute applications that do not require
Petite Chez Scheme to be installed as a stand-alone system on the target machine.

Preparing Application Code. While it is possible to distribute applications in source-
code form, i.e., as a set of Scheme source files to be loaded into Petite Chez Scheme by the
end user, distributing compiled code has two major advantages over distributing source
code. First, compiled code is usually much more efficient, as discussed in the preceding
section, and second, compiled code is in binary form and thus provides more protection for
proprietary application code.

Application source code generally consists of a set of Scheme source files possibly augmented
by foreign code developed specifically for the application and packaged in shared libraries
(also known as shared objects or, on Windows, dynamic link libraries). The following
assumes that any shared-library source code has been converted into object form; how to
do this varies by platform. (Some hints are given in Section 4.6.) The result is a set of
one or more shared libraries that are loaded explicitly by the Scheme source code during
program initialization.

Once the shared libraries have been created, the next step is to compile the Scheme
source files into a set of Scheme object files. Doing so typically involves simply invok-
ing compile-file, compile-library, or compile-program, as appropriate, on each source
file to produce the corresponding object file. This may be done within a build script or
“make” file via a command line such as the following:

echo ’(compile-file "filename")’ | scheme

which produces the object file filename.so from the source file filename.ss.

If the application code has been developed interactively or is usually loaded directly from
source, it may be necessary to make some adjustments to a file to be compiled if the file
contains expressions or definitions that affect the compilation of subsequent forms in the
file. This can be accomplished via eval-when (Section 12.4). This is not typically necessary
or desirable if the application consists of a set of RNRS libraries and programs.

You may also wish to disable generation of inspector information both to reduce the size
of the compiled application code and to prevent others from having access to the expanded
source code that is retained as part of the inspector information. To do so, set the parameter
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generate-inspector-information to #f while compiling each file The downside of disabling
inspector information is that the information will not be present if you need to debug your
application, so it is usually desirable to disable inspector information only for production
builds of your application. An alternative is to compile the code with inspector information
enabled and strip out the debugging information later with strip-fasl-file.

The Scheme startup procedure determines what the system does when it is started. The
default startup procedure loads the files listed on the command line (via load) and starts
up a new café, like this.

(lambda fns (for-each load fns) (new-cafe))

The startup procedure may be changed via the parameter scheme-start. The following
example demonstrates the installation of a variant of the default startup procedure that
prints the name of each file before loading it.

(scheme-start
(lambda fns
(for-each

(lambda (fn)
(printf "loading ~a ..." fn)
(load fn)
(printf "~%"))

fns)
(new-cafe)))

A typical application startup procedure would first invoke the application’s initialization
procedure(s) and then start the application itself:

(scheme-start
(lambda fns
(initialize-application)
(start-application fns)))

Any shared libraries that must be present during the running of an application must be
loaded during initialization. In addition, all foreign procedure expressions must be executed
after the shared libraries are loaded so that the addresses of foreign routines are available
to be recorded with the resulting foreign procedures. The following demonstrates one way
in which initialization might be accomplished for an application that links to a foreign
procedure show_state in the Windows shared library state.dll:

(define show-state)

(define app-init
(lambda ()
(load-shared-object "state.dll")
(set! show-state

(foreign-procedure "show_state" (integer-32)
integer-32))))

(scheme-start
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(lambda fns
(app-init)
(app-run fns)))

Building and Running the Application. Building and running an application is
straightforward once all shared libraries have been built and Scheme source files have been
compiled to object code.

Although not strictly necessary, we suggest that you concatenate your object files, if you
have more than one, into a single object file. This may be done on Unix systems simply
via the cat program or on Windows via copy. Placing all of the object code into a single
file simplifies both building and distribution of applications.

For top-level programs with separate libraries, compile-whole-program can be used to
produce a single, fully optimized object file. Otherwise, when concatenating object files,
put each library after the libraries it depends upon, with the program last.

With the Scheme object code contained within a single composite object file, it is possible
to run the application simply by loading the composite object file into Petite Chez Scheme,
e.g.:

petite app.so

where app.so is the name of the composite object file, and invoking the startup procedure
to restart the system:

> ((scheme-start))

The point of setting scheme-start, however, is to allow the set of object files to be converted
into a boot file. Boot files are loaded during the process of building the initial heap. Because
of this, boot files have the following advantages over ordinary object files.

• Any code and data structures contained in the boot file or created while it is loaded is
automatically compacted along with the base run-time library code and made static.
Static code and data are never collected by the storage manager, so garbage collection
overhead is reduced. (It is also possible to make code and data static explicitly at
any time via the collect procedure.)

• The system looks for boot files automatically in a set of standard directories based on
the name of the executable image, so you can install a copy of the Petite Chez Scheme
executable image under your application’s name and spare your users from supplying
any command-line arguments or running a separate script to load the application
code.

A boot file is simply an object file, possibly containing the code for more than one source
file, prefixed by a boot header. The boot header identifies a base boot file upon which
the application directly depends, or possibly two or more alternatives upon which the
application can be run. In most cases, petite.boot will be identified as the base boot file,
but in a layered application it may be another boot file of your creation that in turn depends
upon petite.boot. The base boot file, and its base boot file, if any, are loaded automatically
when your application boot file is loaded.
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Boot files are created with make-boot-file. This procedure accepts two or more arguments.
The first is a string naming the file into which the boot header and object code should be
placed, the second is a list of strings naming base boot files, and the remainder are strings
naming input files. For example, the call:

(make-boot-file "app.boot" ’("petite") "app1.so" "app2.ss" "app3.so")

creates the boot file app.boot that identifies a dependency upon petite.boot and contains
the object code for app1.so, the object code resulting from compiling app2.ss, and the
object code for app3.so. The call:

(make-boot-file "app.boot" ’("scheme" "petite") "app.so")

creates a header file that identifies a dependency upon either scheme.boot or petite.boot,
with the object code from app.so. In the former case, the system will automatically load pe-
tite.boot when the application boot file is loaded, and in the latter it will load scheme.boot
if it can find it, otherwise petite.boot. This would allow your application to run on top of
the full Chez Scheme if present, otherwise Petite Chez Scheme.

In most cases, you can construct your application so it does not depend upon features
of Chez Scheme (specifically, the compiler) by specifying only "petite" in the call to
make-boot-file. If your application calls eval, however, and you wish to allow users to
be able to take advantage of the faster execution speed of compiled code, then specifying
both "scheme" and "petite" is appropriate.

Distributing the Application. Distributing an application involves can be as simple as
creating a distribution package that includes the following items:

• the Petite Chez Scheme distribution,

• the application boot file,

• any application-specific shared libraries,

• an application installation script.

The application installation script should install Petite Chez Scheme if not already installed
on the target system. It should install the application boot file in the same directory as
the Petite Chez Scheme boot file petite.boot is installed, and it should install the appli-
cation shared libraries, if any, either in the same location or in a standard location for
shared libraries on the target system. It should also create a link to or copy of the Pe-
tite Chez Scheme executable under the name of your application, i.e., the name given to
your application boot file. Where appropriate, it should also install desktop and start-menu
shortcuts to run the executable.

2.9. Command-Line Options

Chez Scheme recognizes the following command-line options.
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-q, --quiet suppress greeting and prompt
--script path run as shell script
--program path run rnrs top-level program as shell script
--libdirs dir:... set library directories
--libexts ext:... set library extensions
--compile-imported-libraries compile libraries before loading
--import-notify enable import search messages
--optimize-level 0 | 1 | 2 | 3 set initial optimize level
--debug-on-exception on uncaught exception, call debug
--eedisable disable expression editor
--eehistory off | path expression-editor history file
--enable-object-counts have collector maintain object counts
--retain-static-relocation keep reloc info for compute-size, etc.
-b path, --boot path load boot file
--verbose trace boot-file search process
--version print version and exit
--help print help and exit
-- pass through remaining args

The following options are recognized but cause the system to print an error message and
exit because saved heaps are no longer supported.

-h path, --heap path load heap file
-s[n] path, --saveheap[n] path save heap file
-c, --compact toggle compaction flag

With the default scheme-start procedure (Section 2.8), any remaining command-line argu-
ments are treated as the names of files to be loaded before Chez Scheme begins interacting
with the user, unless the --script or --program is present, in which case the remaining
arguments are made available to the script via the command-line parameter (Section 2.1).

Most of the options are described elsewhere in this chapter, and a few are self-explanatory.
The remainder pertain to the loading of boot files at system start-up time and are described
below.

When Chez Scheme is run, it looks for one or more boot files to load. Boot files contain
the compiled Scheme code that implements most of the Scheme system, including the
interpreter, compiler, and most libraries. Boot files may be specified explicitly on the
command line via -b options or implicitly. In the simplest case, no -b options are given
and the necessary boot files are loaded automatically based on the name of the executable.

For example, if the executable name is “frob”, the system looks for “frob.boot” in a set
of standard directories. It also looks for and loads any subordinate boot files required by
“frob.boot”.

Subordinate boot files are also loaded automatically for the first boot file explicitly specified
via the command line. Each boot file must be listed before those that depend upon it.

The --verbose option may be used to trace the file searching process and must appear
before any boot arguments for which search tracing is desired.

Ordinarily, the search for boot files is limited to a set of installation directories, but this
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may be overridden by setting the environment variable SCHEMEHEAPDIRS. SCHEMEHEAPDIRS

should be a colon-separated list of directories, listed in the order in which they should be
searched. Within each directory, the two-character escape sequence “%v” is replaced by the
current version, and the two-character escape sequence “%m” is replaced by the machine
type. A percent followed by any other character is replaced by the second character; in
particular, “%%” is replaced by “%”, and “%:” is replaced by “:”. If SCHEMEHEAPDIRS ends
in a non-escaped colon, the default directories are searched after those in SCHEMEHEAPDIRS;
otherwise, only those listed in SCHEMEHEAPDIRS are searched.

Under Windows, semi-colons are used in place of colons, and one additional escape is
recognized: “%x,” which is replaced by the directory in which the executable file resides.
The default search path under Windows consists of “%x” and “%x\..\..\boot\%m.” The
registry key HeapSearchPath in HKLM\SOFTWARE\Chez Scheme\csvversion, where version is
the Chez Scheme version number, e.g., 7.9.4, can be set to override the default search
path, and the SCHEMEHEAPDIRS environment variable overrides both the default and the
registry setting, if any.

Boot files consist of ordinary compiled code and consist of a boot header and the compiled
code for one or more source files. See Section 2.8 for instructions on how to create boot
files.
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Chez Scheme has several features that support debugging. In addition to providing er-

ror messages when fully type-checked code is run, Chez Scheme also permits tracing of

procedure calls, interruption of any computation, redefinition of exception and interrupt

handlers, and inspection of any object, including the continuations of exceptions and in-

terrupts.

Programmers new to Scheme or Chez Scheme, and even more experienced Scheme pro-

grammers, might want to consult the tutorial “How to Debug Chez Scheme Programs.”

HTML and PDF versions are available at http://www.cs.indiana.edu/chezscheme/debug/.

3.1. Tracing

Tracing is one of the most useful mechanisms for debugging Scheme programs. Chez Scheme

permits any primitive or user-defined procedure to be traced. The trace package prints

the arguments and return values for each traced procedure with a compact indentation

mechanism that shows the nesting depth of calls. The distinction between tail calls and

nontail calls is reflected properly by an increase in indentation for nontail calls only. For

nesting depths of 10 or greater, a number in brackets is used in place of indentation to

signify nesting depth.

This section covers the mechanisms for tracing procedures and controlling trace output.

(trace-lambda name formals body1 body2 ...) syntax

returns: a traced procedure
libraries: (chezscheme)

A trace-lambda expression is equivalent to a lambda expression with the same formals

and body except that trace information is printed to the trace output port whenever

the procedure is invoked, using name to identify the procedure. The trace information

shows the value of the arguments passed to the procedure and the values returned by the

procedure, with indentation to show the nesting of calls.

The traced procedure half defined below returns the integer quotient of its argument and

2.
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(define half
(trace-lambda half (x)
(cond

[(zero? x) 0]
[(odd? x) (half (- x 1))]
[(even? x) (+ (half (- x 1)) 1)])))

A trace of the call (half 5), which returns 2, is shown below.

|(half 5)
|(half 4)
| (half 3)
| (half 2)
| |(half 1)
| |(half 0)
| |0
| 1
|2

This example highlights the proper treatment of tail and nontail calls by the trace package.
Since half tail calls itself when its argument is odd, the call (half 4) appears at the same
level of indentation as the call (half 5). Furthermore, since the return values of (half 5)

and (half 4) are necessarily the same, only one return value is shown for both calls.

(trace-case-lambda name clause ...) syntax

returns: a traced procedure
libraries: (chezscheme)

A trace-case-lambda expression is equivalent to a case-lambda expression with the same
clauses except that trace information is printed to the trace output port whenever the pro-
cedure is invoked, using name to identify the procedure. The trace information shows the
value of the arguments passed to the procedure and the values returned by the procedure,
with indentation to show the nesting of calls.

(trace-let name ((var expr) ...) body1 body2 ...) syntax

returns: the values of the body body1 body2 ...

libraries: (chezscheme)

A trace-let expression is equivalent to a named let expression with the same name, bind-
ings, and body except that trace information is printed to the trace output port on entry
or reentry (via invocation of the procedure bound to name) into the trace-let expression.

A trace-let expression of the form

(trace-let name ([var expr] ...)
body1 body2 ...)

can be rewritten in terms of trace-lambda as follows:
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((letrec ([name
(trace-lambda name (var ...)

body1 body2 ...)])
name)

expr ...)

trace-let may be used to trace ordinary let expressions as well as let expressions as long
as the name inserted along with the trace-let keyword in place of let does not appear free
within the body of the let expression. It is also sometimes useful to insert a trace-let

expression into a program simply to display the value of an arbitrary expression at the
current trace indentation. For example, a call to the following variant of half

(define half
(trace-lambda half (x)
(cond

[(zero? x) 0]
[(odd? x) (half (trace-let decr-value () (- x 1)))]
[(even? x) (+ (half (- x 1)) 1)])))

with argument 5 results in the trace:

|(half 5)
| (decr-value)
| 4
|(half 4)
| (half 3)
| |(decr-value)
| |2
| (half 2)
| |(half 1)
| | (decr-value)
| | 0
| |(half 0)
| 1
|2

(trace-do ((var init update) ...) (test result ...) expr ...) syntax

returns: the values of the last result expression
libraries: (chezscheme)

A trace-do expression is equivalent to a do expression with the same subforms, except that
trace information is printed to the trace output port, showing the values of var ... and
each iteration and the final value of the loop on termination. For example, the expression

(trace-do ([old ’(a b c) (cdr old)]
[new ’() (cons (car old) new)])

((null? old) new))

produces the trace
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|(do (a b c) ())
|(do (b c) (a))
|(do (c) (b a))
|(do () (c b a))
|(c b a)

and returns (c b a).

(trace var1 var2 ...) syntax

returns: a list of var1 var2 ...

(trace) syntax

returns: a list of all currently traced top-level variables
libraries: (chezscheme)

In the first form, trace reassigns the top-level values of var1 var2 ..., whose values must
be procedures, to equivalent procedures that display trace information in the manner of
trace-lambda.

trace works by encapsulating the old value of each var in a traced procedure. It could
be defined approximately as follows. (The actual version records and returns information
about traced variables.)

(define-syntax trace
(syntax-rules ()
[(_ var ...)
(begin
(set-top-level-value! ’var
(let ([p (top-level-value ’var)])

(trace-lambda var args (apply p args))))
...)]))

Tracing for a procedure traced in this manner may be disabled via untrace (see below), an
assignment of the corresponding variable to a different, untraced value, or a subsequent use
of trace for the same variable. Because the value is traced and not the binding, however,
a traced value obtained before tracing is disabled and retained after tracing is disabled will
remain traced.

trace without subexpressions evaluates to a list of all currently traced variables. A variable
is currently traced if it has been traced and not subsequently untraced or assigned to a
different value.

The following transcript demonstrates the use of trace in an interactive session.

> (define half
(lambda (x)

(cond
[(zero? x) 0]
[(odd? x) (half (- x 1))]
[(even? x) (+ (half (- x 1)) 1)])))

> (half 5)
2
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> (trace half)
(half)
> (half 5)
|(half 5)
|(half 4)
| (half 3)
| (half 2)
| |(half 1)
| |(half 0)
| |0
| 1
|2
2
> (define traced-half half)
> (untrace half)
(half)
> (half 2)
1
> (traced-half 2)
|(half 2)
|1
1

(untrace var1 var2 ...) syntax

(untrace) syntax

returns: a list of untraced variables
libraries: (chezscheme)

untrace restores the original (pre-trace) top-level values of each currently traced variable

in var1 var2 ..., effectively disabling the tracing of the values of these variables. Any

variable in var1 var2 ... that is not currently traced is ignored. If untrace is called

without arguments, the values of all currently traced variables are restored.

The following transcript demonstrates the use of trace and untrace in an interactive session

to debug an incorrect procedure definition.

> (define square-minus-one
(lambda (x)

(- (* x x) 2)))
> (square-minus-one 3)
7
> (trace square-minus-one * -)
(square-minus-one * -)
> (square-minus-one 3)
|(square-minus-one 3)
| (* 3 3)
| 9
|(- 9 2)
|7
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7
> (define square-minus-one

(lambda (x)
(- (* x x) 1))) ; change the 2 to 1

> (trace)
(- *)
> (square-minus-one 3)
|(* 3 3)
|9
|(- 9 1)
|8
8
> (untrace square-minus-one)
()
> (untrace * -)
(- *)
> (square-minus-one 3)
8

The first call to square-minus-one indicates there is an error, the second (traced) call
indicates the step at which the error occurs, the third call demonstrates that the fix works,
and the fourth call demonstrates that untrace does not wipe out the fix.

trace-output-port thread parameter

libraries: (chezscheme)

trace-output-port is a parameter that determines the output port to which tracing infor-
mation is sent. When called with no arguments, trace-output-port returns the current
trace output port. When called with one argument, which must be a textual output port,
trace-output-port changes the value of the current trace output port.

trace-print thread parameter

libraries: (chezscheme)

The value of trace-print must be a procedure of two arguments, an object and an output
port. The trace package uses the value of trace-print to print the arguments and return
values for each call to a traced procedure. trace-print is set to pretty-print by default.

The trace package sets pretty-initial-indent to an appropriate value for the current nest-
ing level before calling the value of trace-print so that multiline output can be indented
properly.

(trace-define var expr) syntax

(trace-define (var . idspec) body1 body2 ...) syntax

returns: unspecified
libraries: (chezscheme)

trace-define is a convenient shorthand for defining variables bound to traced procedures
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of the same name. The first form is equivalent to

(define var
(let ([x expr])
(trace-lambda var args

(apply x args))))

and the second is equivalent to

(define var
(trace-lambda var idspec

body1 body2 ...))

In the former case, expr must evaluate to a procedure.

> (let ()
(trace-define plus

(lambda (x y)
(+ x y)))

(list (plus 3 4) (+ 5 6)))
|(plus 3 4)
|7
(7 11)

(trace-define-syntax keyword expr) syntax

returns: unspecified
libraries: (chezscheme)

trace-define-syntax traces the input and output to the transformer value of expr , stripped
of the contextual information used by the expander to maintain lexical scoping.

> (trace-define-syntax let*
(syntax-rules ()

[(_ () b1 b2 ...)
(let () b1 b2 ...)]

[(_ ((x e) m ...) b1 b2 ...)
(let ((x e))
(let* (m ...) b1 b2 ...))]))

> (let* ([x 3] [y (+ x x)]) (list x y))
|(let* (let* [(x 3) (y (+ x x))] [list x y]))
|(let ([x 3]) (let* ([y (+ x x)]) (list x y)))
|(let* (let* [(y (+ x x))] [list x y]))
|(let ([y (+ x x)]) (let* () (list x y)))
|(let* (let* () [list x y]))
|(let () (list x y))
(3 6)

Without contextual information, the displayed forms are more readable but less precise,
since different identifiers with the same name are indistinguishable, as shown in the example
below.
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> (let ([x 0])
(trace-define-syntax a

(syntax-rules ()
[(_ y) (eq? x y)]))

(let ([x 1])
(a x)))

|(a (a x))
|(eq? x x)
#f

3.2. The Interactive Debugger

The interactive debugger is entered as a result of a call to the procedure debug after an
exception is handled by the default exception handler. It can also be entered directly
from the default exception handler, for serious or non-warning conditions, if the parameter
debug-on-exception is true.

Within the debugger, the command “?” lists the debugger command options. These
include commands to:

• inspect the raise continuation,

• display the condition,

• inspect the condition, and

• exit the debugger.

The raise continuation is the continuation encapsulated within the condition, if any.
The standard exception reporting procedures and forms assert, assertion-violation,
and error as well as the Chez Scheme procedures assertion-violationf, errorf, and
syntax-error all raise exceptions with conditions that encapsulate the continuations of
their calls, allowing the programmer to inspect the frames of pending calls at the point of
a violation, error, or failed assertion.

A variant of the interactive debugger, the break handler, is entered as the result of a
keyboard interrupt handled by the default keyboard-interrupt handler or an explicit call
to the procedure break handled by the default break handler. Again, the command “?”
lists the command options. These include commands to:

• exit the break handler and continue,

• reset to the current café,

• abort the entire Scheme session,

• enter a new café,

• inspect the current continuation, and

• display program statistics (run time and memory usage).

It is also usually possible to exit from the debugger or break handler by typing the end-of-
file character (“control-D” under Unix, “control-Z” under Windows).
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(debug) procedure

returns: does not return
libraries: (chezscheme)

When the default exception handler receives a serious or non-warning condition, it displays

the condition and resets to the current café. Before it resets, it saves the condition in the

parameter debug-condition. The debug procedure may be used to inspect the condition.

Whenever one of the built-in error-reporting mechanisms is used to raise an exception,

the continuation at the point where the exception was raised can be inspected as well.

More generally, debug allows the continuation contained within any continuation condition

created by make-continuation-condition to be inspected.

If the parameter debug-on-exception is set to #t, the default exception handler enters

the debugger directly for all serious and non-warning conditions, delaying its reset until

after the debugger exits. The --debug-on-exception command-line option may be used to

set debug-on-exception to #t from the command line, which is particularly useful when

debugging scripts or top-level programs run via the --script or --program command-line

options.

3.3. The Interactive Inspector

The inspector may be called directly via the procedure inspect or indirectly from the

debugger. It allows the programmer to examine circular objects, objects such as ports

and procedures that do not have a reader syntax, and objects such as continuations and

variables that are not directly accessible by the programmer, as well as ordinary printable

Scheme objects.

The primary intent of the inspector is examination, not alteration, of objects. The values

of assignable variables may be changed from within the inspector, however. Assignable

variables are generally limited to those for which assignments occur in the source program.

It is also possible to invoke arbitrary procedures (including mutation procedures such as

set-car!) on an object. No mechanism is provided for altering objects that are inherently

immutable, e.g., nonassignable variables, procedures, and bignums, since doing so can

violate assumptions made by the compiler and run-time system.

The user is presented with a prompt line that includes a printed representation of the cur-

rent object, abbreviated if necessary to fit on the line. Various commands are provided for

displaying objects and moving around inside of objects. On-line descriptions of the com-

mand options are provided. The command “?” displays commands that apply specifically

to the current object. The command “??” displays commands that are always applicable.

The command “h” provides a brief description of how to use the inspector. The end-of-file

character or the command “q” exits the inspector.
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(inspect obj) procedure

returns: unspecified
libraries: (chezscheme)

Invokes the inspector on obj , as described above. The commands recognized by the inspec-
tor are listed below, categorized by the type of the current object.

Generally applicable commands

help or h displays a brief description of how to use the inspector.

? displays commands applicable to the current type of object.

?? displays the generally applicable commands.

print or p prints the current object (using pretty-print).

write or w writes the current object (using write).

size writes the size in bytes occupied by the current object (determined via compute-size),
including any objects accessible from the current object except those for which the size was
previously requested during the same interactive inspector session.

find expr [ g ] evaluates expr , which should evaluate to a procedure of one argument,
and searches (via make-object-finder) for the first occurrence of an object within the
current object for which the predicate returns a true value, treating immediate values (e.g.,
fixnums), values in generations older than g , and values already visited during the search
as leaves. If g is not unspecified, it defaults to the current maximum generation, i.e., the
value of collect-maximum-generation. If specified, g must be an exact nonnegative integer
less than or equal to the current maximum generation or the symbol static representing
the static generation. If such an object is found, the inspector’s focus moves to that object
as if through a series of steps that lead from the current object to the located object, so
that the up command can be used to determine where the object was found relative to the
original object.

find-next repeats the last find, locating an occurrence not previously found, if any.

up or u n returns to the nth previous level. Used to move outwards in the structure of the
inspected object. n defaults to 1.

top or t returns to the outermost level of the inspected object.

forward or f moves to the nth next expression. Used to move from one element to another
of an object containing a sequence of elements, such as a list, vector, record, frame, or
closure. n defaults to 1.

back or b moves to the nth previous expression. Used to move from one element to another
of an object containing a sequence of elements, such as a list, vector, record, frame, or
closure. n defaults to 1.
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=> expr sends the current object to the procedure value of expr . expr may begin on the
current or following line and may span multiple lines.

file path opens the source file at the specified path for listing. The parameter
source-directories (Section 12.5) determines the set of directories searched for source
files.

list line count lists count lines of the current source file (see file) starting at line. line
defaults to the end of the previous set of lines listed and count defaults to ten or the number
of lines previously listed. If line is negative, listing begins line lines before the previous set
of lines listed.

files shows the currently open source files.

mark or m m marks the current location with the symbolic mark m. If m is not specified,
the current location is marked with a unique default mark.

goto or g m returns to the location marked m. If m is not specified, the inspector returns
to the location marked with the default mark.

new-cafe or n enters a new read-eval-print loop (café), giving access to the normal top-level
environment.

quit or q exits from the inspector.

reset or r resets to the current café.

abort or a x aborts from Scheme with exit status x , which defaults to -1.

Continuation commands

show-frames or sf shows the next n frames. If n is not specified, all frames are displayed.

depth displays the number of frames in the continuation.

down or d n move to the nth frame down in the continuation. n defaults to 1.

show or s shows the continuation (next frame) and, if available, the calling procedure
source, the pending call source, the closure, and the frame and free-variable values. Source
is available only if generation of inspector information was enabled during compilation of
the corresponding lambda expression.

show-local or sl is like show or s except that free variable values are not shown. (If
present, free variable values can be found by inspecting the closure.)

length or l displays the number of elements in the topmost frame of the continuation.
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ref or r moves to the nth or named frame element. n defaults to 0. If multiple elements
have the same name, only one is accessible by name, and the others must be accessed by
number.

code or c moves to the source for the calling procedure.

call moves to the source for the pending call.

file opens the source file containing the pending call, if known. The parameter
source-directories (Section 12.5) determines the list of source directories searched for
source files identified by relative path names.

For absolute pathnames starting with a / (or \ or a directory specifier under Windows), the
inspector tries the absolute pathname first, then looks for the last (filename) component
of the path in the list of source directories. For pathnames starting with ./ (or .\ under
Windows) or ../ (or ..\ under Windows), the inspector looks in "." or ".." first, as
appropriate, then for the entire .- or ..-prefixed pathname in the source directories, then
for the last (filename) component in the source directories. For other (relative) pathnames,
the inspector looks for the entire relative pathname in the list of source directories, then
the last (filename) component in the list of source directories.

If a file by the same name as but different contents from the original source file is found
during this process, it will be skipped over. This typically happens because the file has
been modified since it was compiled. Pass an explicit filename argument to force opening
of a particular file (see the generally applicable commands above).

eval or e expr evaluates the expression expr in an environment containing bindings for the
elements of the frame. Within the evaluated expression, the value of each frame element
n is accessible via the variable %n. Named elements are accessible via their names as
well. Names are available only if generation of inspector information was enabled during
compilation of the corresponding lambda expression.

set! or ! n e sets the value of the nth frame element to e, if the frame element corresponds
to an assignable variable. n defaults to 0.

Procedure commands

show or s shows the source and free variables of the procedure. Source is available only if
generation of inspector information was enabled during compilation of the corresponding
lambda expression.

code or c moves to the source for the procedure.

file opens the file containing the procedure’s source code, if known. See the description
of the continuation file entry above for more information.

length or l displays the number of free variables whose values are recorded in the procedure
object.
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ref or r moves to the nth or named free variable. n defaults to 0. If multiple free variables
have the same name, only one is accessible by name, and the others must be accessed by
number.

set! or ! n e sets the value of the nth free variable to e, if the variable is assignable. n
defaults to 0.

eval or e expr evaluates the expression expr in an environment containing bindings for
the free variables of the procedure. Within the evaluated expression, the value of each free
variable n is accessible via the variable %n. Named free variables are accessible via their
names as well. Names are available only if generation of inspector information was enabled
during compilation of the corresponding lambda expression.

Pair (list) commands

show or s n shows the first n elements of the list. If n is not specified, all elements are
displayed.

length or l displays the list length.

car moves to the object in the car of the current object.

cdr moves to the object in the cdr.

ref or r n moves to the nth element of the list. n defaults to 0.

tail n moves to the nth cdr of the list. n defaults to 1.

Vector, Bytevector, and Fxvector commands

show or s n shows the first n elements of the vector. If n is not specified, all elements are
displayed.

length or l displays the vector length.

ref or r n moves to the nth element of the vector. n defaults to 0.

String commands

show or s n shows the first n elements of the string. If n is not specified, all elements are
displayed.

length or l displays the string length.

ref or r n moves to the nth element of the string. n defaults to 0.

unicode n displays the first n elements of the string as hexadecimal Unicode scalar values.
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ascii n displays the first n elements of the string as hexadecimal ASCII values, using --

to denote characters whose Unicode scalar values are not in the ASCII range.

Symbol commands

show or s shows the fields of the symbol.

value or v moves to the top-level value of the symbol.

name or n moves to the name of the symbol.

property-list or pl moves to the property list of the symbol.

ref or r n moves to the nth field of the symbol. Field 0 is the top-level value of the symbol,
field 1 is the symbol’s name, and field 2 is its property list. n defaults to 0.

Character commands

unicode displays the hexadecimal Unicode scalar value for the character.

ascii displays the hexadecimal ASCII code for the character, using -- to denote characters
whose Unicode scalar values are not in the ASCII range.

Box commands

show or s shows the contents of the box.

unbox or ref or r moves to the boxed object.

Port commands

show or s shows the fields of the port, including the input and output size, index, and buffer
fields.

name moves to the port’s name.

handler moves to the port’s handler.

output-buffer or ob moves to the port’s output buffer.

input-buffer or ib moves to the port’s input buffer.

Record commands

show or s shows the contents of the record.



3.4. The Object Inspector 47

fields moves to the list of field names of the record.

name moves to the name of the record.

rtd moves to the record-type descriptor of the record.

ref or r name moves to the named field of the record, if accessible.

set! or ! name value sets the value of the named field of the record, if mutable.

Transport Link Cell (TLC) commands

show or s shows the fields of the TLC.

keyval moves to the keyval of the TLC.

tconc moves to the tconc of the TLC.

next moves to the next link of the TLC.

ref or r n moves to the nth field of the symbol. Field 0 is the keyval, field 1 the tconc,
and field 2 the next link. n defaults to 0.

3.4. The Object Inspector

A facility for noninteractive inspection is also provided to allow construction of different
inspection interfaces. Like the interactive facility, it allows objects to be examined in
ways not ordinarily possible. The noninteractive system follows a simple, object-oriented
protocol. Ordinary Scheme objects are encapsulated in procedures, or inspector objects,
that take symbolic messages and return either information about the encapsulated object
or new inspector objects that encapsulate pieces of the object.

(inspect/object object) procedure

returns: an inspector object procedure
libraries: (chezscheme)

inspect/object is used to turn an ordinary Scheme object into an inspector object. All
inspector objects accept the messages type, print, write, and size. The type message
returns a symbolic representation of the type of the object. The print and write messages
must be accompanied by a port parameter. They cause a representation of the object to
be written to the port, using the Scheme procedures pretty-print and write. The size

message returns a fixnum representing the size in bytes occupied by the object, including
any objects accessible from the current object except those for which the size was already
requested via an inspector object derived from the argument of the same inspect/object

call.

All inspector objects except for variable inspector objects accept the message value, which
returns the actual object encapsulated in the inspector object.
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(define x (inspect/object ’(1 2 3)))
(x ’type) ⇒ pair
(define p (open-output-string))
(x ’write p)
(get-output-string p) ⇒ "(1 2 3)"
(x ’length) ⇒ (proper 3)
(define y (x ’car))
(y ’type) ⇒ simple
(y ’value) ⇒ 1

Pair inspector objects. Pair inspector objects contain Scheme pairs.

(pair-object ’type) returns the symbol pair.

(pair-object ’car) returns an inspector object containing the “car” field of the pair.

(pair-object ’cdr) returns an inspector object containing the “cdr” field of the pair.

(pair-object ’length) returns a list of the form (type count). The type field contains the
symbol proper, the symbol improper, or the symbol circular, depending on the structure
of the list. The count field contains the number of distinct pairs in the list.

Box inspector objects. Box inspector objects contain Chez Scheme boxes.

(box-object ’type) returns the symbol box.

(box-object ’unbox) returns an inspector object containing the contents of the box.

TLC inspector objects. Box inspector objects contain Chez Scheme boxes.

(tlc-object ’type) returns the symbol tlc.

(tlc-object ’keyval) returns an inspector object containing the TLC’s keyval.

(tlc-object ’tconc) returns an inspector object containing the TLC’s tconc.

(tlc-object ’next) returns an inspector object containing the TLC’s next link.

Vector, String, Bytevector, and Fxvector inspector objects. Vector (bytevector,
string, fxvector) inspector objects contain Scheme vectors (bytevectors, strings, fxvectors).

(vector-object ’type) returns the symbol vector (string, bytevector, fxvector).

(vector-object ’length) returns the number of elements in the vector or string.

(vector-object ’ref n) returns an inspector object containing the nth element of the vector
or string.
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Simple inspector objects. Simple inspector objects contain unstructured, unmodifiable
objects. These include numbers, booleans, the empty list, the end-of-file object, and the
void object. They may be examined directly by asking for the value of the object.

(simple-object ’type) returns the symbol simple.

Unbound inspector objects. Although unbound objects are not normally accessible to
Scheme programs, they may be encountered when inspecting variables.

(unbound-object ’type) returns the symbol unbound.

Procedure inspector objects. Procedure inspector objects contain Scheme procedures.

(procedure-object ’type) returns the symbol procedure.

(procedure-object ’length) returns the number of free variables.

(procedure-object ’ref n) returns an inspector object containing the nth free variable of the
procedure. See the description below of variable inspector objects. n must be nonnegative
and less than the length of the procedure.

(procedure-object ’eval expr) evaluates expr and returns its value. The values of the
procedure’s free variables are bound within the evaluated expression to identifiers of the
form %n, where n is the location number displayed by the inspector. The values of named
variables are also bound to their names.

(procedure-object ’code) returns an inspector object containing the procedure’s code ob-
ject. See the description below of code inspector objects.

Continuation inspector objects. Continuations created by call/cc are actually pro-
cedures. However, when inspecting such a procedure the underlying data structure that
embodies the continuation may be exposed. A continuation structure contains the location
at which computation is to resume, the variable values necessary to perform the computa-
tion, and a link to the next continuation.

(continuation-object ’type) returns the symbol continuation.

(continuation-object ’length) returns the number of free variables.

(continuation-object ’ref n) returns an inspector object containing the nth free variable
of the continuation. See the description below of variable inspector objects. n must be
nonnegative and less than the length of the continuation.

(continuation-object ’eval expr) evaluates expr and returns its value. The values of frame
locations are bound within the evaluated expression to identifiers of the form %n, where n
is the location number displayed by the inspector. The values of named locations are also
bound to their names.
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(continuation-object ’code) returns an inspector object containing the code object for
the procedure that was active when the current continuation frame was created. See the
description below of code inspector objects.

(continuation-object ’depth) returns the number of frames in the continuation.

(continuation-object ’link) returns an inspector object containing the next continuation
frame. The depth must be greater than 1.

(continuation-object ’link* n) returns an inspector object containing the nth continuation
link. n must be less than the depth.

(continuation-object ’source) returns an inspector object containing the source informa-
tion attached to the continuation (representing the source for the application that resulted
in the formation of the continuation) or #f if no source information is attached.

(continuation-object ’source-object) returns an inspector object containing the source
object for the procedure application that resulted in the formation of the continuation or
#f if no source object is attached.

(continuation-object ’source-path) attempts to find the pathname of the file containing
the source for the procedure application that resulted in the formation of the continuation.
If successful, three values are returned to identify the file and position of the application
within the file: path, line, and char . Two values, a file name and an absolute character
position, are returned if the file name is known but the named file cannot be found. The
search may be unsuccessful even if a file by the expected name is found in the path if the
file has been modified since the source code was compiled. If no file name is known, no
values are returned. The parameter source-directories (Section 12.5) determines the set
of directories searched for source files identified by relative path names.

Code inspector objects. Code inspector objects contain Chez Scheme code objects.

(code-object ’type) returns the symbol code.

(code-object ’name) returns a string or #f. The name associated with a code inspector
object is the name of the variable to which the procedure was originally bound or assigned.
Since the binding of a variable can be changed, this name association may not always be
accurate. #f is returned if the inspector cannot determine a name for the procedure.

(code-object ’source) returns an inspector object containing the source information at-
tached to the code object or #f if no source information is attached.

(continuation-object ’source-object) returns an inspector object containing the source
object for the code object or #f if no source object is attached.

(code-object ’source-path) attempts to find the pathname of the file containing the source
for the lambda expression that produced the code object. If successful, three values are
returned to identify the file and position of the application within the file: path, line, and
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char . Two values, a file name and an absolute character position, are returned if the file
name is known but the named file cannot be found. The search may be unsuccessful even
if a file by the expected name is found in the path if the file has been modified since the
source code was compiled. If no file name is known, no values are returned. The parameter
source-directories (Section 12.5) determines the set of directories searched for source
files identified by relative path names.

(code-object ’free-count) returns the number of free variables in any procedure for which
this is the corresponding code.

Variable inspector objects. Variable inspector objects encapsulate variable bindings.
Although the actual underlying representation varies, the variable inspector object provides
a uniform interface.

(variable-object ’type) returns the symbol variable.

(variable-object ’name) returns a symbol or #f. #f is returned if the name is not available
or if the variable is a compiler-generated temporary variable. Variable names are not
retained when the parameter generate-inspector-information (page 12.6) is false during
compilation.

(variable-object ’ref) returns an inspector object containing the current value of the vari-
able.

(variable-object ’set! e) returns unspecified, after setting the current value of the variable
to e. An exception is raised with condition type &assertion if the variable is not assignable.

Port inspector objects. Port inspector objects contain ports.

(port-object ’type) returns the symbol port.

(port-object ’input?) returns #t if the port is an input port, #f otherwise.

(port-object ’output?) returns #t if the port is an output port, #f otherwise.

(port-object ’binary?) returns #t if the port is a binary port, #f otherwise.

(port-object ’closed?) returns #t if the port is closed, #f if the port is open.

(port-object ’name) returns an inspector object containing the port’s name.

(port-object ’handler) returns a procedure inspector object encapsulating the port handler,
such as would be returned by port-handler.

(port-object ’output-size) returns the output buffer size as a fixnum if the port is an
output port (otherwise the value is unspecified).

(port-object ’output-index) returns the output buffer index as a fixnum if the port is an
output port (otherwise the value is unspecified).
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(port-object ’output-buffer) returns an inspector object containing the string used for
buffered output.

(port-object ’input-size) returns the input buffer size as a fixnum if the port is an input
port (otherwise the value is unspecified).

(port-object ’input-index) returns the input buffer index as a fixnum if the port is an
input port (otherwise the value is unspecified).

(port-object ’input-buffer) returns an inspector object containing the string used for
buffered input.

Symbol inspector objects. Symbol inspector objects contain symbols. These include
gensyms.

(symbol-object ’type) returns the symbol symbol.

(symbol-object ’name) returns a string inspector object. The string name associated with a
symbol inspector object is the print representation of a symbol, such as would be returned
by the procedure symbol->string.

(symbol-object ’gensym?) returns #t if the symbol is a gensym, #f otherwise. Gensyms are
created by gensym.

(symbol-object ’top-level-value) returns an inspector object containing the global value
of the symbol.

(symbol-object ’property-list) returns an inspector object containing the property list
for the symbol.

Record inspector objects. Record inspector objects contain records.

(record-object ’type) returns the symbol record.

(record-object ’name) returns a string inspector object corresponding to the name of the
record type.

(record-object ’fields) returns an inspector object containing a list of the field names of
the record type.

(record-object ’length) returns the number of fields.

(record-object ’rtd) returns an inspector object containing the record-type descriptor of
the record type.

(record-object ’accessible? name) returns #t if the named field is accessible, #f otherwise.
A field may be inaccessible if optimized away by the compiler.
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(record-object ’ref name) returns an inspector object containing the value of the named

field. An exception is raised with condition type &assertion if the named field is not

accessible.

(record-object ’mutable? name) returns #t if the named field is mutable, #f otherwise.

A field is immutable if it is not declared mutable or if the compiler optimizes away all

assignments to the field.

(record-object ’set! name value) sets the value of the named field to value. An exception

is raised with condition type &assertion if the named field is not assignable.

3.5. Locating objects

(make-object-finder pred) procedure

(make-object-finder pred g) procedure

(make-object-finder pred x g) procedure

returns: see below
libraries: (chezscheme)

The procedure make-object-finder takes a predicate pred and two optional arguments: a

starting point x and a maximum generation g . The starting point defaults to the value of

the procedure oblist, and the maximum generation defaults to the value of the parameter

collect-maximum-generation. make-object-finder returns an object finder p that can be

used to search for objects satisfying pred within the starting-point object x . Immediate

objects and objects in generations older than g are treated as leaves. p is a procedure

accepting no arguments. If an object y satisfying pred can be found starting with x , p

returns a list whose first element is y and whose remaining elements represent the path

of objects from x to y , listed in reverse order. p can be invoked multiple times to find

additional objects satisfying the predicate, if any. p returns #f if no more objects matching

the predicate can be found.

p maintains internal state recording where it has been so it can restart at the point of the

last found object and not return the same object twice. The state can be several times the

size of the starting-point object x and all that is reachable from x .

The interactive inspector provides a convenient interface to the object finder in the form

of find and find-next commands.

Relocation tables for static code objects are discarded by default, which prevents ob-

ject finders from providing accurate results when static code objects are involved. That

is, they will not find any objects pointed to directly from a code object that has been

promoted to the static generation. If this is a problem, the command-line argument

--retain-static-relocation can be used to prevent the relocation tables from being dis-

carded.
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3.6. Nested object size and composition

The procedures compute-size and compute-composition can be used to determine the size

or composition of an object, including anything reachable via pointers from the object.

Depending on the number of objects reachable from the object, the procedures potentially

allocate a large amount of memory. In an application for which knowing the number, size,

generation, and types of all objects in the heap is sufficient, object-counts is potentially

much more efficient.

These procedures treat immediate objects such as fixnums, booleans, and characters as

zero-count, zero-byte leaves.

By default, these procedures also treat static objects (those in the initial heap) as zero-

count, zero-byte leaves. Both procedures accept an optional second argument that specifies

the maximum generation of interest, with the symbol static being used to represent the

static generation.

Objects sometimes point to a great deal more than one might expect. For example, if static

data is included, the procedure value of (lambda (x) x) points indirectly to the exception

handling subsystem (because of the argument-count check) and many other things as a

result of that.

Relocation tables for static code objects are discarded by default, which prevents these

procedures from providing accurate results when static code objects are involved. That

is, they will not find any objects pointed to directly from a code object that has been

promoted to the static generation. If accurate sizes and compositions for static code objects

are required, the command-line argument --retain-static-relocation can be used to

prevent the relocation tables from being discarded.

(compute-size object) procedure

(compute-size object generation) procedure

returns: see below
libraries: (chezscheme)

object can be any object. generation must be a fixnum between 0 and the value of

collect-maximum-generation, inclusive, or the symbol static. If generation is not sup-

plied, it defaults to the value of collect-maximum-generation.

compute-size returns the amount of memory, in bytes, occupied by object and anything

reachable from object in any generation less than or equal to generation. Immediate values

such as fixnums, booleans, and characters have zero size.

The following examples are valid for machines with 32-bit pointers.

(compute-size 0) ⇒ 0
(compute-size (cons 0 0)) ⇒ 8
(compute-size (cons (vector #t #f) 0)) ⇒ 24
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(compute-size
(let ([x (cons 0 0)])
(set-car! x x)
(set-cdr! x x)
x)) ⇒ 8

(define-record-type frob (fields x))
(collect 1 1) ; force rtd into generation 1
(compute-size

(let ([x (make-frob 0)])
(cons x x))

0) ⇒ 16

(compute-composition object) procedure

(compute-composition object generation) procedure

returns: see below
libraries: (chezscheme)

object can be any object. generation must be a fixnum between 0 and the value of
collect-maximum-generation, inclusive, or the symbol static. If generation is not sup-
plied, it defaults to the value of collect-maximum-generation.

compute-composition returns an association list representing the composition of object ,
including anything reachable from it in any generation less than or equal to generation.
The association list has the following structure:

((type count . bytes) ...)

type is either the name of a primitive type, represented as a symbol, e.g., pair, or a record-
type descriptor (rtd). count and bytes are nonnegative fixnums.

Immediate values such as fixnums, booleans, and characters are not included in the com-
position.

The following examples are valid for machines with 32-bit pointers.

(compute-composition 0) ⇒ ()
(compute-composition (cons 0 0)) ⇒ ((pair 1 . 8))
(compute-composition

(cons (vector #t #f) 0)) ⇒ ((pair 1 . 8) (vector 1 . 16))

(compute-composition
(let ([x (cons 0 0)])
(set-car! x x)
(set-cdr! x x)
x)) ⇒ ((pair 1 . 8)

(define-record-type frob (fields x))
(collect 1 1) ; force rtd into generation 1
(compute-composition

(let ([x (make-frob 0)])
(cons x x))
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0) ⇒ ((pair 1 . 8)
(#<record type frob> 1 . 8))



4. Foreign Interface

Chez Scheme provides two ways to interact with “foreign” code, i.e., code written in other

languages. The first is via subprocess creation and communication, which is discussed in

the Section 4.1. The second is via static or dynamic loading and invocation from Scheme

of procedures written in C and invocation from C of procedures written in Scheme. These

mechanisms are discussed in Sections 4.2 through 4.4.

The method for static loading of C object code is dependent upon which machine you are

running; see the installation instructions distributed with Chez Scheme.

4.1. Subprocess Communication

Two procedures, system and process, are used to create subprocesses. Both procedures

accept a single string argument and create a subprocess to execute the shell command

contained in the string. The system procedure waits for the process to exit before returning,

however, while the process procedure returns immediately without waiting for the process

to exit. The standard input and output files of a subprocess created by system may be

used to communicate with the user’s console. The standard input and output files of a

subprocess created by process may be used to communicate with the Scheme process.

(system command) procedure

returns: see below
libraries: (chezscheme)

command must be a string.

The system procedure creates a subprocess to perform the operation specified by command .

The subprocess may communicate with the user through the same console input and console

output files used by the Scheme process. After creating the subprocess, system waits for

the process to exit before returning.

When the subprocess exits, system returns the exit code for the subprocess, unless (on

Unix-based systems) a signal caused the subprocess to terminate, in which case system

returns the negation of the signal that caused the termination, e.g., -1 for SIGHUP.
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(open-process-ports command) procedure

(open-process-ports command b-mode) procedure

(open-process-ports command b-mode ?transcoder) procedure

returns: see below
libraries: (chezscheme)

command must be a string. If ?transcoder is present and not #f, it must be a transcoder,
and this procedure creates textual ports, each of whose transcoder is ?transcoder . Other-
wise, this procedure returns binary ports. b-mode specifies the buffer mode used by each
of the ports returned by this procedure and defaults to block. Buffer modes are described
in Section 7.2 of The Scheme Programming Language, 4th Edition.

open-process-ports creates a subprocess to perform the operation specified by command .
Unlike system, process returns immediately after creating the subprocess, i.e., without
waiting for the subprocess to terminate. It returns four values:

1. to-stdin is an output port to which Scheme can send output to the subprocess through
the subprocess’s standard input file.

2. from-stdout is an input port from which Scheme can read input from the subprocess
through the subprocess’s standard output file.

3. from-stderr is an input port from which Scheme can read input from the subprocess
through the subprocess’s standard error file.

4. process-id is an integer identifying the created subprocess provided by the host oper-
ating system.

If the process exits or closes its standard output file descriptor, any procedure that reads
input from from-stdout will return an end-of-file object. Similarly, if the process exits or
closes its standard error file descriptor, any procedure that reads input from from-stderr
will return an end-of-file object.

The predicate input-port-ready? may be used to detect whether input has been sent by
the subprocess to Scheme.

It is sometimes necessary to force output to be sent immediately to the subprocess by in-
voking flush-output-port on to-stdin, since Chez Scheme buffers the output for efficiency.

On UNIX systems, the process-id is the process identifier for the shell created to execute
command . If command is used to invoke an executable file rather than a shell command,
it may be useful to prepend command with the string "exec ", which causes the shell
to load and execute the named executable directly, without forking a new process—the
shell equivalent of a tail call. This will reduce by one the number of subprocesses created
and cause process-id to reflect the process identifier for the executable once the shell has
transferred control.

(process command) procedure

returns: see explanation
libraries: (chezscheme)

command must be a string.
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process is similar to open-process-ports, but less general. It does not return a port
from which the subproces’s standard error output can be read, and it always creates
textual ports. It returns a list of three values rather than the four separate values
of open-process-ports. The returned list contains, in order: from-stdout , to-stdin,
and process-id , which correspond to the second, first, and fourth return values of
open-process-ports.

4.2. Calling out of Scheme

Chez Scheme’s foreign-procedure interface allows a Scheme program to invoke procedures
written in C or in languages that obey the same calling conventions as C. Two steps
are necessary before foreign procedures can be invoked from Scheme. First, the foreign
procedure must be compiled and loaded, either statically or dynamically, as described in
Section 4.6. Then, access to the foreign procedure must be established in Scheme, as
described in this section. Once access to a foreign procedure has been established it may
be called as an ordinary Scheme procedure.

Since foreign procedures operate independently of the Scheme memory management and
exception handling system, great care must be taken when using them. Although the
foreign-procedure interface provides type checking (at optimize levels less than 3) and type
conversion, the programmer must ensure that the sharing of data between Scheme and
foreign procedures is done safely by specifying proper argument and result types.

Scheme-callable wrappers for foreign procedures can also be created via ftype-ref and
function ftypes (Section 4.5).

(foreign-procedure conv ... entry-exp (param-type ...) res-type) syntax

returns: a procedure
libraries: (chezscheme)

entry-exp must evaluate to a string representing a valid foreign procedure entry point or
an integer representing the address of the foreign procedure. The param-types and res-type
must be symbols or structured forms as described below. When a foreign-procedure ex-
pression is evaluated, a Scheme procedure is created that will invoke the foreign procedure
specified by entry-exp. When the procedure is called each argument is checked and con-
verted according to the specified param-type before it is passed to the foreign procedure.
The result of the foreign procedure call is converted as specified by the res-type. Multiple
procedures may be created for the same foreign entry.

Each conv adjusts specifies the calling convention to be used. A #f is allowed as conv
to indicate the default calling convention on the target machine (so the #f has no effect).
Three other conventions are currently supported under Windows: __stdcall, __cdecl,
and __com (32-bit only). Since __cdecl is the default, specifying __cdecl is equivalent
to specifying #f or no convention. Finally, conv can be __collect_safe to indicate that
garbage collection is allowed concurrent to a call of the foreign procedure.
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Use __stdcall to access most Windows API procedures. Use __cdecl for Windows API
varargs procedures, for C library procedures, and for most other procedures. Use __com

to invoke COM interface methods; COM uses the __stdcall convention but additionally
performs the indirections necessary to obtain the correct method from a COM instance.
The address of the COM instance must be passed as the first argument, which should
normally be declared as iptr. For the __com interface only, entry-exp must evaluate to the
byte offset of the method in the COM vtable. For example,

(foreign-procedure __com 12 (iptr double-float) integer-32)

creates an interface to a COM method at offset 12 in the vtable encapsulated within the
COM instance passed as the first argument, with the second argument being a double float
and the return value being an integer.

Use __collect_safe to declare that garbage collection is allowed concurrent to the foreign
procedure. The __collect_safe declaration allows concurrent collection by deactivating
the current thread (see fork-thread) when the foreign procedure is called, and the thread
is activated again when the foreign procedure returns. The __collect_safe declaration
is useful, for example, when calling a blocking I/O call to allow other Scheme threads
to run normally. Refrain from passing collectable memory to a __collect_safe foreign
procedure, or use lock-object to lock the memory in place; see also Sdeactivate_thread.
The __collect_safe declaration has no effect on a non-threaded version of the system.

For example, calling the C sleep function with the default convention will block other
Scheme threads from performing a garbage collection, but adding the __collect_safe

declaration avoids that problem:

(define c-sleep
(foreign-procedure __collect_safe "sleep" (unsigned) unsigned))

(c-sleep 10) ; sleeps for 10 seconds without blocking other threads

If a foreign procedure that is called with __collect_safe can invoke callables, then each
callable should also be declared with __collect_safe so that the callable reactivates the
thread.

Complete type checking and conversion is performed on the parameters to a foreign pro-
cedure. The types scheme-object, string, wstring, u8*, u16*, u32*, utf-8, utf-16le,
utf-16be, utf-32le, and utf-32be, must be used with caution, however, since they allow
allocated Scheme objects to be used in places the Scheme memory management system
cannot control. No problems will arise as long as such objects are not retained in foreign
variables or data structures while Scheme code is running, and as long as they are not
passed as arguments to a __collect_safe procedure, since garbage collection can occur
only while Scheme code is running or when concurrent garbage collection is enabled. Other
parameter types are converted to equivalent foreign representations and consequently they
can be retained indefinitely in foreign variables and data structures.

For argument types string, wstring, utf-8, utf-16le, utf-16be, utf-32le, and utf-32be,
an argument is converted to a fresh object that is passed to the foreign procedure. Since
the fresh object is not accessible for locking before the call, it can never be treated correctly
for a __collect_safe foreign procedure, so those types are disallowed as argument types
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for a __collect_safe foreign procedure. For analogous reasons, those types are disallowed
as the result of a __collect_safe foreign callable.

Following are the valid parameter types:

integer-8: Exact integers from −27 through 28 − 1 are valid. Integers in the range 27

through 28 − 1 are treated as two’s complement representations of negative numbers, e.g.,
#xff is treated as −1. The argument is passed to C as an integer of the appropriate size
(usually signed char).

unsigned-8: Exact integers from −27 to 28−1 are valid. Integers in the range −27 through
−1 are treated as the positive equivalents of their two’s complement representation, e.g., −1
is treated as #xff. The argument is passed to C as an unsigned integer of the appropriate
size (usually unsigned char).

integer-16: Exact integers from −215 through 216 − 1 are valid. Integers in the range 215

through 216− 1 are treated as two’s complement representations of negative numbers, e.g.,
#xffff is treated as −1. The argument is passed to C as an integer of the appropriate size
(usually short).

unsigned-16: Exact integers from −215 to 216 − 1 are valid. Integers in the range −215

through −1 are treated as the positive equivalents of their two’s complement representation,
e.g., −1 is treated as #xffff. The argument is passed to C as an unsigned integer of the
appropriate size (usually unsigned short).

integer-32: Exact integers from −231 through 232 − 1 are valid. Integers in the range 231

through 232− 1 are treated as two’s complement representations of negative numbers, e.g.,
#xffffffff is treated as −1. The argument is passed to C as an integer of the appropriate
size (usually int).

unsigned-32: Exact integers from −231 to 232 − 1 are valid. Integers in the range −231

through −1 are treated as the positive equivalents of their two’s complement representation,
e.g., −1 is treated as #xffffffff. The argument is passed to C as an unsigned integer of
the appropriate size (usually unsigned int).

integer-64: Exact integers from −263 through 264 − 1 are valid. Integers in the range 263

through 264− 1 are treated as two’s complement representations of negative numbers. The
argument is passed to C as an integer of the appropriate size (usually long long or, on
many 64-bit platforms, long).

unsigned-64: Exact integers from −263 through 264 − 1 are valid. Integers in the range
−263 through −1 are treated as the positive equivalents of their two’s complement rep-
resentation, The argument is passed to C as an integer of the appropriate size (usually
unsigned long long or, on many 64-bit platforms, long).

double-float: Only Scheme flonums are valid—other Scheme numeric types are not auto-
matically converted. The argument is passed to C as a double float.
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single-float: Only Scheme flonums are valid—other Scheme numeric types are not au-
tomatically converted. The argument is passed to C as a single float. Since Chez Scheme
represents flonums in double-float format, the parameter is first converted into single-float
format.

short: This type is an alias for the appropriate fixed-size type above, depending on the
size of a C short.

unsigned-short: This type is an alias for the appropriate fixed-size type above, depending
on the size of a C unsigned short.

int: This type is an alias for the appropriate fixed-size type above, depending on the size
of a C int.

unsigned: This type is an alias for the appropriate fixed-size type above, depending on the
size of a C unsigned.

unsigned-int: This type is an alias unsigned. fixed-size type above, depending on the size
of a C unsigned.

long: This type is an alias for the appropriate fixed-size type above, depending on the size
of a C long.

unsigned-long: This type is an alias for the appropriate fixed-size type above, depending
on the size of a C unsigned long.

long-long: This type is an alias for the appropriate fixed-size type above, depending on
the size of the nonstandard C type long long.

unsigned-long-long: This type is an alias for the appropriate fixed-size type above, de-
pending on the size of the nonstandard C type unsigned long long.

ptrdiff_t: This type is an alias for the appropriate fixed-size type above, depending on
its definition in the host machine’s stddef.h include file.

size_t: This type is an alias for the appropriate unsigned fixed-size type above, depending
on its definition in the host machine’s stddef.h include file.

ssize_t: This type is an alias for the appropriate signed fixed-size type above, depending
on its definition in the host machine’s stddef.h include file.

iptr: This type is an alias for the appropriate fixed-size type above, depending on the size
of a C pointer.

uptr: This type is an alias for the appropriate (unsigned) fixed-size type above, depending
on the size of a C pointer.

void*: This type is an alias for uptr.
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fixnum: This type is equivalent to iptr, except only values in the fixnum range are valid.
Transmission of fixnums is slightly faster than transmission of iptr values, but the fixnum
range is smaller, so some iptr values do not have a fixnum representation.

boolean: Any Scheme object may be passed as a boolean. #f is converted to 0; all other
objects are converted to 1. The argument is passed to C as an int.

char: Only Scheme characters with Unicode scalar values in the range 0 through 255 are
valid char parameters. The character is converted to its Unicode scalar value, as with
char->integer, and passed to C as an unsigned char.

wchar_t: Only Scheme characters are valid wchar_t parameters. Under Windows and any
other system where wchar_t holds only 16-bit values rather than full Unicode scalar values,
only characters with 16-bit Unicode scalar values are valid. On systems where wchar_t is a
full 32-bit value, any Scheme character is valid. The character is converted to its Unicode
scalar value, as with char->integer, and passed to C as a wchar_t.

wchar: This type is an alias for wchar_t.

double: This type is an alias for double-float.

float: This type is an alias for single-float.

scheme-object: The argument is passed directly to the foreign procedure; no conversion or
type checking is performed. This form of parameter passing should be used with discretion.
Scheme objects should not be preserved in foreign variables or data structures since the
memory management system may relocate them between foreign procedure calls.

ptr: This type is an alias for scheme-object.

u8*: The argument must be a Scheme bytevector or #f. For #f, the null pointer (0)
is passed to the foreign procedure. For a bytevector, a pointer to the first byte of the
bytevector’s data is passed. If the C routine to which the data is passed requires the input
to be null-terminated, a null (0) byte must be included explicitly in the bytevector. The
bytevector should not be retained in foreign variables or data structures, since the memory
management system may relocate or discard them between foreign procedure calls, and use
their storage for some other purpose.

u16*: Arguments of this type are treated just like arguments of type u8*. If the C routine
to which the data is passed requires the input to be null-terminated, two null (0) bytes
must be included explicitly in the bytevector, aligned on a 16-bit boundary.

u32*: Arguments of this type are treated just like arguments of type u8*. If the C routine
to which the data is passed requires the input to be null-terminated, four null (0) bytes
must be included explicitly in the bytevector, aligned on a 32-bit boundary.

utf-8: The argument must be a Scheme string or #f. For #f, the null pointer (0) is passed
to the foreign procedure. A string is converted into a bytevector, as if via string->utf8,
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with an added null byte, and the address of the first byte of the bytevector is passed to
C. The bytevector should not be retained in foreign variables or data structures, since the
memory management system may relocate or discard them between foreign procedure calls
and use their storage for some other purpose. The utf-8 argument type is not allowed for
a __collect_safe foreign procedure.

utf-16le: Arguments of this type are treated like arguments of type utf-8, except they
are converted as if via string->utf16 with endianness little, and they are extended by
two null bytes rather than one.

utf-16be: Arguments of this type are treated like arguments of type utf-8, except they
are converted as if via string->utf16 with endianness big, and they are extended by two
null bytes rather than one.

utf-32le: Arguments of this type are treated like arguments of type utf-8, except they
are converted as if via string->utf32 with endianness little, and they are extended by
four null bytes rather than one.

utf-32be: Arguments of this type are treated like arguments of type utf-8, except they
are converted as if via string->utf32 with endianness big, and they are extended by four
null bytes rather than one.

string: This type is an alias for utf-8.

wstring: This type is an alias for utf-16le, utf-16be, utf-32le, or utf-32be as appropriate
depending on the size of a C wchar_t and the endianness of the target machine. For
example, wstring is equivalent to utf-16le under Windows running on Intel hardware.

(* ftype): This type allows a pointer to a foreign type (ftype) to be passed. The argument
must be an ftype pointer of type ftype, and the actual argument is the address encapsulated
in the ftype pointer. See Section 4.5 for a description of foreign types.

(& ftype): This type allows a foreign type (ftype) to be passed as a value, but represented
on the Scheme side as a pointer to the foreign-type data. That is, a (& ftype) argument
is represented on the Scheme side the same as a (* ftype) argument, but a (& ftype)
argument is passed to the foreign procedure as the content at the foreign pointer’s address
instead of as the address. For example, if ftype is a struct type, then (& ftype) passes a
struct argument instead of a struct-pointer argument. The ftype cannot refer to an array
type.

The result types are similar to the parameter types with the addition of a void type. In
general, the type conversions are the inverse of the parameter type conversions. No error
checking is performed on return, since the system cannot determine whether a foreign
result is actually of the indicated type. Particular caution should be exercised with the
result types scheme-object, double-float, double, single-float, float, and the types
that result in the construction of bytevectors or strings, since invalid return values may
lead to invalid memory references as well as incorrect computations. Following are the
valid result types:
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void: The result of the foreign procedure call is ignored and an unspecified Scheme object
is returned. void should be used when foreign procedures are called for effect only.

integer-8: The result is interpreted as a signed 8-bit integer and is converted to a Scheme
exact integer.

unsigned-8: The result is interpreted as an unsigned 8-bit integer and is converted to a
Scheme nonnegative exact integer.

integer-16: The result is interpreted as a signed 16-bit integer and is converted to a
Scheme exact integer.

unsigned-16: The result is interpreted as an unsigned 16-bit integer and is converted to a
Scheme nonnegative exact integer.

integer-32: The result is interpreted as a signed 32-bit integer and is converted to a
Scheme exact integer.

unsigned-32: The result is interpreted as an unsigned 32-bit integer and is converted to a
Scheme nonnegative exact integer.

integer-64: The result is interpreted as a signed 64-bit integer and is converted to a
Scheme exact integer.

unsigned-64: The result is interpreted as an unsigned 64-bit integer and is converted to a
Scheme nonnegative exact integer.

double-float: The result is interpreted as a double float and is translated into a
Chez Scheme flonum.

single-float: The result is interpreted as a single float and is translated into a
Chez Scheme flonum. Since Chez Scheme represents flonums in double-float format, the
result is first converted into double-float format.

short: This type is an alias for the appropriate fixed-size type above, depending on the
size of a C short.

unsigned-short: This type is an alias for the appropriate fixed-size type above, depending
on the size of a C unsigned short.

int: This type is an alias for the appropriate fixed-size type above, depending on the size
of a C int.

unsigned: This type is an alias for the appropriate fixed-size type above, depending on the
size of a C unsigned.

unsigned-int: This type is an alias unsigned. fixed-size type above, depending on the size
of a C unsigned.
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long: This type is an alias for the appropriate fixed-size type above, depending on the size
of a C long.

unsigned-long: This type is an alias for the appropriate fixed-size type above, depending
on the size of a C unsigned long.

long-long: This type is an alias for the appropriate fixed-size type above, depending on
the size of the nonstandard C type long long.

unsigned-long-long: This type is an alias for the appropriate fixed-size type above, de-
pending on the size of the nonstandard C type unsigned long long.

ptrdiff_t: This type is an alias for the appropriate fixed-size type above, depending on
its definition in the host machine’s stddef.h include file.

size_t: This type is an alias for the appropriate unsigned fixed-size type above, depending
on its definition in the host machine’s stddef.h include file.

ssize_t: This type is an alias for the appropriate signed fixed-size type above, depending
on its definition in the host machine’s stddef.h include file.

iptr: This type is an alias for the appropriate fixed-size type above, depending on the size
of a C pointer.

uptr: This type is an alias for the appropriate (unsigned) fixed-size type above, depending
on the size of a C pointer.

void*: This type is an alias for uptr.

boolean: This type converts a C int return value into a Scheme boolean. 0 is converted
to #f; all other values are converted to #t.

char: This type converts a C unsigned char return value into a Scheme character, as if
via integer->char.

wchar_t: This type converts a C wchar_t return value into a Scheme character, as if via
integer->char. The wchar_t value must be a valid Unicode scalar value.

wchar: This type is an alias for wchar_t.

double: This type is an alias for double-float.

float: This type is an alias for single-float.

scheme-object: The result is assumed to be a valid Scheme object, and no conversion is
performed. This type is inherently dangerous, since an invalid Scheme object can corrupt
the memory management system with unpredictable (but always unpleasant) results. Since
Scheme objects are actually typed pointers, even integers cannot safely be returned as type
scheme-object unless they were created by the Scheme system.
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ptr: This type is an alias for scheme-object.

u8*: The result is interpreted as a pointer to a null-terminated sequence of 8-bit unsigned
integers (bytes). If the result is a null pointer, #f is returned. Otherwise, the sequence
of bytes is stored in a freshly allocated bytevector of the appropriate length, and the
bytevector is returned to Scheme.

u16*: The result is interpreted as a pointer to a null-terminated sequence of 16-bit unsigned
integers. If the result is a null pointer, #f is returned. Otherwise, the sequence of 16-
bit integers is stored in a freshly allocated bytevector of the appropriate length, and the
bytevector is returned to Scheme. The null terminator must be a properly aligned 16-bit
word, i.e., two bytes of zero aligned on a 16-bit boundary.

u32*: The result is interpreted as a pointer to a null-terminated sequence of 32-bit unsigned
integers. If the result is a null pointer, #f is returned. Otherwise, the sequence of 16-
bit integers is stored in a freshly allocated bytevector of the appropriate length, and the
bytevector is returned to Scheme. The null terminator must be a properly aligned 32-bit
word, i.e., four bytes of zero aligned on a 32-bit boundary.

utf-8: The result is interpreted as a pointer to a null-terminated sequence of 8-bit unsigned
character values. If the result is a null pointer, #f is returned. Otherwise, the sequence of
bytes is converted into a Scheme string, as if via utf8->string, and the string is returned
to Scheme.

utf-16le: The result is interpreted as a pointer to a null-terminated sequence of 16-bit
unsigned integers. If the result is a null pointer, #f is returned. Otherwise, the sequence of
integers is converted into a Scheme string, as if via utf16->string with endianness little,
and the string is returned to Scheme. A byte-order mark in the sequence of integers as
treated as an ordinary character value and does not affect the byte ordering.

utf-16be: The result is interpreted as a pointer to a null-terminated sequence of 16-bit
unsigned integers. If the result is a null pointer, #f is returned. Otherwise, the sequence
of integers is converted into a Scheme string, as if via utf16->string with endianness big,
and the string is returned to Scheme. A byte-order mark in the sequence of integers as
treated as an ordinary character value and does not affect the byte ordering.

utf-32le: The result is interpreted as a pointer to a null-terminated sequence of 32-bit
unsigned integers. If the result is a null pointer, #f is returned. Otherwise, the sequence of
integers is converted into a Scheme string, as if via utf32->string with endianness little,
and the string is returned to Scheme. A byte-order mark in the sequence of integers as
treated as an ordinary character value and does not affect the byte ordering.

utf-32be: The result is interpreted as a pointer to a null-terminated sequence of 32-bit
unsigned integers. If the result is a null pointer, #f is returned. Otherwise, the sequence
of integers is converted into a Scheme string, as if via utf32->string with endianness big,
and the string is returned to Scheme. A byte-order mark in the sequence of integers as
treated as an ordinary character value and does not affect the byte ordering.
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string: This type is an alias for utf-8.

wstring: This type is an alias for utf-16le, utf-16be, utf-32le, or utf-32be as appropriate

depending on the size of a C wchar_t and the endianness of the target machine. For

example, wstring is equivalent to utf-16le under Windows running on Intel hardware.

(* ftype): The result is interpreted as the address of a foreign object whose structure

is described by ftype, and a freshly allocated ftype pointer encapsulating the address is

returned. See Section 4.5 for a description of foreign types.

(& ftype): The result is interpreted as a foreign object whose structure is described by

ftype, where the foreign procedure returns a ftype result, but the caller must provide an

extra (* ftype) argument before all other arguments to receive the result. An unspecified

Scheme object is returned when the foreign procedure is called, since the result is instead

written into storage referenced by the extra argument. The ftype cannot refer to an array

type.

Consider a C identity procedure:

int id(x) int x; { return x; }

After a file containing this procedure has been compiled and loaded (see Section 4.6) it can

be accessed as follows:

(foreign-procedure "id"
(int) int) ⇒ #<procedure>

((foreign-procedure "id"
(int) int)

1) ⇒ 1
(define int-id
(foreign-procedure "id"
(int) int))

(int-id 1) ⇒ 1

The "id" entry can also be interpreted as accepting and returning a boolean:

(define bool-id
(foreign-procedure "id"
(boolean) boolean))

(bool-id #f) ⇒ #f
(bool-id #t) ⇒ #t
(bool-id 1) ⇒ #t

As the last example reveals, bool-id is actually a conversion procedure. When a Scheme

object is passed as type boolean it is converted to 0 or 1, and when it is returned it is

converted to #f or #t. As a result objects are converted to normalized boolean values.

The "id" entry can be used to create other conversion procedures by varying the type

specifications:
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(define int->bool
(foreign-procedure "id"
(int) boolean))

(int->bool 0) ⇒ #f
(int->bool 5) ⇒ #t
(map (foreign-procedure "id"

(boolean) int)
’(#t #f)) ⇒ (1 0)

(define void
(foreign-procedure "id"
(int) void))

(void 10) ⇒ unspecified

There are, of course, simpler and more efficient ways of accomplishing these conversions

directly in Scheme.

A foreign entry is resolved when a foreign-procedure expression is evaluated, rather than

either when the code is loaded or each time the procedure is invoked. Thus, the follow-

ing definition is always valid since the foreign-procedure expression is not immediately

evaluated:

(define doit
(lambda ()
((foreign-procedure "doit" () void))))

doit should not be invoked, however, before an entry for "doit" has been provided. Simi-

larly, an entry for "doit" must exist before the following code is evaluated:

(define doit
(foreign-procedure "doit" () void))

Although the second definition is more constraining on the load order of foreign files, it is

more efficient since the entry resolution need be done only once.

It is often useful to define a template to be used in the creation of several foreign procedures

with similar argument types and return values. For example, the following code creates

two foreign procedures from a single foreign procedure expression, by abstracting out the

foreign procedure name:

(define double->double
(lambda (proc-name)
(foreign-procedure proc-name

(double)
double)))

(define log10 (double->double "log10"))
(define gamma (double->double "gamma"))

Both "log10" and "gamma" must be available as foreign entries (see Section 4.6) before

the corresponding definitions. The use of foreign procedure templates can simplify the

coding process and reduce the amount of code generated when a large number of foreign
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procedures are involved, e.g., when an entire library of foreign procedures is imported into
Scheme.

4.3. Calling into Scheme

Section 4.2 describes the foreign-procedure form, which permits Scheme code to invoke
C or C-compatible foreign procedures. This section describes the foreign-callable form,
which permits C or C-compatible code to call Scheme procedures. A more primitive mech-
anism for calling Scheme procedures from C is described in Section 4.8.

As when calling foreign procedures from Scheme, great care must be taken when sharing
data between Scheme and foreign code that calls Scheme to avoid corrupting Scheme’s
memory management system.

A foreign-callable wrapper for a Scheme procedure can also be created by passing the
procedure to make-ftype-pointer with an appropriate function ftype (Section 4.5).

(foreign-callable conv ... proc-exp (param-type ...) res-type) syntax

returns: a code object
libraries: (chezscheme)

proc-exp must evaluate to a procedure, the Scheme procedure that is to be invoked by for-
eign code. The parameter and result types are as described for foreign-procedure in Sec-
tion 4.2, except that the requirements and conversions are effectively reversed, e.g., the con-
versions described for foreign-procedure arguments are performed for foreign-callable

return values. A (& ftype) argument to the callable refers to an address that is valid only
during the dynamic extent of the callback invocation. A (& ftype) result type for a callable
causes the Scheme procedure to receive an extra (& ftype) argument before all others; the
Scheme procedure should write a result into the extra argument, and the direct result of
the Scheme procedure is ignored. Type checking is performed for result values but not
argument values, since the parameter values are provided by the foreign code and must be
assumed to be correct.

Each conv adjusts the calling convention to be used. foreign-callable supports the
same conventions as foreign-procedure with the exception of __com. The __collect_safe

convention for a callable activates a calling thread if the thread is not already activated,
and the thread’s activation state is reverted when the callable returns. If a calling thread
is not currently registered with the Scheme system, then reverting the thread’s activation
state implies destroying the thread’s registration (see Sdestroy_thread).

The value produced by foreign-callable is a Scheme code object, which contains
some header information as well as code that performs the call to the encapsulated
Scheme procedure. The code object may be converted into a foreign-callable ad-
dress via foreign-callable-entry-point, which returns an integer representing the ad-
dress of the entry point within the code object. (The C-callable library function
Sforeign_callable_entry_point, described in Section 4.8, may be used to obtain the
entry point as well.) This is an implicit pointer into a Scheme object, and in many cases, it
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is necessary to lock the code object (using lock-object) before converting it into an entry

point to prevent Scheme’s storage management system from relocating or destroying the

code object, e.g., when the entry point is registered as a callback and retained in the “C”

side indefinitely.

The following code creates a foreign-callable code object, locks the code object, and returns

the entry point.

(let ([x (foreign-callable
(lambda (x y) (pretty-print (cons x (* y 2))))
(string integer-32)
void)])

(lock-object x)
(foreign-callable-entry-point x))

Unless the entry point is intended to be permanent, a pointer to the code object returned

by foreign-callable should be retained so that it can be unlocked when no longer needed.

Mixed use of foreign-callable and foreign-procedure may result in nesting of foreign

and Scheme calls, and this results in some interesting considerations when continuations

are involved, directly or indirectly (as via the default exception handler). See Section 4.4

for a discussion of the interaction between foreign calls and continuations.

The following example demonstrates how the “callback” functions required by many win-

dowing systems might be defined in Scheme with the use of foreign-callable. Assume

that the following C code has been compiled and loaded (see Section 4.6).

#include <stdio.h>

typedef void (*CB)(char);

CB callbacks[256];

void cb_init(void) {
int i;

for (i = 0; i < 256; i += 1)
callbacks[i] = (CB)0;

}

void register_callback(char c, CB cb) {
callbacks[c] = cb;

}

void event_loop(void) {
CB f; char c;

for (;;) {
c = getchar();
if (c == EOF) break;
f = callbacks[c];
if (f != (CB)0) f(c);

}
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}

Interfaces to these functions may be defined in Scheme as follows.

(define cb-init
(foreign-procedure "cb_init" () void))

(define register-callback
(foreign-procedure "register_callback" (char void*) void))

(define event-loop
(foreign-procedure __collect_safe "event_loop" () void))

A callback for selected characters can then be defined.

(define callback
(lambda (p)
(let ([code (foreign-callable __collect_safe p (char) void)])

(lock-object code)
(foreign-callable-entry-point code))))

(define ouch
(callback
(lambda (c)

(printf "Ouch! Hit by ’~c’~%" c))))
(define rats

(callback
(lambda (c)

(printf "Rats! Received ’~c’~%" c))))

(cb-init)
(register-callback #\a ouch)
(register-callback #\c rats)
(register-callback #\e ouch)

This sets up the following interaction.

> (event-loop)
a
Ouch! Hit by ’a’
b
c
Rats! Received ’c’
d
e
Ouch! Hit by ’e’

The __collect_safe declarations in this example ensure that other threads can continue

working while event-loop blocks waiting for input. A more well-behaved version of the

example would save each code object returned by foreign-callable and unlock it when it

is no longer registered as a callback.
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(foreign-callable-entry-point code) procedure

returns: the address of the foreign-callable entry point in code
libraries: (chezscheme)

code should be a code object produced by foreign-callable.

(foreign-callable-code-object address) procedure

returns: the code object corresponding to the foreign-callable entry point address
libraries: (chezscheme)

address must be an exact integer and should be the address of the entry point of a code

object produced by foreign-callable.

4.4. Continuations and Foreign Calls

foreign-callable and foreign-procedure allow arbitrary nesting of foreign and Scheme

calls. Because other languages do not support the fully general first-class continuations of

Scheme, the interaction between continuations and nested calls among Scheme and foreign

procedures is problematic. Chez Scheme handles this interaction in a general manner by

trapping attempts to return to stale foreign contexts rather than by restricting the use of

continuations directly. A foreign context is a foreign frame and return point corresponding

to a particular call from a foreign language, e.g., C, into Scheme. A foreign context becomes

stale after a normal return to the context or after a return to some other foreign context

beneath it on the control stack.

As a result of this treatment, Scheme continuations may be used to throw control either

upwards or downwards logically through any mix of Scheme and foreign frames. Further-

more, until some return to a foreign context is actually performed, all return points remain

valid. In particular, this means that programs that use continuations exclusively for non-

local exits never attempt to return to a stale foreign context. (Nonlocal exits themselves

are no problem and are implemented by the C library function longjmp or the equivalent.)

Programs that use continuations more generally also function properly as long as they

never actually return to a stale foreign context, even if control logically moves past stale

foreign contexts via invocation of continuations.

One implication of this mechanism is that the C stack pointer is not automatically restored

to its base value when a continuation is used on the Scheme side to perform a nonlocal

exit. If the program continues to run after the nonlocal exit, any further build-up of

the C stack will add to the existing build up, which might result in a C stack overflow.

To avoid this situation, a program can arrange to set up a single C call frame before

obtaining the continuation and return to the C frame after the nonlocal exit. The procedure

with-exit-proc below arranges to do this without involving any C code.
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(define with-exit-proc
(lambda (p)
(define th (lambda () (call/cc p)))
(define-ftype ->ptr (function () ptr))
(let ([fptr (make-ftype-pointer ->ptr th)])

(let ([v ((ftype-ref ->ptr () fptr))])
(unlock-object

(foreign-callable-code-object
(ftype-pointer-address fptr)))

v))))

with-exit-proc behaves like call/cc except it resets the C stack when the continuation
is invoked. To do this, it creates an ftype-pointer representing a foreign-callable entry
point for th and creates a Scheme-callable procedure for that entry point. This creates
a wrapper for th that involves a C call. When a call to the wrapper returns, either by
explicit invocation of the continuation passed to p or by a normal return from p, the C
stack is reset to its original value.

4.5. Foreign Data

The procedures described in this section directly create and manipulate foreign data, i.e.,
data that resides outside of the Scheme heap. With the exception of foreign-alloc and
foreign-sizeof, these procedures are inherently unsafe in the sense that they do not
(and cannot) check the validity of the addresses they are passed. Improper use of these
procedures can result in invalid memory references, corrupted data, or system crashes.

This section also describes a higher-level syntactic mechanism for manipulating foreign
data, including foreign structures, unions, arrays, and bit fields. The syntactic interface is
safer than the procedural interface but must still assume that the addresses it’s given are
appropriate for the types of object being manipulated.

(foreign-alloc n) procedure

returns: the address of a freshly allocated block of foreign data n bytes long
libraries: (chezscheme)

n must be a positive fixnum. The returned value is an exact integer and is guaranteed to
be properly aligned for any type of value according to the requirements of the underlying
hardware. An exception is raised with condition type &assertion if the block of foreign
data cannot be allocated.

(foreign-free address) procedure

returns: unspecified
libraries: (chezscheme)

This procedure frees the block of storage to which address points. address must be an exact
integer in the range −2w−1 through 2w−1, where w is the width in bits of a pointer, e.g., 64
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for a 64-bit machine. It should be an address returned by an earlier call to foreign-alloc

and not subsequently passed to foreign-free.

(foreign-ref type address offset) procedure

returns: see below
libraries: (chezscheme)

foreign-ref extracts the value of type type offset bytes into the block of foreign data
addressed by address.

type must be a symbol identifying the type of value to be extracted. The following types
have machine-dependent sizes and correspond to the like-named C types:

• short,

• unsigned-short,

• int,

• unsigned,

• unsigned-int,

• long,

• unsigned-long,

• long-long,

• unsigned-long-long,

• ptrdiff_t,

• size_t,

• ssize_t,

• char,

• wchar_t,

• float,

• double, and

• void*.

The types long-long and unsigned-long-long correspond to the C types long long and
unsigned long long. A value of type char is referenced as a single byte and converted (as
if via integer->char) into a Scheme character. A value of type wchar_t is converted (as
if via integer->char) into a Scheme character. The value must be a valid Unicode scalar
value.

wchar is an alias for wchar_t.

Several additional machine-dependent types are recognized:

• iptr,

• uptr,

• fixnum, and
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• boolean.

uptr is equivalent to void*; both are treated as unsigned integers the size of a pointer.
iptr is treated as a signed integer the size of a pointer. fixnum is treated as an iptr, but
with a range limited to the fixnum range. boolean is treated as an int, with zero converted
to the Scheme value #f and all other values converted to #t.

Finally, several fixed-sized types are also supported:

• integer-8,

• unsigned-8,

• integer-16,

• unsigned-16,

• integer-32,

• unsigned-32,

• integer-64,

• unsigned-64,

• single-float, and

• double-float.

address must be an exact integer in the range −2w−1 through 2w−1, where w is the width
in bits of a pointer, e.g., 64 for a 64-bit machine. offset must be an exact fixnum. The
sum of address and offset should address a readable block of memory large enough to hold
a value of type type, within a block of storage previously returned by foreign-alloc and
not subsequently freed by foreign-free or within a block of storage obtained via some
other mechanism, e.g., a foreign call. For multiple-byte values, the native endianness of
the machine is assumed.

(foreign-set! type address offset value) procedure

returns: see below
libraries: (chezscheme)

foreign-set! stores a representation of value as type type offset bytes into the block of
foreign data addressed by address.

type must be a symbol identifying the type of value to be stored, one of those listed in
the description of foreign-ref above. Scheme characters are converted to type char or
wchar_t as if via char->integer. For type boolean, Scheme #f is converted to the int 0,
and any other Scheme object is converted to 1.

address must be an exact integer in the range −2w−1 through 2w−1, where w is the width
in bits of a pointer, e.g., 64 for a 64-bit machine. offset must be an exact fixnum. The
sum of address and offset should address a writable block of memory large enough to hold
a value of type type, within a block of storage previously returned by foreign-alloc and
not subsequently freed by foreign-free or within a block of storage obtained via some
other mechanism, e.g., a foreign call. value must be an appropriate value for type, e.g., a
floating-point number for the float types or an exact integer within the appropriate range
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for the integer types. For multiple-byte values, the native endianness of the machine is
assumed.

(foreign-sizeof type) procedure

returns: the size in bytes of type
libraries: (chezscheme)

type must be one of the symbols listed in the description of foreign-ref above.

(define-ftype ftype-name ftype) syntax

(define-ftype (ftype-name ftype) ...) syntax

returns: unspecified
libraries: (chezscheme)

A define-ftype form is a definition and can appear anywhere other definitions can ap-
pear. It establishes one or more foreign-type (ftype) bindings for the identifier ftype-name
or identifiers ftype-name ... to the foreign type represented ftype or the foreign types
represented by ftype .... Each ftype-name can be used to access foreign objects with the
declared shape, and each can be used in the formation of other ftypes.

An ftype must take one of the following forms:

ftype-name
(struct (field-name ftype) ...)
(union (field-name ftype) ...)
(array length ftype)
(* ftype)
(bits (field-name signedness bits) ...)
(function conv ... (ftype ...) ftype)
(packed ftype)
(unpacked ftype)
(endian endianness ftype)

where length is an exact nonnegative integer, bits is an exact positive integer, field-name
is an identifier, conv is #f or a string naming a valid convention as described on page 4.2,
signedness is either signed or unsigned, and endianness is one of native, big, or little.

A restriction not reflected above is that function ftypes cannot be used as the types of
field names or array elements. That is, function ftypes are valid only at the top level of an
ftype, e.g,:

(define-ftype bvcopy_t (function (u8* u8* size_t) void))

or as the immediate sub-type of a pointer (*) ftype, as in the following definitions, which
are equivalent assuming the definition of bvcopy_t above.

(define-ftype A
(struct
[x int]
[f (* (function (u8* u8* size_t) void))]))
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(define-ftype A
(struct
[x int]
[f (* bvcopy_t)]))

That is, a function cannot be embedded within a struct, union, or array, but a pointer to

a function can be so embedded.

The following definitions establish ftype bindings for F, A, and E.

(define-ftype F (function (wchar_t int) int))

(define-ftype A (array 10 wchar_t))

(define-ftype E
(struct
[a int]
[b double]
[c (array 25

(struct
[a short]
[_ long]
[b A]))]

[d (endian big
(union
[v1 unsigned-32]
[v2 (bits

[hi unsigned 12]
[lo unsigned 20])]))]

[e (* A)]
[f (* F)]))

The ftype F describes the type of a foreign function that takes two arguments, a wide

character and an integer, and returns an integer. The ftype A is simply an array of 10

wchar_t values, and its size will be 10 times the size of a single wchar_t. The ftype E is

a structure with five fields: an integer a, a double-float b, an array c, a union d, and a

pointer e. The array c is an array of 25 structs, each of which contains a short integer, a

long integer, and a A array. The size of the c array will be 25 times the size of a single

A array, plus 25 times the space needed to store each of the short and long integers. The

union d is either a 32-bit unsigned integer or a 32-bit unsigned integer split into high (12

bits) and low (20 bits) components. The fields of a union overlap so that writing to one

effectively overlaps the other. Thus, one can use the d union type to split apart an unsigned

integer by writing the integer into v1 and reading the pieces from hi and lo. The pointer e

points to an A array; it is not itself an array, and its size is just the size of a single pointer.

Similarly, f points to a function, and its size is also that of a single pointer.

An underscore ( _ ) can be used as the field name for one or more fields of a struct, union,

or bits ftype. Such fields are included in the layout but are considered unnamed and

cannot be accessed via the ftype operators described below. Thus, in the example above,

the long field within the c array is inaccessible.
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Non-underscore field names are handled symbolically, i.e., they are treated as symbols

rather than identifiers. Each symbol must be unique (as a symbol) with respect to the

other field names within a single struct, union, or bits ftype but need not be unique with

respect to field names in other struct, union, or bits ftypes within the same ftype.

Each ftype-name in an ftype must either (a) have been defined previously by define-ftype,

(b) be defined by the current define-ftype, or (c) be a base-type name, i.e., one of the

type names supported by foreign-ref and foreign-set!. In case (b), any reference within

one ftype to the ftype-name of one of the earlier bindings is permissible, but a reference to

the ftype-name of the current or a subsequent binding can appear only within a pointer

field.

For example, in:

(define-ftype
[Qlist (struct

[head int]
[tail (* Qlist)])])

the reference to Qlist is permissible since it appears within a pointer field. Similarly, in:

(define-ftype
[Qfrob (struct

[head int]
[tail (* Qsnark)])]

[Qsnark (struct
[head int]
[xtra Qfrob]
[tail (* Qfrob)])])

the mutually recursive references to Qsnark and Qfrob are permissible. In the following,

however:

(define-ftype
[Qfrob (struct

[head int]
[xtra Qfrob]
[tail (* Qsnark)])]

[Qsnark (struct
[head int]
[tail (* Qfrob)])])

the reference to Qfrob within the ftype for Qfrob is invalid, and in:

(define-ftype
[Qfrob (struct

[head int]
[xtra Qsnark]
[tail (* Qsnark)])]

[Qsnark (struct
[head int]
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[tail (* Qfrob)])])

the reference to Qsnark is similarly invalid.

By default, padding is inserted where appropriate to maintain proper alignment of multiple-
byte scalar values in an attempt to mirror the target machine’s C struct layout conventions,
where such layouts are adequately documented. For packed ftypes (ftypes wrapped in a
packed form with no closer enclosing unpacked form), this padding is not inserted.

Multiple-byte scalar values are stored in memory using the target machine’s native “endian-
ness,” e.g., little on X86 and X86 64-based platforms and big on Sparc-based platforms.
Big-endian or little-endian representation can be forced via the endian ftype with a big

or little endianness specifier. The native specifier can be used to force a return back to
native representation. Each endian form affects only ftypes nested syntactically within it
and not nested within a closer endian form.

The total size n of the fields within an ftype bits form must be 8, 16, 24, 32, 40, 48, 56, or
64. padding must be added manually if needed. In little-endian representation, the first
field occupies the low-order bits of the containing 8, 16, 24, 32, 40, 48, 56, or 64-bit word,
with each subsequent field just above the preceding field. In big-endian representation, the
first field occupies the high-order bits, with each subsequent field just below the preceding
field.

Two ftypes are considered equivalent only if defined by the same ftype binding. If two
ftype definitions look identical but appear in two parts of the same program, the ftypes
are not identical, and attempts to access one using the name of the other via the operators
described below will fail with a run-time exception.

Array bounds must always be constant. If an array’s length cannot be known until run
time, the array can be placed at the end of the ftype (and any containing ftype) and
declared to have size zero, as illustrated by the example below.

(define-ftype Vec
(struct
[len int]
[data (array 0 double)]))

(define make-Vec
(lambda (n)
(let ([fptr (make-ftype-pointer Vec

(foreign-alloc
(+ (ftype-sizeof Vec)

(* (ftype-sizeof double) n))))])
(ftype-set! Vec (len) fptr n)
fptr)))

(define x (make-Vec 100))
(/ (- (ftype-pointer-address (ftype-&ref Vec (data 10) x))

(ftype-pointer-address x) ⇒ 10
(ftype-sizeof int))

(ftype-sizeof double))
(foreign-free (ftype-pointer-address x))

No array bounds checks are performed for zero-length arrays. Only one variable-sized array
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can appear in a single foreign object, but one can work around this by treating the object

as multiple individual objects.

To avoid specifying the constant length of an array in more than one place, a macro that

binds both a variable to the size as well as an ftype name to the ftype can be used. For

example,

(define-syntax define-array
(syntax-rules ()
[(_ array-name type size-name size)
(begin
(define size-name size)
(define-ftype array-name
(array size type)))]))

(define-array A int A-size 100)
A-size ⇒ 100
(ftype-pointer-ftype
(make-ftype-pointer A
(foreign-alloc (ftype-sizeof A)))) ⇒ (array 100 int)

This technique can be used to define arbitrary ftypes with arbitrary numbers of array fields.

A struct ftype is an implicit subtype of the type of the first field of the struct. Similarly,

an array ftype is an implicit subtype of the type of its elements. Thus, the struct or array

extends the type of first field or element with additional fields or elements. This allows

an instance of the struct or array to be treated as an instance of the type of its first field

or element, without the need to use ftype-&ref to allocate a new pointer to the field or

element.

(ftype-sizeof ftype-name) syntax

returns: the size in bytes of the ftype identified by ftype-name
libraries: (chezscheme)

The size includes the sizes of any ftypes directly embedded within the identified ftype but

excludes those indirectly embedded via a pointer ftype. In the latter case, the size of the

pointer is included.

ftype-name must not be defined as a function ftype, since the size of a function cannot

generally be determined.

(define-ftype B
(struct
[b1 integer-32]
[b2 (array 10 integer-32)]))

(ftype-sizeof B) ⇒ 44

(define-ftype C (* B))
(ftype-sizeof C) ⇒ 4 ; on 32-bit machines
(ftype-sizeof C) ⇒ 8 ; on 64-bit machines
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(define-ftype BB
(struct
[bb1 B]
[bb2 (* B)]))

(- (ftype-sizeof BB) (ftype-sizeof void*)) ⇒ 44

(make-ftype-pointer ftype-name expr) syntax

returns: an ftype-pointer object
libraries: (chezscheme)

If ftype-name does not describe a function ftype, expr must evaluate to an address repre-
sented as an exact integer in the appropriate range for the target machine.

The ftype-pointer object returned by this procedure encapsulates the address and is tagged
with a representation of the type identified by ftype-name to enable various forms of check-
ing to be done by the access routines described below.

(make-ftype-pointer E #x80000000) ⇒ #<ftype-pointer #x80000000>

The address will not typically be a constant, as shown. Instead, it might instead come
from a call to foreign-alloc, e.g.:

(make-ftype-pointer E (foreign-alloc (ftype-sizeof E)))

It might also come from source outside of Scheme such as from a C routine called from
Scheme via the foreign-procedure interface.

If ftype-name describes a function ftype, expr must evaluate to an address, procedure, or
string. If it evaluates to address, the call behaves like any other call to make-ftype-pointer

with an address argument.

If it evaluates to a procedure, a foreign-callable code object is created for the procedure,
as if via foreign-callable (Section 4.3). The address encapsulated in the resulting ftype-
pointer object is the address of the procedure’s entry point.

(define fact
(lambda (n)
(if (= n 0) 1 (fact (- n 1)))))

(define-ftype fact_t (function (int) int))
(define fact-fptr (make-ftype-pointer fact_t fact))

The resulting ftype pointer can be passed to a C routine, if the argument is declared to be
a pointer to the same ftype, and the C routine can invoke the function pointer it receives as
it would any other function pointer. Thus, make-ftype-pointer with a function ftype is an
alternative to foreign-callable for creating C-callable wrappers for Scheme procedures.

Since all Scheme objects, including code objects, can be relocated or even reclaimed by
the garbage collector the foreign-callable code object is automatically locked, as if via
lock-object, before it is embedded in the ftype pointer. The code object should be un-
locked after its last use from C, since locked objects take up space, cause fragmentation,
and increase the cost of collection. Since the system cannot determine automatically when
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the last use from C occurs, the program must explicitly unlock the code object, which it
can do by extracting the address from the ftype-pointer converting the address (back) into
a code object, and passing it to unlock-object:

(unlock-object
(foreign-callable-code-object
(ftype-pointer-address fact-fptr)))

Once unlocked, the ftype pointer should not be used again, unless it is relocked, e.g., via:

(lock-object
(foreign-callable-code-object
(ftype-pointer-address fact-fptr)))

A program can determine whether an object is already locked via the locked-object?

predicate.

A function ftype can be also used with make-ftype-pointer to create an ftype-pointer to
a C function, either by providing the address of the C function or its name, represented as
a string. For example, with the following definition of bvcopy_t,

(define-ftype bvcopy_t (function (u8* u8* size_t) void))

the two definitions of bvcopy-ftpr below are equivalent.

(define bvcopy-fptr (make-ftype-pointer bvcopy_t "memcpy"))
(define bvcopy-fptr (make-ftype-pointer bvcopy_t (foreign-entry "memcpy")))

A library that defines memcpy must be loaded first via load-shared-object, or memcpy

must be registered via one of the methods described in Section 4.6.

(ftype-pointer? obj) syntax

returns: #t if obj is an ftype pointer, otherwise #f

(ftype-pointer? ftype-name obj) syntax

returns: #t if obj is an ftype-name, otherwise #f

libraries: (chezscheme)

(define-ftype Widget1 (struct [x int] [y int]))
(define-ftype Widget2 (struct [w Widget1] [b boolean]))

(define x1 (make-ftype-pointer Widget1 #x80000000))
(define x2 (make-ftype-pointer Widget2 #x80000000))

(ftype-pointer? x1) ⇒ #t
(ftype-pointer? x2) ⇒ #t

(ftype-pointer? Widget1 x1) ⇒ #t
(ftype-pointer? Widget1 x2) ⇒ #t

(ftype-pointer? Widget2 x1) ⇒ #f
(ftype-pointer? Widget2 x2) ⇒ #t
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(ftype-pointer? #x80000000) ⇒ #f
(ftype-pointer? Widget1 #x80000000) ⇒ #f

(ftype-pointer-address fptr) procedure

returns: the address encapsulated within fptr
libraries: (chezscheme)

fptr must be an ftype-pointer object.

(define x (make-ftype-pointer E #x80000000))
(ftype-pointer-address x) ⇒ #x80000000

(ftype-pointer=? fptr1 fptr2) syntax

returns: #t if fptr1 and fptr2 have the same address, otherwise #f

libraries: (chezscheme)

fptr1 and fptr2 must be ftype-pointer objects.

ftype-pointer=? might be defined as follows:

(define ftype-pointer=?
(lambda (fptr1 fptr2)
(= (ftype-pointer-address fptr1) (ftype-pointer-address fptr2))))

It is, however, guaranteed not to allocate bignums for the addresses even if the addresses
do not fit in fixnum range.

(ftype-pointer-null? fptr) syntax

returns: #t if the address of fptr is 0, otherwise #f

libraries: (chezscheme)

fptr must be an ftype-pointer object.

ftype-pointer-null? might be defined as follows:

(define ftype-pointer-null?
(lambda (fptr)
(= (ftype-pointer-address fptr) 0)))

It is, however, guaranteed not to allocate a bignum for the address even if the address does
not fit in fixnum range.

(ftype-&ref ftype-name (a ...) fptr-expr) syntax

(ftype-&ref ftype-name (a ...) fptr-expr index) syntax

returns: an ftype-pointer object
libraries: (chezscheme)

The ftype-pointer object returned by ftype-&ref encapsulates the address of some ob-
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ject embedded directly or indirectly within the foreign object pointed to by the value of

fptr-expr , offset by index , if present. The value of fptr-expr must be an ftype pointer (fptr)

of the ftype identified by ftype-name, and index must either be the identifier * or evaluate

to a fixnum, possibly negative. The index is automatically scaled by the size of the ftype

identified by ftype-name, which allows the fptr to be treated as an array of ftype-name

objects and index as an index into that array. An index of * or 0 is the same as no index.

The sequence of accessors a ... must specify a valid path through the identified ftype. For

struct, union, and bits ftypes, an accessor must be a valid field name for the ftype, while

for pointer and array ftypes, an accessor must be the identifier * or evaluate to a fixnum

index. For array ftypes, an index must be nonnegative, and for array ftypes with nonzero

length, an index must also be less than the length.

The examples below assume the definitions of B and BB shown above in the description of

ftype-sizeof. Fixed addresses are shown for illustrative purposes and are assumed to be

valid, although addresses are generally determined at run time via foreign-alloc or some

other mechanism.

(define x (make-ftype-pointer B #x80000000))
(ftype-&ref B () x) ⇒ #<ftype-pointer #x80000000>
(let ([idx 1]) ⇒ #<ftype-pointer #x8000002C>

(ftype-&ref B () x idx))
(let ([idx -1]) ⇒ #<ftype-pointer #x7FFFFFD4>

(ftype-&ref B () x idx))
(ftype-&ref B (b1) x) ⇒ #<ftype-pointer #x80000000>
(ftype-&ref B (b2) x) ⇒ #<ftype-pointer #x80000004>
(ftype-&ref B (b2 5) x) ⇒ #<ftype-pointer #x80000018>
(let ([n 5]) (ftype-&ref B (b2 n) x)) ⇒ #<ftype-pointer #x80000018>

(ftype-&ref B (b1 b2) x) ⇒ syntax error
(ftype-&ref B (b2 15) x) ⇒ run-time exception

(define y (make-ftype-pointer BB #x90000000))
(ftype-set! BB (bb2) y x)
(ftype-&ref BB (bb1 b2) y) ⇒ #<ftype-pointer #x90000004>
(ftype-&ref BB (bb2 * b2) y) ⇒ #<ftype-pointer #x80000004>
(let ([idx 1]) ⇒ #<ftype-pointer #x80000030>

(ftype-&ref BB (bb2 idx b2) y))

With no accessors and no index, as in the first use of ftype-&ref above, the returned

ftype-pointer might be eq? to the input. Otherwise, the ftype-pointer is freshly allo-

cated.
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(ftype-set! ftype-name (a ...) fptr-expr val-expr) syntax

(ftype-set! ftype-name (a ...) fptr-expr index val-expr) syntax

returns: unspecified
(ftype-ref ftype-name (a ...) fptr-expr) syntax

(ftype-ref ftype-name (a ...) fptr-expr index) syntax

returns: an ftype-pointer object
libraries: (chezscheme)

These forms are used to store values into or retrieve values from the object pointed to by
the value of fptr-expr , offset by index , if present. The value of fptr-expr must be an ftype
pointer (fptr) of the ftype identified by ftype-name, and index must either be the identifier
* or evaluate to a fixnum, possibly negative. The index is automatically scaled by the size
of the ftype identified by ftype-name, which allows the fptr to be treated as an array of
ftype-name objects and index as an index into that array. An index of * or 0 is the same
as no index.

The sequence of accessors a ... must specify a valid path through the identified ftype. For
struct, union, and bits ftypes, an accessor must be a valid field name for the ftype, while
for pointer and array ftypes, an accessor must be the identifier * or evaluate to a fixnum
index. For array ftypes, an index must be nonnegative, and for array ftypes with nonzero
length, an index must also be less than the length. The field or element specified by the
sequence of accessors must be a scalar field, e.g., a pointer field or a field containing a base
type such as an int, char, or double.

For ftype-set!, val-expr must evaluate to a value of the appropriate type for the specified
field, e.g., an ftype pointer of the appropriate type or an appropriate base-type value.

For both signed and unsigned integer fields, values in the range −2w−1 through 2w − 1 are
accepted, where w is the width in bits of the integer field. For signed integer fields, values
in the range 2w−1 through 2w − 1 are treated as two’s complement representations of the
corresponding negative numbers. For unsigned integer fields, values in the range −2w−1

through −1 are similarly treated as two’s complement representations of the corresponding
positive numbers.

char and wchar_t (wchar) field values are converted from (ftype-set!) or to (ftype-ref)
Scheme characters, as if with char->integer and integer->char. Characters stored by
ftype-set! into a char field must have Unicode scalar values in the range 0 through 255.
Under Windows and any other system where wchar_t (wchar) is a 16-bit value, characters
stored by ftype-set! into a whar_t (wchar) field must have Unicode scalar values in the
range 0 through 216 − 1. On systems where wchar_t is a 32-bit value, any character can
be stored in a wchar_t (wchar) field.

The examples below assume that B and C have been defined as shown in the description of
ftype-sizeof above.

(define b
(make-ftype-pointer B
(foreign-alloc

(* (ftype-sizeof B) 3))))
(define c
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(make-ftype-pointer C
(foreign-alloc (ftype-sizeof C))))

(ftype-set! B (b1) b 5)
(ftype-set! B (b1) b 1 6)
(ftype-set! B (b1) c 5) ⇒ exception: ftype mismatch
(ftype-set! B (b2) b 0) ⇒ exception: not a scalar
(ftype-set! B (b2 -1) b 0) ⇒ exception: invalid index
(ftype-set! B (b2 0) b 50)
(ftype-set! B (b2 4) b 55)
(ftype-set! B (b2 10) b 55) ⇒ exception: invalid index

(ftype-set! C () c (ftype-&ref B () b 1))

(= (ftype-pointer-address (ftype-ref C () c)) ⇒ #t
(+ (ftype-pointer-address b) (ftype-sizeof B)))

(= (ftype-pointer-address (ftype-&ref C (*) c)) ⇒ #t
(+ (ftype-pointer-address b) (ftype-sizeof B)))

(= (ftype-pointer-address (ftype-&ref C (-1) c)) ⇒ #t
(ftype-pointer-address b))

(ftype-ref C (-1 b1) c) ⇒ 5
(ftype-ref C (* b1) c) ⇒ 6
(ftype-ref C (-1 b2 0) c) ⇒ 50
(let ([i 4]) (ftype-ref C (-1 b2 i) c)) ⇒ 55

(ftype-set! C (-1 b2 0) c 75)
(ftype-ref B (b2 0) b) ⇒ 75
(foreign-free (ftype-pointer-address c))
(foreign-free (ftype-pointer-address b))

A function ftype pointer can be converted into a Scheme-callable procedure via ftype-ref.

Assuming that a library defining memcpy has been loaded via load-shared-object or

memcpy has been registered via one of the methods described in Section 4.6, A Scheme-

callable memcpy can be defined as follows.

(define-ftype bvcopy_t (function (u8* u8* size_t) void))
(define bvcopy-fptr (make-ftype-pointer bvcopy_t "memcpy"))
(define bvcopy (ftype-ref bvcopy_t () bvcopy-fptr))

(define bv1 (make-bytevector 8 0))
(define bv2 (make-bytevector 8 57))
bv1 ⇒ #vu8(0 0 0 0 0 0 0 0)
bv2 ⇒ #vu8(57 57 57 57 57 57 57 57)
(bvcopy bv1 bv2 5)
bv1 ⇒ #vu8(57 57 57 57 57 0 0 0)

An ftype pointer can also be obtained as a return value from a C function declared to

return a pointer to a function ftype.

Thus, ftype-ref with a function ftype is an alternative to foreign-procedure (Section 4.2)

for creating Scheme-callable wrappers for C functions.
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(ftype-pointer-ftype fptr) procedure

returns: fptr ’s ftype, represented as an s-expression
libraries: (chezscheme)

fptr must be an ftype-pointer object.

(define-ftype Q0
(struct
[x int]
[y int]))

(define-ftype Q1
(struct
[x double]
[y char]
[z (endian big

(bits
[_ unsigned 3]
[a unsigned 9]
[b unsigned 4]))]

[w (* Q0)]))
(define q1 (make-ftype-pointer Q1 0))
(ftype-pointer-ftype q1) ⇒ (struct

[x double]
[y char]
[z (endian big

(bits
[_ unsigned 3]
[a unsigned 9]
[b unsigned 4]))]

[w (* Q0)])

(ftype-pointer->sexpr fptr) procedure

returns: an s-expression representation of the object to which fptr points
libraries: (chezscheme)

fptr must be an ftype-pointer object.

For each unnamed field, i.e., each whose field name is an underscore, the corresponding field
value in the resulting s-expression is also an underscore. Similarly, if a field is inaccessible,
i.e., if its address is invalid, the value is the symbol invalid.

(define-ftype Frob
(struct
[p boolean]
[q char]))

(define-ftype Snurk
(struct
[a Frob]
[b (* Frob)]
[c (* Frob)]
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[d (bits
[_ unsigned 15]
[dx signed 17])]

[e (array 5 double)]))
(define x

(make-ftype-pointer Snurk
(foreign-alloc (ftype-sizeof Snurk))))

(ftype-set! Snurk (b) x
(make-ftype-pointer Frob
(foreign-alloc (ftype-sizeof Frob))))

(ftype-set! Snurk (c) x
(make-ftype-pointer Frob 0))

(ftype-set! Snurk (a p) x #t)
(ftype-set! Snurk (a q) x #\A)
(ftype-set! Snurk (b * p) x #f)
(ftype-set! Snurk (b * q) x #\B)
(ftype-set! Snurk (d dx) x -2500)
(do ([i 0 (fx+ i 1)])

((fx= i 5))
(ftype-set! Snurk (e i) x (+ (* i 5.0) 3.0)))

(ftype-pointer->sexpr x) ⇒ (struct
[a (struct [p #t] [q #\A])]
[b (* (struct [p #f] [q #\B]))]
[c (* (struct [p invalid] [q invalid]))]
[d (bits [_ _] [dx -2500])]
[e (array 5 3.0 8.0 13.0 18.0 23.0)])

4.6. Providing Access to Foreign Procedures

Access to foreign procedures can be provided in several ways:

• Foreign procedures may be loaded from “shared objects” using load-shared-object.

• A new Chez Scheme image can be built with additional foreign code linked in. (Con-

sult with the person who installed Chez Scheme at your site for details.) These en-

tries are typically registered via Sforeign_symbol or Sregister_symbol, documented

in Section 4.8.

• Additional entries may be dynamically loaded or otherwise obtained by foreign code.

These are also typically registered using Sforeign_symbol or Sregister_symbol.

• The address of an entry, i.e., a function pointer, may be passed into Scheme and used

as the value of the entry expression in a foreign-procedure expression. This allows

foreign entry points to be used even when they are not registered by name.
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(foreign-entry? entry-name) procedure

returns: #t if entry-name is an existing foreign procedure entry point, #f otherwise
libraries: (chezscheme)

entry-name must be a string. foreign-entry? may be used to determine if an entry exists

for a foreign procedure.

The following examples assume that a library that defines strlen has been loaded via

load-shared-object or that strlen has been registered via one of the other methods

described in this section.

(foreign-entry? "strlen") ⇒ #t
((foreign-procedure "strlen"

(string) size_t)
"hey!") ⇒ 4

(foreign-entry entry-name) procedure

returns: the address of entry-name as an exact integer
libraries: (chezscheme)

entry-name must be a string naming an existing foreign entry point.

The following examples assume that a library that defines strlen has been loaded via

load-shared-object or that strlen has been registered via one of the other methods

described in this section.

(let ([addr (foreign-entry "strlen")])
(and (integer? addr) (exact? addr))) ⇒ #t

(define-ftype strlen-type (function (string) size_t))
(define strlen

(ftype-ref strlen-type ()
(make-ftype-pointer strlen-type "strlen")))

(strlen "hey!") ⇒ 4

(foreign-address-name address) procedure

returns: the entry name corresponding to address, if known, otherwise #f

libraries: (chezscheme)

The following examples assume that a library that defines strlen has been loaded via

load-shared-object or that strlen has been registered via one of the other methods

described in this section.

(foreign-address-name (foreign-entry "strlen")) ⇒ "strlen"
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(load-shared-object path) procedure

returns: unspecified
libraries: (chezscheme)

path must be a string. load-shared-object loads the shared object named by path. Shared
objects may be system libraries or files created from ordinary C programs. All external
symbols in the shared object, along with external symbols available in other shared objects
linked with the shared object, are made available as foreign entries.

This procedure is supported for most platforms upon which Chez Scheme runs.

If path does not begin with a “.” or “/”, the shared object is searched for in a default set
of directories determined by the system.

On most Unix systems, load-shared-object is based on the system routine dlopen. Under
Windows, load-shared-object is based on LoadLibrary. Refer to the documentation for
these routines and for the C compiler and loader for precise rules for locating and building
shared objects.

load-shared-object can be used to access built-in C library functions, such as getenv.
The name of the shared object varies from one system to another. On Linux systems:

(load-shared-object "libc.so.6")

On Solaris, OpenSolaris, FreeBSD, NetBSD, and OpenBSD systems:

(load-shared-object "libc.so")

On MacOS X systems:

(load-shared-object "libc.dylib")

On Windows:

(load-shared-object "crtdll.dll")

Once the C library has been loaded, getenv should be available as a foreign entry.

(foreign-entry? "getenv") ⇒ #t

An equivalent Scheme procedure may be defined and invoked as follows.

(define getenv
(foreign-procedure "getenv"
(string)
string))

(getenv "HOME") ⇒ "/home/elmer/fudd"
(getenv "home") ⇒ #f

load-shared-object can be used to access user-created libraries as well. Suppose the C
file "even.c" contains

int even(n) int n; { return n == 0 || odd(n - 1); }
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and the C file "odd.c" contains

int odd(n) int n; { return n != 0 && even(n - 1); }

The files must be compiled and linked into a shared object before they can be loaded.

How this is done depends upon the host system. On Linux, FreeBSD, OpenBSD, and

OpenSolaris systems:

(system "cc -fPIC -shared -o evenodd.so even.c odd.c")

Depending on the host configuration, the -m32 or -m64 option might be needed to specify

32-bit or 64-bit compilation as appropriate.

On MacOS X (Intel or PowerPC) systems:

(system "cc -dynamiclib -o evenodd.so even.c odd.c")

Depending on the host configuration, the -m32 or -m64 option might be needed to specify

32-bit or 64-bit compilation as appropriate.

On 32-bit Sparc Solaris:

(system "cc -KPIC -G -o evenodd.so even.c odd.c")

On 64-bit Sparc Solaris:

(system "cc -xarch=v9 -KPIC -G -o evenodd.so even.c odd.c")

On Windows, we build a DLL (dynamic link library) file. In order to make the compiler

generate the appropriate entry points, we alter even.c to read

#ifdef WIN32
#define EXPORT extern __declspec (dllexport)
#else
#define EXPORT extern
#endif

EXPORT int even(n) int n; { return n == 0 || odd(n - 1); }

and odd.c to read

#ifdef WIN32
#define EXPORT extern __declspec (dllexport)
#else
#define EXPORT extern
#endif

EXPORT int odd(n) int n; { return n != 0 && even(n - 1); }

We can then build the DLL as follows, giving it the extension “.so” rather than “.dll” for

consistency with the other systems.

(system "cl -c -DWIN32 even.c")
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(system "cl -c -DWIN32 odd.c")
(system "link -dll -out:evenodd.so even.obj odd.obj")

The resulting “.so” file can be loaded into Scheme and even and odd made available as

foreign procedures:

(load-shared-object "./evenodd.so")
(let ([odd (foreign-procedure "odd"

(integer-32) boolean)]
[even (foreign-procedure "even"

(integer-32) boolean)])
(list (even 100) (odd 100))) ⇒ (#t #f)

The filename is given as "./evenodd.so" rather than simply "evenodd.so", because some

systems look for shared libraries in a standard set of system directories that does not

include the current directory.

(remove-foreign-entry entry-name) procedure

returns: unspecified
libraries: (chezscheme)

remove-foreign-entry blocks further access to the entry specified by the string entry-name.

An exception is raised with condition type &assertion if the entry does not exist. Since

access previously established by foreign-procedure is not affected, remove-foreign-entry

may be used to clean up after the desired interface to a group of foreign procedures has

been established.

remove-foreign-entry can be used to remove entries registered using Sforeign_symbol

and Sregister_symbol but not entries created as a result of a call to load-shared-object.

4.7. Using Other Foreign Languages

Although the Chez Scheme foreign procedure interface is oriented primarily toward pro-

cedures defined in C or available in C libraries, it is possible to invoke procedures defined

in other languages that follow C calling conventions. One source of difficulty may be the

interpretation of names. Since Unix-based C compilers often prepend an underscore to

external names, the foreign interface attempts to interpret entry names in a manner con-

sistent with the host C compiler. Occasionally, such as for assembly coded files, this entry

name interpretation may not be desired. It can be prevented by prefixing the entry name

with an “=” character. For example, after loading an assembly file containing a procedure

"foo" one might have:

(foreign-entry? "foo") ⇒ #f
(foreign-entry? "=foo") ⇒ #t
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4.8. C Library Routines

Additional foreign interface support is provided via a set of C preprocessor macros and

C-callable library functions. Some of these routines allow C programs to examine, allocate,

and alter Scheme objects. Others permit C functions to call Scheme procedures via a more

primitive interface than that defined in Section 4.3. Still others permit the development of

custom executable images and use of the Scheme system as a subordinate program within

another program, e.g., for use as an extension language.

C code that uses these routines must include the "scheme.h" header file distributed with

Chez Scheme and must be linked (statically or dynamically) with the Chez Scheme kernel.

The header file contains definitions for the preprocessor macros and extern declarations

for the library functions. The file is customized to the release of Chez Scheme and machine

type with which it is distributed; it should be left unmodified to facilitate switching among

Chez Scheme releases, and the proper version of the header file should always be used

with C code compiled for use with a particular version of Chez Scheme. The version and

machine type are defined in "scheme.h" under the names VERSION and MACHINE_TYPE.

The name of each routine begins with a capital S, e.g., Sfixnump. Many of the

names are simple translations of the names of closely related Scheme procedures, e.g.,

Sstring_to_symbol is the C interface equivalent of string->symbol. Most externally visi-

ble entries in the Chez Scheme executable that are not documented here begin with capital

S followed by an underscore (S_); their use should be avoided.

In addition to the various macros and external declarations given in scheme.h, the header

file also defines (typedefs) several types used in the header file:

• ptr: type of a Scheme value,

• iptr: a signed integer the same size as a Scheme value, and

• uptr: an unsigned integer the same size as a Scheme value.

• string_char: type of a single Scheme string element.

• octet: type of a single Scheme bytevector element (unsigned char).

These types may vary depending upon the platform, although ptr is typically void *, iptr

is typically long int, and uptr is typically unsigned long int.

Under Windows, defining SCHEME_IMPORT before including scheme.h causes scheme.h

to declare its entry points using extern declspec (dllimport) rather than extern

declspec (dllexport) (the default). Not defining SCHEME_IMPORT and instead defining

SCHEME_STATIC causes scheme.h to declare exports using just extern. The static libraries

distributed with Chez Scheme are built using SCHEME_STATIC.

The remainder of this section describes each of the C interface routines in turn. A decla-

ration for each routine is given in ANSI C function prototype notation to precisely specify

the argument and result types. Scheme objects have the C type ptr, which is defined in

"scheme.h". Where appropriate, C values are accepted as arguments or returned as values

in place of Scheme objects.
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The preprocessor macros may evaluate their arguments more than once (or not at all), so
care should be taken to ensure that this does not cause problems.

Customization. The functions described here are used to initialize the Scheme system,
build the Scheme heap, and run the Scheme system from a separate program.

[func] char * Skernel_version(void)

[func] void Sscheme_init(void (*abnormal_exit)(void))
[func] void Sset_verbose(int v)
[func] void Sregister_boot_file(const char *name)
[func] void Sbuild_heap(const char *exec, void (*custom_init)(void))
[func] void Senable_expeditor(const char *history_file)
[func] void Sretain_static_relocation(void)

[func] int Sscheme_start(int argc, char *argv[])
[func] int Sscheme_script(char *scriptfile, int argc, char *argv[])
[func] int Sscheme_program(char *programfile, int argc, char *argv[])
[func] void Scompact_heap(void)

[func] void Sscheme_deinit(void)

Skernel_version returns a string representing the Scheme version. It should be compared
against the value of the VERSION preprocessor macro before any of the initialization
functions listed above are used to verify that the correct "scheme.h" header file has been
used.

Sscheme_init causes the Scheme system to initialize its static memory in preparation for
boot file registration. The abnormal_exit parameter should be a (possibly null) pointer to a
C function of no arguments that takes appropriate action if the initialization or subsequent
heap-building process fails. If null, the default action is to call exit(1).

Sset_verbose sets verbose mode on for nonzero values of v and off when v is zero. In
verbose mode, the system displays a trace of the search process for subsequently registered
boot files.

Sregister_boot_file searches for the named boot file and register it for loading. The
file is opened but not loaded until the heap is built via Sbuild_heap. For the first boot
file registered only, the system also searches for the boot files upon which the named file
depends, either directly or indirectly.

Sbuild_heap creates the Scheme heap from the registered boot files. exec is assumed to
be the name of or path to the executable image and is used when no boot files have been
registered as the base name for the boot-file search process. exec may be null only if one
or more boot files have been registered. custom_init must be a (possibly null) pointer to
a C function of no arguments; if non-null, it is called before any boot files are loaded.

Sscheme_start invokes the interactive startup procedure, i.e., the value of the parameter
scheme-start, with one Scheme string argument for the first argc elements of argv , not
including argv[0]. Sscheme_script similarly invokes the script startup procedure, i.e., the
value of the parameter scheme-script, with one Scheme string argument for scriptfile and
the first argc elements of argv , not including argv[0]. Sscheme_program similarly invokes
the program startup procedure, i.e., the value of the parameter scheme-program, with one
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Scheme string argument for programfile and the first argc elements of argv , not including
argv[0].

Senable_expeditor enables the expression editor (Section 2.2, Chapter 14), which is dis-
abled by default, and determines the history file from which it restores and to which it saves
the history. This procedure must be called after the heap is built, or an error will result.
It must also be called before Sscheme_start in order to be effective. If the history_file ar-
gument is the null pointer, the history is not restored or saved. The preprocessor variable
FEATURE_EXPEDITOR is defined in scheme.h if support for the expression editor has been
compiled into the system.

Sretain_static_relocation causes relocation information to be retained for static gener-
ation code objects created by heap compaction for the benefit of compute-size and related
procedures.

Scompact_heap compacts the Scheme heap and places all objects currently in the heap into
a static generation. Objects in the static generation are never collected. That is, they are
never moved during collection and the storage used for them is never reclaimed even if
they become inaccessible. Scompact_heap is called implicitly after any boot files have been
loaded.

Sscheme_deinit closes any open files, tears down the Scheme heap, and puts the Scheme
system in an uninitialized state.

Predicates. The predicates described here correspond to the similarly named Scheme
predicates. A trailing letter p, for “predicate,” is used in place of the question mark that
customarily appears at the end of a Scheme predicate name. Each predicate accepts a
single Scheme object and returns a boolean (C integer) value.

[macro] int Sfixnump(ptr obj)
[macro] int Scharp(ptr obj)
[macro] int Snullp(ptr obj)
[macro] int Seof_objectp(ptr obj)
[macro] int Sbwp_objectp(ptr obj)
[macro] int Sbooleanp(ptr obj)
[macro] int Spairp(ptr obj)
[macro] int Ssymbolp(ptr obj)
[macro] int Sprocedurep(ptr obj)
[macro] int Sflonump(ptr obj)
[macro] int Svectorp(ptr obj)
[macro] int Sbytevectorp(ptr obj)
[macro] int Sfxvectorp(ptr obj)
[macro] int Sstringp(ptr obj)
[macro] int Sbignump(ptr obj)
[macro] int Sboxp(ptr obj)
[macro] int Sinexactnump(ptr obj)
[macro] int Sexactnump(ptr obj)
[macro] int Sratnump(ptr obj)
[macro] int Sinputportp(ptr obj)
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[macro] int Soutputportp(ptr obj)
[macro] int Srecordp(ptr obj)

Accessors. Some of the accessors described here correspond to similarly named Scheme
procedures, while others are unique to this interface. Sfixnum_value, Schar_value,
Sboolean_value, and Sflonum_value return the C equivalents of the given Scheme value.

[macro] iptr Sfixnum_value(ptr fixnum)

[macro] uptr Schar_value(ptr character)
[macro] int Sboolean_value(ptr obj)
[macro] double Sflonum_value(ptr flonum)

Sinteger_value and Sunsigned_value are similar to Sfixnum_value, except they accept
not only fixnum arguments but bignum arguments in the range of C integer or unsigned
values. Sinteger_value and Sunsigned_value accept the same range of Scheme integer
values. They differ only in the result type, and so allow differing interpretations of negative
and large unsigned values.

[func] iptr Sinteger_value(ptr integer)
[macro] uptr Sunsigned_value(ptr integer)

Sinteger32_value, Sunsigned32_value, Sinteger64_value, and Sunsigned64_value accept
signed or unsigned Scheme integers in the 32- or 64-bit range and return integers of the
appropriate type for the machine type.

[func] <32-bit int type> Sinteger32_value(ptr integer)
[macro] <32-bit unsigned type> Sunsigned32_value(ptr integer)
[func] <64-bit int type> Sinteger64_value(ptr integer)
[macro] <64-bit unsigned type> Sunsigned64_value(ptr integer)

Scar, Scdr, Ssymbol_to_string (corresponding to symbol->string), and Sunbox are iden-
tical to their Scheme counterparts.

[macro] ptr Scar(ptr pair)
[macro] ptr Scdr(ptr pair)
[macro] ptr Ssymbol_to_string(ptr sym)

[macro] ptr Sunbox(ptr box)

Sstring_length, Svector_length, Sbytevector_length, and Sfxvector_length each re-
turn a C integer representing the length (in elements) of the object.

[macro] iptr Sstring_length(ptr str)
[macro] iptr Svector_length(ptr vec)
[macro] iptr Sbytevector_length(ptr bytevec)
[macro] iptr Sfxvector_length(ptr fxvec)

Sstring_ref, Svector_ref, Sbytevector_u8_ref, and Sfxvector_ref correspond to their
Scheme counterparts, except that the index arguments are C integers, the return value for
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Sstring_ref is a C character, and the return value for Sbytevector_u8_ref is an octet
(unsigned char).

[macro] char Sstring_ref(ptr str, iptr i)
[macro] ptr Svector_ref(ptr vec, iptr i)
[macro] octet Sbytevector_u8_ref(ptr fxvec, iptr i)
[macro] ptr Sfxvector_ref(ptr fxvec, iptr i)

A Scheme bytevector is represented as a length field followed by a sequence of octets (un-
signec chars). Sbytevector_data returns a pointer to the start of the sequence of octets. Ex-
treme care should be taken to stop dereferencing the pointer returned by Sbytevector_data

or to lock the bytevector into memory (see Slock_object below) before any Scheme code
is executed, whether by calling into Scheme or returning to a Scheme caller. The storage
manager may otherwise relocate or discard the object into which the pointer points and
may copy other data over the object.

[macro] octet * Sbytevector_data(ptr bytevec)

Mutators. Changes to mutable objects that contain pointers, such as pairs and vectors,
must be tracked on behalf of the storage manager, as described in one of the references [13].
The operations described here perform this tracking automatically where necessary.

[func] void Sset_box(ptr box, ptr obj)
[func] void Sset_car(ptr pair, ptr obj)
[func] void Sset_cdr(ptr pair, ptr obj)
[macro] void Sstring_set(ptr str, iptr i, char c)
[func] void Svector_set(ptr vec, iptr i, ptr obj)
[macro] void Sbytevector_u8_set(ptr bytevec, iptr i, octet n)
[macro] void Sfxvector_set(ptr fxvec, iptr i, ptr fixnum)

Some Scheme objects, such as procedures and numbers, are not mutable, so no operators
are provided for altering the contents of those objects.

Constructors. The constructors described here create Scheme objects. Some objects,
such as fixnums and the empty list, are represented as immediate values that do not require
any heap allocation; others, such as pairs and vectors, are represented as pointers to heap
allocated objects.

Snil, Strue, Sfalse, Sbwp_object, Seof_object, and Svoid construct constant immediate
values representing the empty list ( () ), the boolean values (#t and #f), the broken-weak-
pointer object (#!bwp), the eof object (#!eof), and the void object.

[macro] ptr Snil

[macro] ptr Strue

[macro] ptr Sfalse

[macro] ptr Sbwp_object

[macro] ptr Seof_object

[macro] ptr Svoid
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Fixnums, characters, booleans, flonums, and strings may be created from their C equiva-
lents.

[macro] ptr Sfixnum(iptr n)
[macro] ptr Schar(char c)
[macro] ptr Sboolean(int b)
[func] ptr Sflonum(double x)

[func] ptr Sstring(const char *s)
[func] ptr Sstring_of_length(const char *s, iptr n)
[func] ptr Sstring_utf8(const char *s, iptr n)
;

Sstring creates a Scheme copy of the C string s, while Sstring_of_length creates a Scheme
string of length n and copies the first n bytes from s into the new Scheme string.

If the C string is encoded in UTF-8, use Sstring_utf8 instead. Specify the number of
bytes to convert as n or use −1 to convert until the null terminator.

It is possible to determine whether a C integer is within fixnum range by comparing the
fixnum value of a fixnum created from a C integer with the C integer:

#define fixnum_rangep(x) (Sfixnum_value(Sfixnum(x)) == x)

Sinteger and Sunsigned may be used to create Scheme integers whether they are in fixnum
range or not.

[func] ptr Sinteger(iptr n)
[func] ptr Sunsigned(uptr n)

Sinteger and Sunsigned differ in their treatment of negative C integer values as well as C
unsigned integer values that would appear negative if cast to integers. Sinteger converts
such values into negative Scheme values, whereas Sunsigned converts such values into the
appropriate positive Scheme values. For example, assuming a 32-bit, two’s complement
representation for iptrs, Sinteger(-1) and Sunsigned((iptr)0xffffffff) both evaluate
to the Scheme integer -1, whereas Sunsigned(0xffffffff) and Sunsigned((uptr)-1) both
evaluate to the Scheme integer #xffffffff (4294967295).

Whichever routine is used, Sinteger_value and Sunsigned_value always reproduce the
corresponding C input value, thus the following are all equivalent to x if x is an iptr.

Sinteger_value(Sinteger(x))
(iptr)Sunsigned_value(Sinteger(x))
Sinteger_value(Sunsigned((uptr)x))
(iptr)Sunsigned_value(Sunsigned((uptr)x))

Similarly, the following are all equivalent to x if x is a uptr.

(uptr)Sinteger_value(Sinteger((iptr)x))
Sunsigned_value(Sinteger((iptr)x))
(uptr)Sinteger_value(Sunsigned(x))
Sunsigned_value(Sunsigned(x))



100 4. Foreign Interface

Sinteger32, Sunsigned32, Sinteger64, and Sunsigned64 are like the generic equivalents
but restrict their arguments to the 32- or 64-bit range.

[func] ptr Sinteger32(<32-bit int type> n)
[func] ptr Sunsigned32(<32-bit unsigned type> n)
[func] ptr Sinteger64(<64-bit int type> n)
[func] ptr Sunsigned64(<64-bit unsigned type> n)

Scons and Sbox are identical to their Scheme counterparts.

[func] ptr Scons(ptr obj1, ptr obj2)
[func] ptr Sbox(ptr obj)

Sstring_to_symbol is similar to its Scheme counterpart, string->symbol, except that it
takes a C string (character pointer) as input.

[func] ptr Sstring_to_symbol(const char *s)

Smake_string, Smake_vector, Smake_bytevector, and Smake_fxvector are similar to their
Scheme counterparts.

[func] ptr Smake_string(iptr n, int c)
[func] ptr Smake_vector(iptr n, ptr obj)
[func] ptr Smake_bytevector(iptr n, int fill)
[func] ptr Smake_fxvector(iptr n, ptr fixnum)

Smake_uninitialized_string is similar to the one-argument make-string.

[func] ptr Smake_uninitialized_string(iptr n)

Windows-specific helper functions. The following helper functions are provided on
Windows only.

[func] char * Sgetenv(const char *name)

Sgetenv returns the UTF-8-encoded value of UTF-8-encoded environment variable name
if found and NULL otherwise. Call free on the returned value when it is no longer needed.

[func] wchar_t * Sutf8_to_wide(const char *\s)

[func] char * Swide_to_utf8(const wchar_t *\s)

Sutf8_to_wide and Swide_to_utf8 convert between UTF-8-encoded and UTF-16LE-
encoded null-terminated strings. Call free on the returned value when it is no longer
needed.

Accessing top-level values. Top-level variable bindings may be accessed or assigned via
Stop_level_value and Sset_top_level_value.

[func] ptr Stop_level_value(ptr sym)

[func] void Sset_top_level_value(ptr sym, ptr obj)



4.8. C Library Routines 101

These procedures give fast access to the bindings in the original interaction environment
and do not reflect changes to the interaction-environment parameter or top-level module
imports. To access the current interaction-environment binding for a symbol, it is necessary
to call the Scheme top-level-value and set-top-level-value! procedures instead.

Locking Scheme objects. The storage manager periodically relocates objects in order
to reclaim storage and compact the heap. This relocation is completely transparent to
Scheme programs, since all pointers to a relocated object are updated to refer to the new
location of the object. The storage manager cannot, however, update Scheme pointers that
reside outside of the Scheme heap.

As a general rule, all pointers from C variables or data structures to Scheme objects should
be discarded before entry (or reentry) into Scheme. That is, if a C procedure receives an
object from Scheme or obtains it via the mechanisms described in this section, all pointers
to the object should be considered invalid once the C procedure calls into Scheme or returns
back to Scheme. Dereferencing an invalid pointer or passing it back to Scheme can have
disastrous effects, including unrecoverable memory faults. The foregoing does not apply to
immediate objects, e.g., fixnums, characters, booleans, or the empty list. It does apply to
all heap-allocated objects, including pairs, vectors, strings, all numbers other than fixnums,
ports, procedures, and records.

In practice, the best way to ensure that C code does not retain pointers to Scheme objects
is to immediately convert the Scheme objects into C equivalents, if possible. In certain
cases, it is not possible to do so, yet retention of the Scheme object is essential to the
design of the C portions of the program. In these cases, the object may be locked via the
library routine Slock_object (or from Scheme, the equivalent procedure lock-object).

[func] void Slock_object(ptr obj)

Locking an object prevents the storage manager from reclaiming or relocating the object.
Locking should be used sparingly, as it introduces memory fragmentation and increases
storage management overhead. Locking can also lead to accidental retention of storage if
objects are not unlocked. Locking objects that have been made static via heap compaction
(see Scompact_heap above) is unnecessary but harmless.

Objects may be unlocked via Sunlock_object (unlock-object).

[func] void Sunlock_object(ptr obj)

An object may be locked more than once by successive calls to Slock_object or
lock-object, in which case it must be unlocked by an equal number of calls to
Sunlock_object or unlock-object before it is truly unlocked.

The function Sunlocked_objectp can be used to determine if an object is locked.

[func] int Sunlocked_objectp(ptr obj)

When a foreign procedure call is made into Scheme, a return address pointing into the
Scheme code object associated with the foreign procedure is passed implicitly to the C
routine. The system therefore locks the code object before calls are made from C back into
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Scheme and unlocks it upon return from Scheme. This locking is performed automatically;
user code should never need to lock such code objects.

An object contained within a locked object, such as an object in the car of a locked pair,
need not also be locked unless a separate C pointer to the object exists.

Registering foreign entry points. Foreign entry points may be made visible to Scheme
via Sforeign_symbol or Sregister_symbol.

[func] void Sforeign_symbol(const char *name, void *addr)
[func] void Sregister_symbol(const char *name, void *addr)

External entry points in object files or shared objects loaded as a result of a call to
load-shared-object are automatically made visible by the system. Once a foreign en-
try point is made visible, it may be named in a foreign-procedure expression to create
a Scheme-callable version of the entry point. Sforeign_symbol and Sregister_symbol

allow programs to register nonexternal entry points, entry points in code linked stati-
cally with Chez Scheme, and entry points into code loaded directly from C, i.e., with-
out load-shared-object. Sforeign_symbol and Sregister_symbol differ only in that
Sforeign_symbol raises an exception when an attempt is made to register an existing
name, whereas Sregister_symbol permits existing names to be redefined.

Obtaining Scheme entry points. Sforeign_callable_entry_point extracts the entry
point from a code object produced by foreign-callable, performing the same operation
as its Scheme counterpart, i.e., the Scheme procedure foreign-callable-entry-point.

[func] (void (*) (void)) Sforeign_callable_entry_point(ptr code)

This can be used to avoid converting the code object into an address until just when it
is needed, which may eliminate the need to lock the code object in some circumstances,
assuming that the code object is not saved across any calls back into Scheme.

The inverse translation can be made via Sforeign_callable_code_object.

[func] ptr Sforeign_callable_code_object((void (*addr)(void)))

Low-level support for calls into Scheme. Support for calling Scheme procedures from
C is provided by the set of routines documented below. Calling a Scheme procedure that
expects a small number of arguments (0–3) involves the use of one of the following routines.

[func] ptr Scall0(ptr procedure)
[func] ptr Scall1(ptr procedure, ptr obj1)
[func] ptr Scall2(ptr procedure, ptr obj1, ptr obj2)
[func] ptr Scall3(ptr procedure, ptr obj1, ptr obj2, ptr obj3)

In each case, the first argument, procedure, should be a Scheme procedure. The remain-
ing arguments, which should be Scheme objects, are passed to the procedure. The tools
described earlier in this section may be used to convert C datatypes into their Scheme
equivalents. A program that automatically generates conversion code from declarations
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that are similar to foreign-procedure expressions is distributed with Chez Scheme. It can

be found in the Scheme library directory on most systems in the file "foreign.ss".

A Scheme procedure may be obtained in a number of ways. For example, it may be

received as an argument in a call from Scheme into C, obtained via another call to Scheme,

extracted from a Scheme data structure, or obtained from the top-level environment via

Stop_level_value.

A more general interface involving the following routines is available for longer argument

lists.

[func] void Sinitframe(iptr n)

[func] void Sput_arg(iptr i, ptr obj)

[func] ptr Scall(ptr procedure, iptr n)

A C procedure first calls Sinitframe with one argument, the number of arguments to be

passed to Scheme. It then calls Sput_arg once for each argument (in any order), passing

Sput_arg the argument number (starting with 1) and the argument. Finally, it calls Scall

to perform the call, passing it the Scheme procedure and the number of arguments (the

same number as in the call to Sinitframe). Programmers should ensure a Scheme call

initiated via Sinitframe is completed via Scall before any other calls to Scheme are made

and before a return to Scheme is attempted. If for any reason the call is not completed

after Sinitframe has been called, it may not be possible to return to Scheme.

The following examples serve to illustrate both the simpler and more general interfaces.

/* a particularly silly way to multiply two floating-point numbers */
double mul(double x, double y) {

ptr times = Stop_level_value(Sstring_to_symbol("*"));

return Sflonum_value(Scall2(times, Sflonum(x), Sflonum(y)));
}

/* an equally silly way to call printf with five arguments */

/* it is best to define interfaces such as the one below to handle
* calls into Scheme to prevent accidental attempts to nest frame
* creation and to help ensure that initiated calls are completed
* as discussed above. Specialized versions tailored to particular
* C argument types may be defined as well, with embedded conversions
* to Scheme objects. */

ptr Scall5(ptr p, ptr x1, ptr x2, ptr x3, ptr x4, ptr x5) {
Sinitframe(5);
Sput_arg(1, x1);
Sput_arg(2, x2);
Sput_arg(3, x3);
Sput_arg(4, x4);
Sput_arg(5, x5);
Scall(p, 5);

}
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static void dumpem(char *s, int a, double b, ptr c, char *d) {
printf(s, a, b, c, d);

}

static void foo(int x, double y, ptr z, char *s) {
ptr ois, sip, read, expr, eval, c_dumpem;
char *sexpr = "(foreign-procedure \"dumpem\" (string integer-32\

double-float scheme-object string) void)";

/* this series of statements is carefully crafted to avoid referencing
variables holding Scheme objects after calls into Scheme */

ois = Stop_level_value(Sstring_to_symbol("open-input-string"));
sip = Scall1(ois, Sstring(sexpr));
read = Stop_level_value(Sstring_to_symbol("read"));
expr = Scall1(read, sip);
eval = Stop_level_value(Sstring_to_symbol("eval"));
Sforeign_symbol("dumpem", (void *)dumpem);
c_dumpem = Scall1(eval, expr);
Scall5(c_dumpem,

Sstring("x = %d, y = %g, z = %x, s = %s\n"),
Sinteger(x),
Sflonum(y),
z,
Sstring(s));

}

Calls from C to Scheme should not be made from C interrupt handlers. When Scheme calls
into C, the system saves the contents of certain dedicated machine registers in a register
save area. When C then calls into Scheme, the registers are restored from the register save
area. Because an interrupt can occur at any point in a computation, the contents of the
register save locations would typically contain invalid information that would cause the
Scheme system to fail to operate properly.

Activating, deactivating, and destroying threads. Three functions are provided by
the threaded versions of Scheme to allow C code to notify Scheme when a thread should
be activated, deactivated, or destroyed.

[func] int Sactivate_thread(void)

[func] void Sdeactivate_thread(void)

[func] int Sdestroy_thread(void)

A thread created via the Scheme procedure fork-thread starts in the active state and need
not be activated. Any thread that has been deactivated, and any thread created by some
mechanism other than fork-thread must, however, be activated before it can access Scheme
data or execute Scheme code. A foreign callable that is declared with __collect_safe can
activate a calling thread. Otherwise, Sactivate_thread must be used to activate a thread.
It returns 1 the first time the thread is activated and 0 on each subsequent call until the
activation is destroyed with Sdestroy_thread.

Since active threads operating in C code prevent the storage management system from
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garbage collecting, a thread should be deactivated via Sdeactivate_thread or through a

foreign-procedure __collect_safe declaration whenever the thread may spend a signifi-

cant amount of time in C code. This is especially important whenever the thread calls a C

library function, like read, that may block indefinitely. Once deactivated, the thread must

not touch any Scheme data or execute any Scheme code until it is reactivated, with one

exception. The exception is that the thread may access or even modify a locked Scheme

object, such as a locked string, that contains no pointers to other, unlocked Scheme objects.

(Objects that are not locked may be relocated by the garbage collector while the thread is

inactive.)

Sdestroy_thread is used to notify the Scheme system that the thread is shut down and

any thread-specific data can be released.

Low-level synchronization primitives. The header file defines several preprocessor

macros that can be used to lock memory locations in a manner identical to the correspond-

ing ftype lock operations (sections 15.4 and 15.5).

[macro] void INITLOCK(void *addr)

[macro] void SPINLOCK(void *addr)

[macro] void UNLOCK(void *addr)

[macro] void LOCKED_INCR(void *addr, int *ret)

[macro] void LOCKED_DECR(void *addr, int *ret)

LOCKED_INCR and LOCKED_DECR set ret to a nonzero (true) value if the incremented or

decremented value is 0. Otherwise they set ret to 0.

4.9. Example: Socket Operations

This section presents a simple socket interface that employs a combination of Scheme and

C code. The C code defines a set of convenient low-level operating-system interfaces that

can be used in the higher-level Scheme code to open, close, read from, and write to sockets.

The C code (csocket.c) is given below, followed by the Scheme code (socket.ss). The code

should require little or no modification to run on most Unix systems and can be modified

to work under Windows (using the Windows WinSock interface).

A sample session demonstrating the socket interface follows the code. See Section 9.17 for

an example that demonstrates how to use the same socket interface to build a process port

that allows transparent input from and output to a subprocess via a Scheme port.

C code.

/* csocket.c */
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#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <string.h>
#include <errno.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <stdio.h>
#include <unistd.h>

/* c_write attempts to write the entire buffer, pushing through
interrupts, socket delays, and partial-buffer writes */

int c_write(int fd, char *buf, ssize_t start, ssize_t n) {
ssize_t i, m;

buf += start;
m = n;
while (m > 0) {

if ((i = write(fd, buf, m)) < 0) {
if (errno != EAGAIN && errno != EINTR)

return i;
} else {

m -= i;
buf += i;

}
}
return n;

}

/* c_read pushes through interrupts and socket delays */
int c_read(int fd, char *buf, size_t start, size_t n) {

int i;

buf += start;
for (;;) {

i = read(fd, buf, n);
if (i >= 0) return i;
if (errno != EAGAIN && errno != EINTR) return -1;

}
}

/* bytes_ready(fd) returns true if there are bytes available
to be read from the socket identified by fd */

int bytes_ready(int fd) {
int n;

(void) ioctl(fd, FIONREAD, &n);
return n;

}

/* socket support */
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/* do_socket() creates a new AF_UNIX socket */
int do_socket(void) {

return socket(AF_UNIX, SOCK_STREAM, 0);
}

/* do_bind(s, name) binds name to the socket s */
int do_bind(int s, char *name) {

struct sockaddr_un sun;
int length;

sun.sun_family = AF_UNIX;
(void) strcpy(sun.sun_path, name);
length = sizeof(sun.sun_family) + sizeof(sun.sun_path);

return bind(s, (struct sockaddr*)(&sun), length);
}

/* do_accept accepts a connection on socket s */
int do_accept(int s) {

struct sockaddr_un sun;
socklen_t length;

length = sizeof(sun.sun_family) + sizeof(sun.sun_path);

return accept(s, (struct sockaddr*)(&sun), &length);
}

/* do_connect initiates a socket connection */
int do_connect(int s, char *name) {

struct sockaddr_un sun;
int length;

sun.sun_family = AF_UNIX;
(void) strcpy(sun.sun_path, name);
length = sizeof(sun.sun_family) + sizeof(sun.sun_path);

return connect(s, (struct sockaddr*)(&sun), length);
}

/* get_error returns the operating system’s error status */
char* get_error(void) {

extern int errno;
return strerror(errno);

}

Scheme code.

;;; socket.ss

;;; Requires csocket.so, built from csocket.c.
(load-shared-object "./csocket.so")

;;; Requires from C library:



108 4. Foreign Interface

;;; close, dup, execl, fork, kill, listen, tmpnam, unlink
(case (machine-type)

[(i3le ti3le a6le ta6le) (load-shared-object "libc.so.6")]
[(i3osx ti3osx a6osx ta6osx) (load-shared-object "libc.dylib")]
[else (load-shared-object "libc.so")])

;;; basic C-library stuff

(define close
(foreign-procedure "close" (int)
int))

(define dup
(foreign-procedure "dup" (int)
int))

(define execl4
(let ((execl-help

(foreign-procedure "execl"
(string string string string void*)
int)))

(lambda (s1 s2 s3 s4)
(execl-help s1 s2 s3 s4 0))))

(define fork
(foreign-procedure "fork" ()
int))

(define kill
(foreign-procedure "kill" (int int)
int))

(define listen
(foreign-procedure "listen" (int int)
int))

(define tmpnam
(foreign-procedure "tmpnam" (void*)
string))

(define unlink
(foreign-procedure "unlink" (string)
int))

;;; routines defined in csocket.c

(define accept
(foreign-procedure "do_accept" (int)
int))

(define bytes-ready?
(foreign-procedure "bytes_ready" (int)
boolean))
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(define bind
(foreign-procedure "do_bind" (int string)
int))

(define c-error
(foreign-procedure "get_error" ()
string))

(define c-read
(foreign-procedure "c_read" (int u8* size_t size_t)
ssize_t))

(define c-write
(foreign-procedure "c_write" (int u8* size_t ssize_t)
ssize_t))

(define connect
(foreign-procedure "do_connect" (int string)
int))

(define socket
(foreign-procedure "do_socket" ()
int))

;;; higher-level routines

(define dodup
; (dodup old new) closes old and dups new, then checks to
; make sure that resulting fd is the same as old
(lambda (old new)
(check ’close (close old))
(unless (= (dup new) old)

(error ’dodup
"couldn’t set up child process io for fd ~s" old))))

(define dofork
; (dofork child parent) forks a child process and invokes child
; without arguments and parent with the child’s pid
(lambda (child parent)
(let ([pid (fork)])

(cond
[(= pid 0) (child)]
[(> pid 0) (parent pid)]
[else (error ’fork (c-error))]))))

(define setup-server-socket
; create a socket, bind it to name, and listen for connections
(lambda (name)
(let ([sock (check ’socket (socket))])

(unlink name)
(check ’bind (bind sock name))
(check ’listen (listen sock 1))
sock)))
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(define setup-client-socket
; create a socket and attempt to connect to server
(lambda (name)
(let ([sock (check ’socket (socket))])

(check ’connect (connect sock name))
sock)))

(define accept-socket
; accept a connection
(lambda (sock)
(check ’accept (accept sock))))

(define check
; signal an error if status x is negative, using c-error to
; obtain the operating-system’s error message
(lambda (who x)
(if (< x 0)

(error who (c-error))
x)))

(define terminate-process
; kill the process identified by pid
(lambda (pid)
(define sigterm 15)
(kill pid sigterm)
(void)))

Sample session.

> (define client-pid)
> (define client-socket)
> (let* ([server-socket-name (tmpnam 0)]

[server-socket (setup-server-socket server-socket-name)])
; fork a child, use it to exec a client Scheme process, and set
; up server-side client-pid and client-socket variables.
(dofork ; child
(lambda ()
; the child establishes the socket input/output fds as
; stdin and stdout, then starts a new Scheme session
(check ’close (close server-socket))
(let ([sock (setup-client-socket server-socket-name)])
(dodup 0 sock)
(dodup 1 sock))

(check ’execl (execl4 "/bin/sh" "/bin/sh" "-c" "exec scheme -q"))
(errorf ’client "returned!"))

(lambda (pid) ; parent
; the parent waits for a connection from the client
(set! client-pid pid)
(set! client-socket (accept-socket server-socket))
(check ’close (close server-socket)))))

> (define put ; procedure to send data to client
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(lambda (x)
(let ([s (format "~s~%" x)])
(c-write client-socket s (string-length s)))

(void)))
> (define get ; procedure to read data from client

(let ([buff (make-string 1024)])
(lambda ()
(let ([n (c-read client-socket buff (string-length buff))])

(printf "client:~%~a~%server:~%" (substring buff 0 n))))))
> (get)
server:
> (put ’(let ([x 3]) x))
> (get)
client:
3
server:
> (terminate-process client-pid)
> (exit)





5. Binding Forms

This chapter describes Chez Scheme extensions to the set of Revised6 Report binding forms.
See Chapter 4 of The Scheme Programming Language, 4th Edition or the Revised6 Report
for a description of standard binding forms.

5.1. Definitions

A definition in Revised6 Report Scheme is a variable definition, keyword definition, or
derived definition, i.e., a syntactic extension that expands into a definition. In addition,
the forms within a begin expression appearing after a sequence of definitions is spliced onto
the end of the sequence of definitions so that definitions at the front of the begin expression
are treated as if they were part of the outer sequence of definitions. A let-syntax or
letrec-syntax form is treated similarly, so that definitions at the front of the body are
treated as if they were part of the outer sequence of definitions, albeit scoped where the
bindings of the let-syntax or letrec-syntax form are visible.

Chez Scheme extends the set of definitions to include module forms, import forms,
import-only forms, meta definitions, and alias forms, although the module, import,
import-only, meta, and alias keywords are not available in a library or RNRS top-level
program unless the scheme library is included in the library or top-level programs imports.
These forms are described in Chatper 11.

In Revised6 Report Scheme, definitions can appear at the front of a lambda or similar body
(e.g., a let or letrec body), at the front of a library body, or intermixed with expressions
within an RNRS top-level program body. In Chez Scheme, definitions may also be used in
the interactive top-level, i.e., they can be intermixed with expressions in the REPL or in
program text to be loaded from a file via load (Section 12.4). The Revised6 Report does
not mandate the existence nor specify the semantics of an interactive top-level, nor of a
load procedure.

The macro expander uses the same two-pass algorithm for expanding top-level begin ex-
pressions as it uses for a lambda, library, or top-level program body. (This algorithm is
described in Section 11.1 of The Scheme Programming Language, 4th Edition.) As a result,

(begin
(define-syntax a (identifier-syntax 3))
(define x a))
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and

(begin
(define x a)
(define-syntax a (identifier-syntax 3)))

both result in the giving x the value 3, even though an unbound variable reference to a

would result if the two forms within the latter begin expression where run independently
at top level.

Similarly, the begin form produced by a use of

(define-syntax define-constant
(syntax-rules ()
[(_ x e)
(begin
(define t e)
(define-syntax x (identifier-syntax t)))]))

and the begin form produced by a use of

(define-syntax define-constant
(syntax-rules ()
[(_ x e)
(begin
(define-syntax x (identifier-syntax t))
(define t e))]))

are equivalent.

The Revised6 Report specifies that internal variable definitions be treated like letrec*,
while earlier reports required internal variable definitions to be treated like letrec.
By default, Chez Scheme implements the Revised6 Report semantics for internal vari-
able definitions, as for all other things, but this behavior may be overridden via the
internal-defines-as-letrec* parameter.

internal-defines-as-letrec* thread parameter

libraries: (chezscheme)

When this parameter is set to #t (the default), internal variable definitions are evaluated
using letrec* semantics. It may be set to #f to revert to the letrec semantics for internal
variable definitions, for backward compatibility.

5.2. Multiple-value Definitions

(define-values formals expr) syntax

libraries: (chezscheme)

A define-values form is a definition and can appear anywhere other definitions can appear.
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It is like a define form but permits an arbitrary formals list (like lambda) on the left-hand
side. It evaluates expr and binds the variables appearing in formals to the resulting values,
in the same manner as the formal parameters of a procedure are bound to its arguments.

(let ()
(define-values (x y) (values 1 2))
(list x y)) ⇒ (1 2)

(let ()
(define-values (x y . z) (values 1 2 3 4))
(list x y z)) ⇒ (1 2 (3 4))

A define-values form expands into a sequence of definitions, the first for a hidden tem-
porary bound to a data structure holding the values returned by expr and the remainder
binding each of the formals to the corresponding value or list of values, extracted from the
data structure via a reference to the temporary. Because the temporary must be defined
before the other variables are defined, this works for internal define-values forms only if
internal-defines-as-letrec* is set to the default value #t.

5.3. Recursive Bindings

(rec var expr) syntax

returns: value of expr
libraries: (chezscheme)

The syntactic form rec creates a recursive object from expr by establishing a binding of var
within expr to the value of expr . In essence, it is a special case of letrec for self-recursive
objects.

This form is useful for creating recursive objects (especially procedures) that do not depend
on external variables for the recursion, which are sometimes undesirable because the exter-
nal bindings can change. For example, a recursive procedure defined at top level depends
on the value of the top-level variable given as its name. If the value of this variable should
change, the meaning of the procedure itself would change. If the procedure is defined
instead with rec, its meaning is independent of the variable to which it is bound.

(map (rec sum
(lambda (x)
(if (= x 0)

0
(+ x (sum (- x 1))))))

’(0 1 2 3 4 5)) ⇒ (0 1 3 6 10 15)

(define cycle
(rec self
(list (lambda () self))))

(eq? ((car cycle)) cycle) ⇒ #t

The definition below expands rec in terms of letrec.
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(define-syntax rec
(syntax-rules ()
[(_ x e) (letrec ((x e)) x)]))

5.4. Fluid Bindings

(fluid-let ((var expr) ...) body1 body2 ...) syntax

returns: the values of the body body1 body2 ...

libraries: (chezscheme)

The syntactic form fluid-let provides a way to temporarily assign values to a set of
variables. The new values are in effect only during the evaluation of the body of the
fluid-let expression. The scopes of the variables are not determined by fluid-let; as
with set!, the variables must be bound at top level or by an enclosing lambda or other
binding form. It is possible, therefore, to control the scope of a variable with lambda or
let while establishing a temporary value with fluid-let.

Although it is similar in appearance to let, its operation is more like that of set!. Each
var is assigned, as with set!, to the value of the corresponding expr within the body
body1 body2 .... Should the body exit normally or by invoking a continuation made
outside of the body (see call/cc), the values in effect before the bindings were changed
are restored. Should control return back to the body by the invocation of a continuation
created within the body, the bindings are changed once again to the values in effect when
the body last exited.

Fluid bindings are most useful for maintaining variables that must be shared by a group of
procedures. Upon entry to the group of procedures, the shared variables are fluidly bound
to a new set of initial values so that on exit the original values are restored automatically.
In this way, the group of procedures itself can be reentrant; it may call itself directly or
indirectly without affecting the values of its shared variables.

Fluid bindings are similar to special bindings in Common Lisp [30], except that (1) there is
a single namespace for both lexical and fluid bindings, and (2) the scope of a fluidly bound
variable is not necessarily global.

(let ([x 3])
(+ (fluid-let ([x 5])

x)
x)) ⇒ 8

(let ([x ’a])
(letrec ([f (lambda (y) (cons x y))])
(fluid-let ([x ’b])

(f ’c)))) ⇒ (b . c)

(let ([x ’a])
(call/cc
(lambda (k)

(fluid-let ([x ’b])
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(letrec ([f (lambda (y) (k ’*))])
(f ’*)))))

x) ⇒ a

fluid-let may be defined in terms of dynamic-wind as follows.

(define-syntax fluid-let
(lambda (x)
(syntax-case x ()

[(_ () b1 b2 ...) #’(let () b1 b2 ...)]
[(_ ((x e) ...) b1 b2 ...)
(andmap identifier? #’(x ...))
(with-syntax ([(y ...) (generate-temporaries #’(x ...))])
#’(let ([y e] ...)

(let ([swap (lambda ()
(let ([t x]) (set! x y) (set! y t))
...)])

(dynamic-wind swap (lambda () b1 b2 ...) swap))))])))

5.5. Top-Level Bindings

The procedures described in this section allow the direct manipulation of top-level bind-
ings for variables and keywords. They are intended primarily to support the definition of
interpreters or compilers for Scheme in Scheme but may be used to access or alter top-level
bindings anywhere within a program whether at top level or not.

(define-top-level-value symbol obj) procedure

(define-top-level-value symbol obj env) procedure

returns: unspecified
libraries: (chezscheme)

define-top-level-value is used to establish a binding for the variable named by symbol
to the value obj in the environment env . If env is not provided, it defaults to the value of
interaction-environment, i.e., the top-level evaluation environment (Section 12.3).

An exception is raised with condition type &assertion if env is not mutable.

A call to define-top-level-value is similar to a top-level define form, except that a call
to define-top-level-value need not occur at top-level and the variable for which the
binding is to be established can be determined at run time, as can the environment.

(begin
(define-top-level-value ’xyz "hi")
xyz) ⇒ "hi"

(let ([var ’xyz])
(define-top-level-value var "mom")
(list var xyz)) ⇒ (xyz "mom")
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(set-top-level-value! symbol obj) procedure

(set-top-level-value! symbol obj env) procedure

returns: unspecified
libraries: (chezscheme)

set-top-level-value! assigns the variable named by symbol to the value obj in the envi-
ronment env . If env is not provided, it defaults to the value of interaction-environment,
i.e., the top-level evaluation environment (Section 12.3).

An exception is raised with condition type &assertion if the identifier named by symbol is
not defined as a variable in env or if the variable or environment is not mutable.

set-top-level-value! is similar to set! when set! is used on top-level variables except
that the variable to be assigned can be determined at run time, as can the environment.

(let ([v (let ([cons list])
(set-top-level-value! ’cons +)
(cons 3 4))])

(list v (cons 3 4))) ⇒ ((3 4) 7)

(top-level-value symbol) procedure

(top-level-value symbol env) procedure

returns: the top-level value of the variable named by symbol in env
libraries: (chezscheme)

If env is not provided, it defaults to the value of interaction-environment, i.e., the top-
level evaluation environment (Section 12.3).

An exception is raised with condition type &assertion if the identifier named by symbol is
not defined as a variable in env .

top-level-value is similar to a top-level variable reference except that the variable to be
referenced can be determined at run time, as can the environment.

(let ([cons +])
(list (cons 3 4)

((top-level-value ’cons) 3 4))) ⇒ (7 (3 . 4))

(define e (copy-environment (scheme-environment)))
(define-top-level-value ’pi 3.14 e)
(top-level-value ’pi e) ⇒ 3.14
(set-top-level-value! ’pi 3.1416 e)
(top-level-value ’pi e) ⇒ 3.1416

(top-level-bound? symbol) procedure

(top-level-bound? symbol env) procedure

returns: #t if symbol is defined as a variable in env , #f otherwise
libraries: (chezscheme)

If env is not provided, it defaults to the value of interaction-environment, i.e., the top-
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level evaluation environment (Section 12.3).

This predicate is useful in an interpreter to check for the existence of a top-level binding
before requesting the value with top-level-value.

(top-level-bound? ’xyz) ⇒ #f

(begin
(define-top-level-value ’xyz 3)
(top-level-bound? ’xyz)) ⇒ #t

(define e (copy-environment (interaction-environment)))
(define-top-level-value ’pi 3.14 e)
(top-level-bound? ’pi) ⇒ #f
(top-level-bound? ’pi e) ⇒ #t

(top-level-mutable? symbol) procedure

(top-level-mutable? symbol env) procedure

returns: #t if symbol is mutable in env , #f otherwise
libraries: (chezscheme)

If env is not provided, it defaults to the value of interaction-environment, i.e., the top-
level evaluation environment (Section 12.3).

This predicate is useful in an interpreter to check whether a variable can be assigned before
assigning it with set-top-level-value!.

(define xyz 3)
(top-level-mutable? ’xyz) ⇒ #t
(set-top-level-value! ’xyz 4)
(top-level-value ’xyz) ⇒ 4

(define e (copy-environment (interaction-environment) #f))
(top-level-mutable? ’xyz e) ⇒ #f
(set-top-level-value! ’xyz e) ⇒ exception: xyz is immutable

(define-top-level-syntax symbol obj) procedure

(define-top-level-syntax symbol obj env) procedure

returns: unspecified
libraries: (chezscheme)

define-top-level-syntax is used to establish a top-level binding for the identifier named
by symbol to the value of obj in the environment env . The value must be a procedure, the
result of a call to make-variable-transformer, or the result of a call to top-level-syntax.
If env is not provided, it defaults to the value of interaction-environment, i.e., the top-
level evaluation environment (Section 12.3).

An exception is raised with condition type &assertion if env is not mutable.

A call to define-top-level-syntax is similar to a top-level define-syntax form, except
that a call to define-top-level-syntax need not occur at top-level and the identifier
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for which the binding is to be established can be determined at run time, as can the

environment.

(define-top-level-syntax ’let1
(syntax-rules ()
[(_ x e b1 b2 ...) (let ([x e]) b1 b2 ...)]))

(let1 a 3 (+ a 1)) ⇒ 4

define-top-level-syntax can also be used to attach to an identifier arbitrary compile-time

bindings obtained via top-level-syntax.

(top-level-syntax symbol) procedure

(top-level-syntax symbol env) procedure

returns: unspecified
libraries: (chezscheme)

top-level-syntax is used to retrieve the transformer, compile-time value, or other compile-

time binding to which the identifier named by symbol is bound in the environment env .

If env is not provided, it defaults to the value of interaction-environment, i.e., the top-

level evaluation environment (Section 12.3). All identifiers bound in an environment have

compile-time bindings, including variables.

An exception is raised with condition type &assertion if the identifier named by symbol is

not defined as a keyword in env .

(define-top-level-syntax ’also-let (top-level-syntax ’let))
(also-let ([x 3] [y 4]) (+ x y)) ⇒ 7

(define foo 17)
(define-top-level-syntax ’also-foo (top-level-syntax ’foo))
also-foo ⇒ 17
(set! also-foo 23)
also-foo ⇒ 23
foo ⇒ 23

The effect of the last example can be had more clearly with alias:

(define foo 17)
(alias also-foo foo)
also-foo ⇒ 17
(set! also-foo 23)
also-foo ⇒ 23
foo ⇒ 23
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(top-level-syntax? symbol) procedure

(top-level-syntax? symbol env) procedure

returns: #t if symbol is bound as a keyword in env , #f otherwise
libraries: (chezscheme)

If env is not provided, it defaults to the value of interaction-environment, i.e., the top-
level evaluation environment (Section 12.3).

All identifiers bound in an environment have compile-time bindings, including variables,
so this predicate amounts to a bound check, but is more general than top-level-bound?,
which returns true only for bound variables.

(define xyz ’hello)
(top-level-syntax? ’cons) ⇒ #t
(top-level-syntax? ’lambda) ⇒ #t
(top-level-syntax? ’hello) ⇒ #t

(top-level-syntax? ’cons (scheme-environment)) ⇒ #t
(top-level-syntax? ’lambda (scheme-environment)) ⇒ #t
(top-level-syntax? ’hello (scheme-environment)) ⇒ #f
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This chapter describes Chez Scheme extensions to the set of standard control structures.
See Chapter 5 of The Scheme Programming Language, 4th Edition or the Revised6 Report
on Scheme for a description of standard control structures.

6.1. Conditionals

(exclusive-cond clause1 clause2 ...) syntax

returns: see below
libraries: (chezscheme)

exclusive-cond is a version of cond (Section 5.3 of TSPLFOUR) that differs from cond in
that the tests embedded within the clauses are assumed to be exclusive in the sense that
if one of the tests is true, the others are not. This allows the implementation to reorder
clauses when profiling information is available at expansion time (Section 12.7).

The (test) form of clause is not supported. The order chosen when profiling information
is available is based on the relative numbers of times the RHS of each clause is executed,
and (test) has no RHS. (test => values) is equivalent, abeit less concise.

(case expr0 clause1 clause2 ...) syntax

returns: see below
libraries: (chezscheme)

Each clause but the last must take one of the forms:

((key ...) expr1 expr2 ...)
(key expr1 expr2 ...)

where each key is a datum distinct from the other keys. The last clause may be in the
above form or it may be an else clause of the form

(else expr1 expr2 ...)

expr0 is evaluated and the result is compared (using equal?) against the keys of each clause
in order. If a clause containing a matching key is found, the expressions expr1 expr2 ...

are evaluated in sequence and the values of the last expression are returned.
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If none of the clauses contains a matching key and an else clause is present, the expressions
expr1 expr2 ... of the else clause are evaluated in sequence and the values of the last
expression are returned.

If none of the clauses contains a matching key and no else clause is present, the value or
values are unspecified.

The Revised6 Report version of case does not support singleton keys (the second of the
first two clause forms above) and uses eqv? rather than equal? as the comparison proce-
dure. Both versions are defined in terms of exclusive-cond so that if profiling information
is available at expansion time, the clauses will be reordered to put those that are most
frequently executed first.

(let ([ls ’(ii iv)])
(case (car ls)
[i 1]
[ii 2]
[iii 3]
[(iiii iv) 3]
[else ’out-of-range])) ⇒ 2

(define p
(lambda (x)
(case x

[("abc" "def") ’one]
[((a b c)) ’two]
[else #f])))

(p (string #\d #\e #\f)) ⇒ one
(p ’(a b c)) ⇒ two

(record-case expr clause1 clause2 ...) syntax

returns: see explanation
libraries: (chezscheme)

record-case is a restricted form of case that supports the destructuring of records, or
tagged lists. A record has as its first element a tag that determines what “type” of record
it is; the remaining elements are the fields of the record.

Each clause but the last must take the form

((key ...) formals body1 body2 ...)

where each key is a datum distinct from the other keys. The last clause may be in the
above form or it may be an else clause of the form

(else body1 body2 ...)

expr must evaluate to a pair. expr is evaluated and the car of its value is compared (using
eqv?) against the keys of each clause in order. If a clause containing a matching key is
found, the variables in formals are bound to the remaining elements of the list and the
expressions body1 body2 ... are evaluated in sequence. The value of the last expression is
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returned. The effect is identical to the application of

(lambda formals body1 body2 ...)

to the cdr of the list.

If none of the clauses contains a matching key and an else clause is present, the expressions

body1 body2 ... of the else clause are evaluated in sequence and the value of the last

expression is returned.

If none of the clauses contains a matching key and no else clause is present, the value is

unspecified.

(define calc
(lambda (x)
(record-case x

[(add) (x y) (+ x y)]
[(sub) (x y) (- x y)]
[(mul) (x y) (* x y)]
[(div) (x y) (/ x y)]
[else (assertion-violationf ’calc "invalid expression ~s" x)])))

(calc ’(add 3 4)) ⇒ 7
(calc ’(div 3 4)) ⇒ 3/4

6.2. Mapping and Folding

(ormap procedure list1 list2 ...) procedure

returns: see explanation
libraries: (chezscheme)

ormap is identical to the Revised6 Report exists.

(andmap procedure list1 list2 ...) procedure

returns: see explanation
libraries: (chezscheme)

andmap is identical to the Revised6 Report for-all.

6.3. Continuations

Chez Scheme supports one-shot continuations as well as the standard multi-shot contin-

uations obtainable via call/cc. One-shot continuations are continuations that may be

invoked at most once, whether explicitly or implicitly. They are obtained with call/1cc.
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(call/1cc procedure) procedure

returns: see below
libraries: (chezscheme)

call/1cc obtains its continuation and passes it to procedure, which should accept one

argument. The continuation itself is represented by a procedure. This procedure normally

takes one argument but may take an arbitrary number of arguments depending upon

whether the context of the call to call/1cc expects multiple return values or not. When

this procedure is applied to a value or values, it returns the values to the continuation of

the call/1cc application.

The continuation obtained by call/1cc is a “one-shot continuation.” A one-shot con-

tinuation should not be returned to multiple times, either by invoking the continuation

or returning normally from procedure more than once. A one-shot continuation is “pro-

moted” into a normal (multishot) continuation, however, if it is still active when a normal

continuation is obtained by call/cc. After a one-shot continuation is promoted into a

multishot continuation, it behaves exactly as if it had been obtained via call/cc. This

allows call/cc and call/1cc to be used together transparently in many applications.

One-shot continuations may be more efficient for some applications than multishot contin-

uations. See the paper “Representing control in the presence of one-shot continuations” [3]

for more information about one-shot continuations, including how they are implemented

in Chez Scheme.

The following examples highlight the similarities and differences between one-shot and

normal continuations.

(define prod
; compute the product of the elements of ls, bugging out
; with no multiplications if a zero element is found
(lambda (ls)
(lambda (k)

(if (null? ls)
1
(if (= (car ls) 0)

(k 0)
(* (car ls) ((prod (cdr ls)) k)))))))

(call/cc (prod ’(1 2 3 4))) ⇒ 24
(call/1cc (prod ’(1 2 3 4))) ⇒ 24

(call/cc (prod ’(1 2 3 4 0))) ⇒ 0
(call/1cc (prod ’(1 2 3 4 0))) ⇒ 0

(let ([k (call/cc (lambda (x) x))])
(k (lambda (x) 0))) ⇒ 0

(let ([k (call/1cc (lambda (x) x))])
(k (lambda (x) 0))) ⇒ exception
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(dynamic-wind in body out) procedure

(dynamic-wind critical? in body out) procedure

returns: values resulting from the application of body
libraries: (chezscheme)

The first form is identical to the Revised6 Report dynamic-wind. When the optional
critical? argument is present and non-false, the in thunk is invoked in a critical section
along with the code that records that the body has been entered, and the out thunk is
invoked in a critical section along with the code that records that the body has been ex-
ited. Extreme caution must be taken with this form of dynamic-wind, since an error or
long-running computation can leave interrupts and automatic garbage collection disabled.

6.4. Engines

Engines are a high-level process abstraction supporting timed preemption [15, 24]. Engines
may be used to simulate multiprocessing, implement operating system kernels, and perform
nondeterministic computations.

(make-engine thunk) procedure

returns: an engine
libraries: (chezscheme)

An engine is created by passing a thunk (no argument procedure) to make-engine. The
body of the thunk is the computation to be performed by the engine. An engine itself is a
procedure of three arguments:

ticks: a positive integer that specifies the amount of fuel to be given to the engine. An
engine executes until this fuel runs out or until its computation finishes.

complete: a procedure of one or more arguments that specifies what to do if the computa-
tion finishes. Its arguments are the amount of fuel left over and the values produced
by the computation.

expire: a procedure of one argument that specifies what to do if the fuel runs out before
the computation finishes. Its argument is a new engine capable of continuing the
computation from the point of interruption.

When an engine is applied to its arguments, it sets up a timer to fire in ticks time units.
(See set-timer on page 322.) If the engine computation completes before the timer ex-
pires, the system invokes complete, passing it the number of ticks left over and the values
produced by the computation. If, on the other hand, the timer goes off before the engine
computation completes, the system creates a new engine from the continuation of the in-
terrupted computation and passes this engine to expire. complete and expire are invoked
in the continuation of the engine invocation.

An implementation of engines is given in Section 12.11. of The Scheme Programming
Language, 4th Edition.
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Do not use the timer interrupt (see set-timer) and engines at the same time, since engines

are implemented in terms of the timer.

The following example creates an engine from a trivial computation, 3, and gives the engine

10 ticks.

(define eng
(make-engine
(lambda () 3)))

(eng 10
(lambda (ticks value) value)
(lambda (x) x)) ⇒ 3

It is often useful to pass list as the complete procedure to an engine, causing an engine that

completes to return a list whose first element is the ticks remaining and whose remaining

elements are the values returned by the computation.

(define eng
(make-engine
(lambda () 3)))

(eng 10
list
(lambda (x) x)) ⇒ (9 3)

In the example above, the value is 3 and there are 9 ticks left over, i.e., it takes one unit

of fuel to evaluate 3. (The fuel amounts given here are for illustration only. Your mileage

may vary.)

Typically, the engine computation does not finish in one try. The following example displays

the use of an engine to compute the 10th Fibonacci number in steps.

(define fibonacci
(lambda (n)
(let fib ([i n])

(cond
[(= i 0) 0]
[(= i 1) 1]
[else (+ (fib (- i 1))

(fib (- i 2)))]))))

(define eng
(make-engine
(lambda ()

(fibonacci 10))))

(eng 50
list
(lambda (new-eng)
(set! eng new-eng)
"expired")) ⇒ "expired"
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(eng 50
list
(lambda (new-eng)
(set! eng new-eng)
"expired")) ⇒ "expired"

(eng 50
list
(lambda (new-eng)

(set! eng new-eng)
"expired")) ⇒ "expired"

(eng 50
list
(lambda (new-eng)

(set! eng new-eng)
"expired")) ⇒ (21 55)

Each time the engine’s fuel runs out, the expire procedure assigns eng to the new engine.

The entire computation requires four blocks of 50 ticks to complete; of the last 50 it uses

all but 21. Thus, the total amount of fuel used is 179 ticks. This leads to the following

procedure, mileage, which “times” a computation using engines:

(define mileage
(lambda (thunk)
(let loop ([eng (make-engine thunk)] [total-ticks 0])

(eng 50
(lambda (ticks . values)
(+ total-ticks (- 50 ticks)))

(lambda (new-eng)
(loop new-eng

(+ total-ticks 50)))))))

(mileage (lambda () (fibonacci 10))) ⇒ 179

The choice of 50 for the number of ticks to use each time is arbitrary, of course. It might

make more sense to pass a much larger number, say 10000, in order to reduce the number

of times the computation is interrupted.

The next procedure is similar to mileage, but it returns a list of engines, one for each tick it

takes to complete the computation. Each of the engines in the list represents a “snapshot”

of the computation, analogous to a single frame of a moving picture. snapshot might be

useful for “single stepping” a computation.

(define snapshot
(lambda (thunk)
(let again ([eng (make-engine thunk)])

(cons eng
(eng 1 (lambda (t . v) ’()) again)))))

The recursion embedded in this procedure is rather strange. The complete procedure
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performs the base case, returning the empty list, and the expire procedure performs the
recursion.

The next procedure, round-robin, could be the basis for a simple time-sharing operating
system. round-robin maintains a queue of processes (a list of engines), cycling through
the queue in a round-robin fashion, allowing each process to run for a set amount of time.
round-robin returns a list of the values returned by the engine computations in the order
that the computations complete. Each computation is assumed to produce exactly one
value.

(define round-robin
(lambda (engs)
(if (null? engs)

’()
((car engs)
1
(lambda (ticks value)
(cons value (round-robin (cdr engs))))

(lambda (eng)
(round-robin
(append (cdr engs) (list eng))))))))

Since the amount of fuel supplied each time, one tick, is constant, the effect of round-robin
is to return a list of the values sorted from the quickest to complete to the slowest to
complete. Thus, when we call round-robin on a list of engines, each computing one of
the Fibonacci numbers, the output list is sorted with the earlier Fibonacci numbers first,
regardless of the order of the input list.

(round-robin
(map (lambda (x)

(make-engine
(lambda ()
(fibonacci x))))

’(4 5 2 8 3 7 6 2))) ⇒ (1 1 2 3 5 8 13 21)

More interesting things can happen if the amount of fuel varies each time through the loop.
In this case, the computation would be nondeterministic, i.e., the results would vary from
call to call.

The following syntactic form, por (parallel-or), returns the first of its expressions to com-
plete with a true value. por is implemented with the procedure first-true, which is similar
to round-robin but quits when any of the engines completes with a true value. If all of
the engines complete, but none with a true value, first-true (and hence por) returns #f.
Also, although first-true passes a fixed amount of fuel to each engine, it chooses the next
engine to run at random, and is thus nondeterministic.

(define-syntax por
(syntax-rules ()
[(_ x ...)
(first-true
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(list (make-engine (lambda () x)) ...))]))

(define first-true
(let ([pick

(lambda (ls)
(list-ref ls (random (length ls))))])

(lambda (engs)
(if (null? engs)

#f
(let ([eng (pick engs)])

(eng 1
(lambda (ticks value)
(or value

(first-true
(remq eng engs))))

(lambda (new-eng)
(first-true

(cons new-eng
(remq eng engs))))))))))

The list of engines is maintained with pick, which randomly chooses an element of the list,

and remq, which removes the chosen engine from the list. Since por is nondeterministic,

subsequent uses with the same expressions may not return the same values.

(por 1 2 3) ⇒ 2
(por 1 2 3) ⇒ 3
(por 1 2 3) ⇒ 2
(por 1 2 3) ⇒ 1

Furthermore, even if one of the expressions is an infinite loop, por still finishes as long as

one of the other expressions completes and returns a true value.

(por (let loop () (loop)) 2) ⇒ 2

With engine-return and engine-block, it is possible to terminate an engine explicitly.

engine-return causes the engine to complete, as if the computation had finished. Its

arguments are passed to the complete procedure along with the number of ticks remaining.

It is essentially a nonlocal exit from the engine. Similarly, engine-block causes the engine

to expire, as if the timer had run out. A new engine is made from the continuation of the

call to engine-block and passed to the expire procedure.

(engine-block) procedure

returns: does not return
libraries: (chezscheme)

This causes a running engine to stop, create a new engine capable of continuing the com-

putation, and pass the new engine to the original engine’s third argument (the expire

procedure). Any remaining fuel is forfeited.
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(define eng
(make-engine
(lambda ()

(engine-block)
"completed")))

(eng 100
(lambda (ticks value) value)
(lambda (x)

(set! eng x)
"expired")) ⇒ "expired"

(eng 100
(lambda (ticks value) value)
(lambda (x)

(set! eng x)
"expired")) ⇒ "completed"

(engine-return obj ...) procedure

returns: does not return
libraries: (chezscheme)

This causes a running engine to stop and pass control to the engine’s complete argument.
The first argument passed to the complete procedure is the amount of fuel remaining, as
usual, and the remaining arguments are the objects obj ... passed to engine-return.

(define eng
(make-engine
(lambda ()

(reverse (engine-return ’a ’b ’c)))))

(eng 100
(lambda (ticks . values) values)
(lambda (new-eng) "expired")) ⇒ (a b c)



7. Operations on Objects

This chapter describes operations specific to Chez Scheme on nonnumeric objects, including

standard objects such as pairs and numbers and Chez Scheme extensions such as boxes

and records. Chapter 8 describes operations on numbers. See Chapter 6 of The Scheme

Programming Language, 4th Edition or the Revised6 Report on Scheme for a description

of standard operations on objects.

7.1. Missing R6RS Type Predicates

(enum-set? obj) procedure

returns: #t if obj is an enum set, #f otherwise
libraries: (chezscheme)

This predicate is not defined by the Revised6 Report, but should be.

(record-constructor-descriptor? obj) procedure

returns: #t if obj is a record constructor descriptor, #f otherwise
libraries: (chezscheme)

This predicate is not defined by the Revised6 Report, but should be.

7.2. Pairs and Lists

(atom? obj) procedure

returns: #t if obj is not a pair, #f otherwise
libraries: (chezscheme)

atom? is equivalent to (lambda (x) (not (pair? x))).

(atom? ’(a b c)) ⇒ #f
(atom? ’(3 . 4)) ⇒ #f
(atom? ’()) ⇒ #t
(atom? 3) ⇒ #t
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(list-head list n) procedure

returns: a list of the first n elements of list
libraries: (chezscheme)

n must be an exact nonnegative integer less than or equal to the length of list .

list-head and the standard Scheme procedure list-tail may be used together to split a

list into two separate lists. While list-tail performs no allocation but instead returns a

sublist of the original list, list-head always returns a copy of the first portion of the list.

list-head may be defined as follows.

(define list-head
(lambda (ls n)
(if (= n 0)

’()
(cons (car ls) (list-head (cdr ls) (- n 1))))))

(list-head ’(a b c) 0) ⇒ ()
(list-head ’(a b c) 2) ⇒ (a b)
(list-head ’(a b c) 3) ⇒ (a b c)
(list-head ’(a b c . d) 2) ⇒ (a b)
(list-head ’(a b c . d) 3) ⇒ (a b c)
(list-head ’#1=(a . #1#) 5) ⇒ (a a a a a)

(last-pair list) procedure

returns: the last pair of a list
libraries: (chezscheme)

list must not be empty. last-pair returns the last pair (not the last element) of list . list

may be an improper list, in which case the last pair is the pair containing the last element

and the terminating object.

(last-pair ’(a b c d)) ⇒ (d)
(last-pair ’(a b c . d)) ⇒ (c . d)

(list-copy list) procedure

returns: a copy of list
libraries: (chezscheme)

list-copy returns a list equal? to list , using new pairs to reform the top-level list structure.

(list-copy ’(a b c)) ⇒ (a b c)

(let ([ls ’(a b c)])
(equal? ls (list-copy ls))) ⇒ #t
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(let ([ls ’(a b c)])
(let ([ls-copy (list-copy ls)])
(or (eq? ls-copy ls)

(eq? (cdr ls-copy) (cdr ls))
(eq? (cddr ls-copy) (cddr ls))))) ⇒ #f

(list* obj ... final-obj) procedure

returns: a list of obj ... terminated by final-obj
libraries: (chezscheme)

list* is identical to the Revised6 Report cons*.

(make-list n) procedure

(make-list n obj) procedure

returns: a list of n objs
libraries: (chezscheme)

n must be a nonnegative integer. If obj is omitted, the elements of the list are unspecified.

(make-list 0 ’()) ⇒ ()
(make-list 3 0) ⇒ (0 0 0)
(make-list 2 "hi") ⇒ ("hi" "hi")

(iota n) procedure

returns: a list of integers from 0 (inclusive) to n (exclusive)
libraries: (chezscheme)

n must be an exact nonnegative integer.

(iota 0) ⇒ ()
(iota 5) ⇒ (0 1 2 3 4)

(enumerate ls) procedure

returns: a list of integers from 0 (inclusive) to the length of ls (exclusive)
libraries: (chezscheme)

(enumerate ’()) ⇒ ()
(enumerate ’(a b c)) ⇒ (0 1 2)
(let ([ls ’(a b c)])

(map cons ls (enumerate ls))) ⇒ ((a . 0) (b . 1) (c . 2))
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(remq! obj list) procedure

(remv! obj list) procedure

(remove! obj list) procedure

returns: a list containing the elements of list with all occurrences of obj removed
libraries: (chezscheme)

These procedures are similar to the Revised6 Report remq, remv, and remove procedures,

except remq!, remv! and remove! use pairs from the input list to build the output list. They

perform less allocation but are not necessarily faster than their nondestructive counterparts.

Their use can easily lead to confusing or incorrect results if used indiscriminately.

(remq! ’a ’(a b a c a d)) ⇒ (b c d)

(remv! #\a ’(#\a #\b #\c)) ⇒ (#\b #\c)

(remove! ’(c) ’((a) (b) (c))) ⇒ ((a) (b))

(substq new old tree) procedure

(substv new old tree) procedure

(subst new old tree) procedure

(substq! new old tree) procedure

(substv! new old tree) procedure

(subst! new old tree) procedure

returns: a tree with new substituted for occurrences of old in tree
libraries: (chezscheme)

These procedures traverse tree, replacing all objects equivalent to the object old with the

object new .

The equivalence test for substq and substq! is eq?, for substv and substv! is eqv?, and

for subst and subst! is equal?.

substq!, substv!, and subst! perform the substitutions destructively. They perform less

allocation but are not necessarily faster than their nondestructive counterparts. Their use

can easily lead to confusing or incorrect results if used indiscriminately.

(substq ’a ’b ’((b c) b a)) ⇒ ((a c) a a)

(substv 2 1 ’((1 . 2) (1 . 4) . 1)) ⇒ ((2 . 2) (2 . 4) . 2)

(subst ’a
’(a . b)
’((a . b) (c a . b) . c)) ⇒ (a (c . a) . c)

(let ([tr ’((b c) b a)])
(substq! ’a ’b tr)
tr) ⇒ ((a c) a a)
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(reverse! list) procedure

returns: a list containing the elements of list in reverse order
libraries: (chezscheme)

reverse! destructively reverses list by reversing its links. Using reverse! in place of
reverse reduces allocation but is not necessarily faster than reverse. Its use can easily
lead to confusing or incorrect results if used indiscriminately.

(reverse! ’()) ⇒ ()
(reverse! ’(a b c)) ⇒ (c b a)

(let ([x ’(a b c)])
(reverse! x)
x) ⇒ (a)

(let ([x ’(a b c)])
(set! x (reverse! x))
x) ⇒ (c b a)

(append! list ...) procedure

returns: the concatenation of the input lists
libraries: (chezscheme)

Like append, append! returns a new list consisting of the elements of the first list followed
by the elements of the second list, the elements of the third list, and so on. Unlike append,
append! reuses the pairs in all of the arguments in forming the new list. That is, the last
cdr of each list argument but the last is changed to point to the next list argument. If any
argument but the last is the empty list, it is essentially ignored. The final argument (which
need not be a list) is not altered.

append! performs less allocation than append but is not necessarily faster. Its use can easily
lead to confusing or incorrect results if used indiscriminately.

(append! ’(a b) ’(c d)) ⇒ (a b c d)

(let ([x ’(a b)])
(append! x ’(c d))
x) ⇒ (a b c d)

7.3. Characters

Chez Scheme extends the syntax of characters in two ways. First, a #\ prefix followed
by exactly three octal digits is read as a character whose numeric code is the octal value
of the three digits, e.g., #\044 is read as #\$. Second, it recognizes several nonstandard
named characters: #\rubout (which is the same as #\delete), #\bel (which is the same
as #\alarm), #\vt (which is the same as #\vtab), #\nel (the Unicode NEL character), and
#\ls (the Unicode LS character). The set of nonstandard character names may be changed
via the procedure char-name (page 9.14).



138 7. Operations on Objects

These extensions are disabled in an input stream after #!r6rs has been seen by the reader,
unless #!chezscheme has been seen more recently.

(char=? char1 char2 ...) procedure

(char<? char1 char2 ...) procedure

(char>? char1 char2 ...) procedure

(char<=? char1 char2 ...) procedure

(char>=? char1 char2 ...) procedure

(char-ci=? char1 char2 ...) procedure

(char-ci<? char1 char2 ...) procedure

(char-ci>? char1 char2 ...) procedure

(char-ci<=? char1 char2 ...) procedure

(char-ci>=? char1 char2 ...) procedure

returns: #t if the relation holds, #f otherwise
libraries: (chezscheme)

These predicates are identical to the Revised6 Report counterparts, except they are ex-
tended to accept one or more rather than two or more arguments. When passed one
argument, each of these predicates returns #t.

(char>? #\a) ⇒ #t
(char<? #\a) ⇒ #t
(char-ci=? #\a) ⇒ #t

(char- char1 char2) procedure

returns: the integer difference between char1 and char2
libraries: (chezscheme)

char- subtracts the integer value of char2 from the integer value of char1 and returns the
difference. The following examples assume that the integer representation is the ASCII
code for the character.

(char- #\f #\e) ⇒ 1

(define digit-value
; returns the digit value of the base-r digit c, or #f if c
; is not a valid digit
(lambda (c r)
(let ([v (cond

[(char<=? #\0 c #\9) (char- c #\0)]
[(char<=? #\A c #\Z) (char- c #\7)]
[(char<=? #\a c #\z) (char- c #\W)]
[else 36])])

(and (fx< v r) v))))
(digit-value #\8 10) ⇒ 8
(digit-value #\z 10) ⇒ #f
(digit-value #\z 36) ⇒ 35
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char- might be defined as follows.

(define char-
(lambda (c1 c2)
(- (char->integer c1) (char->integer c2))))

7.4. Strings

Chez Scheme extends the standard string syntax with two character escapes: \’, which
produces the single quote character, and \nnn, i.e., backslash followed by 3 octal digits,
which produces the character equivalent of the octal value of the 3 digits. These exten-
sions are disabled in an input stream after #!r6rs has been seen by the reader, unless
#!chezscheme has been seen more recently.

All strings are mutable by default, including constants. A program can create immutable
strings via string->immutable-string. Any attempt to modify an immutable string causes
an exception to be raised.

The length and indices of a string in Chez Scheme are always fixnums.

(string=? string1 string2 string3 ...) procedure

(string<? string1 string2 string3 ...) procedure

(string>? string1 string2 string3 ...) procedure

(string<=? string1 string2 string3 ...) procedure

(string>=? string1 string2 string3 ...) procedure

(string-ci=? string1 string2 string3 ...) procedure

(string-ci<? string1 string2 string3 ...) procedure

(string-ci>? string1 string2 string3 ...) procedure

(string-ci<=? string1 string2 string3 ...) procedure

(string-ci>=? string1 string2 string3 ...) procedure

returns: #t if the relation holds, #f otherwise
libraries: (chezscheme)

These predicates are identical to the Revised6 Report counterparts, except they are ex-
tended to accept one or more rather than two or more arguments. When passed one
argument, each of these predicates returns #t.

(string>? "a") ⇒ #t
(string<? "a") ⇒ #t
(string-ci=? "a") ⇒ #t

(string-copy! src src-start dst dst-start n) procedure

returns: unspecified
libraries: (chezscheme)

src and dst must be strings, and dst must be mutable. src-start , dst-start , and n must be
exact nonnegative integers. The sum of src-start and n must not exceed the length of src,
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and the sum of dst-start and n must not exceed the length of dst .

string-copy! overwrites the n bytes of dst starting at dst-start with the n bytes of dst

starting at src-start . This works even if dst is the same string as src and the source and

destination locations overlap. That is, the destination is filled with the characters that

appeared at the source before the operation began.

(define s1 "to boldly go")
(define s2 (make-string 10 #\-))

(string-copy! s1 3 s2 1 3)
s2 ⇒ "-bol------"

(string-copy! s1 7 s2 4 2)
s2 ⇒ "-bolly----"

(string-copy! s2 2 s2 5 4)
s2 ⇒ "-bollolly-"

(substring-fill! string start end char) procedure

returns: unspecified
libraries: (chezscheme)

string must be mutable. The characters of string from start (inclusive) to end (exclusive)

are set to char . start and end must be nonnegative integers; start must be strictly less

than the length of string , while end may be less than or equal to the length of string . If

end ≤ start, the string is left unchanged.

(let ([str (string-copy "a tpyo typo")])
(substring-fill! str 2 6 #\X)
str) ⇒ "a XXXX typo"

(string-truncate! string n) procedure

returns: string or the empty string
libraries: (chezscheme)

string must be mutable. n must be an exact nonnegative fixnum not greater than the

length of string . If n is zero, string-truncate! returns the empty string. Otherwise,

string-truncate! destructively truncates string to its first n characters and returns string .

(define s (make-string 7 #\$))
(string-truncate! s 0) ⇒ ""
s ⇒ "$$$$$$$"
(string-truncate! s 3) ⇒ "$$$"
s ⇒ "$$$"
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(mutable-string? obj) procedure

returns: #t if obj is a mutable string, #f otherwise
(immutable-string? obj) procedure

returns: #t if obj is an immutable string, #f otherwise
libraries: (chezscheme)

(mutable-string? (string #\a #\b #\c)) ⇒ #t
(mutable-string? (string->immutable-string "abc")) ⇒ #f
(immutable-string? (string #\a #\b #\c)) ⇒ #f
(immutable-string? (string->immutable-string "abc")) ⇒ #t
(immutable-string? (cons 3 4)) ⇒ #f

(string->immutable-string string) procedure

returns: an immutable string equal to string
libraries: (chezscheme)

The result is string itself if string is immutable; otherwise, the result is an immutable string
with the same content as string .

(define s (string->immutable-string (string #\x #\y #\z)))
(string-set! s 0 #\a) ⇒ exception: not mutable

7.5. Vectors

Chez Scheme extends the syntax of vectors to allow the length of the vector to be specified
between the # and open parenthesis, e.g., #3(a b c). If fewer elements are supplied in the
syntax than the specified length, each element after the last printed element is the same
as the last printed element. This extension is disabled in an input stream after #!r6rs has
been seen by the reader, unless #!chezscheme has been seen more recently.

The length and indices of a vector in Chez Scheme are always fixnums.

All vectors are mutable by default, including constants. A program can create immutable
vectors via vector->immutable-vector. Any attempt to modify an immutable vector
causes an exception to be raised.

(vector-copy vector) procedure

returns: a copy of vector
libraries: (chezscheme)

vector-copy creates a new vector of the same length and contents as vector . The elements
themselves are not copied.

(vector-copy ’#(a b c)) ⇒ #(a b c)

(let ([v ’#(a b c)])
(eq? v (vector-copy v))) ⇒ #f
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(vector-set-fixnum! vector n fixnum) procedure

returns: unspecified
libraries: (chezscheme)

vector must be mutable. vector-set-fixnum! changes the nth element of vector to fixnum.
n must be an exact nonnegative integer strictly less than the length of vector .

It is faster to store a fixnum than an arbitrary value, since for arbitrary values, the system
has to record potential assignments from older to younger objects to support generational
garbage collection. Care must be taken to ensure that the argument is indeed a fixnum,
however; otherwise, the collector may not properly track the assignment. The primitive
performs a fixnum check on the argument except at optimization level 3.

See also the description of fixnum-only vectors (fxvectors) below.

(let ([v (vector 1 2 3 4 5)])
(vector-set-fixnum! v 2 73)
v) ⇒ #(1 2 73 4 5)

(mutable-vector? obj) procedure

returns: #t if obj is a mutable vector, #f otherwise
(immutable-vector? obj) procedure

returns: #t if obj is an immutable vector, #f otherwise
libraries: (chezscheme)

(mutable-vector? (vector 1 2 3)) ⇒ #t
(mutable-vector? (vector->immutable-vector (vector 1 2 3))) ⇒ #f
(immutable-vector? (vector 1 2 3)) ⇒ #f
(immutable-vector? (vector->immutable-vector (vector 1 2 3))) ⇒ #t
(immutable-vector? (cons 3 4)) ⇒ #f

(vector->immutable-vector vector) procedure

returns: an immutable vector equal to vector
libraries: (chezscheme)

The result is vector itself if vector is immutable; otherwise, the result is an immutable
vector with the same content as vector .

(define v (vector->immutable-vector (vector 1 2 3)))
(vector-set! v 0 0) ⇒ exception: not mutable

7.6. Fixnum-Only Vectors

Fixnum-only vectors, or “fxvectors,” are like vectors but contain only fixnums. Fxvectors
are written with the #vfx prefix in place of the # prefix for vectors, e.g., #vfx(1 2 3) or
#10vfx(2). The fxvector syntax is disabled in an input stream after #!r6rs has been seen
by the reader, unless #!chezscheme has been seen more recently.
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The length and indices of an fxvector are always fixnums.

Updating an fxvector is generally less expensive than updating a vector, since for vectors,
the system records potential assignments from older to younger objects to support gener-
ational garbage collection. The storage management system also takes advantage of the
fact that fxvectors contain no pointers to place them in an area of memory that does not
have to be traced during collection.

All fxvectors are mutable by default, including constants. A program can create immutable
fxvectors via fxvector->immutable-fxvector. Any attempt to modify an immutable fxvec-
tor causes an exception to be raised.

See also vector-set-fixnum! above.

(fxvector? obj) procedure

returns: #t if obj is an fxvector, #f otherwise
libraries: (chezscheme)

(fxvector? #vfx()) ⇒ #t
(fxvector? #vfx(1 2 3)) ⇒ #t
(fxvector? (fxvector 1 2 3)) ⇒ #t
(fxvector? ’#(a b c)) ⇒ #f
(fxvector? ’(a b c)) ⇒ #f
(fxvector? "abc") ⇒ #f

(fxvector fixnum ...) procedure

returns: an fxvector of the fixnums fixnum ...

libraries: (chezscheme)

(fxvector) ⇒ #vfx()
(fxvector 1 3 5) ⇒ #vfx(1 3 5)

(make-fxvector n) procedure

(make-fxvector n fixnum) procedure

returns: an fxvector of length n
libraries: (chezscheme)

n must be a fixnum. If fixnum is supplied, each element of the fxvector is initialized to
fixnum; otherwise, the elements are unspecified.

(make-fxvector 0) ⇒ #vfx()
(make-fxvector 0 7) ⇒ #vfx()
(make-fxvector 5 7) ⇒ #vfx(7 7 7 7 7)

(fxvector-length fxvector) procedure

returns: the number of elements in fxvector
libraries: (chezscheme)
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(fxvector-length #vfx()) ⇒ 0
(fxvector-length #vfx(1 2 3)) ⇒ 3
(fxvector-length #10vfx(1 2 3)) ⇒ 10
(fxvector-length (fxvector 1 2 3 4)) ⇒ 4
(fxvector-length (make-fxvector 300)) ⇒ 300

(fxvector-ref fxvector n) procedure

returns: the nth element (zero-based) of fxvector
libraries: (chezscheme)

n must be a nonnegative fixnum strictly less than the length of fxvector .

(fxvector-ref #vfx(-1 2 4 7) 0) ⇒ -1
(fxvector-ref #vfx(-1 2 4 7) 1) ⇒ 2
(fxvector-ref #vfx(-1 2 4 7) 3) ⇒ 7

(fxvector-set! fxvector n fixnum) procedure

returns: unspecified
libraries: (chezscheme)

fxvector must be mutable. n must be a nonnegative fixnum strictly less than the length of
fxvector . fxvector-set! changes the nth element of fxvector to fixnum.

(let ([v (fxvector 1 2 3 4 5)])
(fxvector-set! v 2 (fx- (fxvector-ref v 2)))
v) ⇒ #vfx(1 2 -3 4 5)

(fxvector-fill! fxvector fixnum) procedure

returns: unspecified
libraries: (chezscheme)

fxvector must be mutable. fxvector-fill! replaces each element of fxvector with fixnum.

(let ([v (fxvector 1 2 3)])
(fxvector-fill! v 0)
v) ⇒ #vfx(0 0 0)

(fxvector->list fxvector) procedure

returns: a list of the elements of fxvector
libraries: (chezscheme)

(fxvector->list (fxvector)) ⇒ ()
(fxvector->list #vfx(7 5 2)) ⇒ (7 5 2)

(let ([v #vfx(1 2 3 4 5)])
(apply fx* (fxvector->list v))) ⇒ 120
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(list->fxvector list) procedure

returns: an fxvector of the elements of list
libraries: (chezscheme)

list must consist entirely of fixnums.

(list->fxvector ’()) ⇒ #vfx()
(list->fxvector ’(3 5 7)) ⇒ #vfx(3 5 7)

(let ([v #vfx(1 2 3 4 5)])
(let ([ls (fxvector->list v)])
(list->fxvector (map fx* ls ls)))) ⇒ #vfx(1 4 9 16 25)

(fxvector-copy fxvector) procedure

returns: a copy of fxvector
libraries: (chezscheme)

fxvector-copy creates a new fxvector with the same length and contents as fxvector .

(fxvector-copy #vfx(3 4 5)) ⇒ #vfx(3 4 5)

(let ([v #vfx(3 4 5)])
(eq? v (fxvector-copy v))) ⇒ #f

(mutable-fxvector? obj) procedure

returns: #t if obj is a mutable fxvector, #f otherwise
(immutable-fxvector? obj) procedure

returns: #t if obj is an immutable fxvector, #f otherwise
libraries: (chezscheme)

(mutable-fxvector? (fxvector 1 2 3)) ⇒ #t
(mutable-fxvector? (fxvector->immutable-fxvector (fxvector 1 2 3))) ⇒ #f
(immutable-fxvector? (fxvector 1 2 3)) ⇒ #f
(immutable-fxvector? (fxvector->immutable-fxvector (fxvector 1 2 3))) ⇒ #t
(immutable-fxvector? (cons 3 4)) ⇒ #f

(fxvector->immutable-fxvector fxvector) procedure

returns: either an immutable copy of fxvector or fxvector itself
libraries: (chezscheme)

The result is fxvector itself if fxvector is immutable; otherwise, the result is an immutable

fxvector with the same content as fxvector .

(define v (fxvector->immutable-fxvector (fxvector 1 2 3)))
(fxvector-set! v 0 0) ⇒ exception: not mutable
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7.7. Bytevectors

As with vectors, Chez Scheme extends the syntax of bytevectors to allow the length of the

vector to be specified between the # and open parenthesis, e.g., #3vu8(1 105 73). If fewer

elements are supplied in the syntax than the specified length, each element after the last

printed element is the same as the last printed element. This extension is disabled in an

input stream after #!r6rs has been seen by the reader, unless #!chezscheme has been seen

more recently.

Chez Scheme also extends the set of bytevector primitives, including primitives for loading

and storing 3, 5, 6, and 7-byte quantities.

The length and indices of a bytevector in Chez Scheme are always fixnums.

All bytevectors are mutable by default, including constants. A program can create im-

mutable bytevectors via bytevector->immutable-bytevector. Any attempt to modify an

immutable bytevector causes an exception to be raised.

(bytevector fill ...) procedure

returns: a new bytevector containing fill ...

libraries: (chezscheme)

Each fill value must be an exact integer representing a signed or unsigned 8-bit value,

i.e., a value in the range -128 to 255 inclusive. A negative fill value is treated as its two’s

complement equivalent.

(bytevector) ⇒ #vu8()
(bytevector 1 3 5) ⇒ #vu8(1 3 5)
(bytevector -1 -3 -5) ⇒ #vu8(255 253 251)

(bytevector->s8-list bytevector) procedure

returns: a new list of the 8-bit signed elements of bytevector
libraries: (chezscheme)

The values in the returned list are exact eight-bit signed integers, i.e., values in the

range -128 to 127 inclusive. bytevector->s8-list is similar to the Revised6 Report

bytevector->u8-list except the values in the returned list are signed rather than un-

signed.

(bytevector->s8-list (make-bytevector 0)) ⇒ ()
(bytevector->s8-list #vu8(1 127 128 255)) ⇒ (1 127 -128 -1)

(let ([v #vu8(1 2 3 255)])
(apply * (bytevector->s8-list v))) ⇒ -6



7.7. Bytevectors 147

(s8-list->bytevector list) procedure

returns: a new bytevector of the elements of list
libraries: (chezscheme)

list must consist entirely of exact eight-bit signed integers, i.e., values in the range -

128 to 127 inclusive. s8-list->bytevector is similar to the Revised6 Report procedure

u8-list->bytevector, except the elements of the input list are signed rather than unsigned.

(s8-list->bytevector ’()) ⇒ #vu8()
(s8-list->bytevector ’(1 127 -128 -1)) ⇒ #vu8(1 127 128 255)

(let ([v #vu8(1 2 3 4 5)])
(let ([ls (bytevector->s8-list v)])
(s8-list->bytevector (map - ls)))) ⇒ #vu8(255 254 253 252 251)

(bytevector-truncate! bytevector n) procedure

returns: bytevector or the empty bytevector
libraries: (chezscheme)

bytevector must be mutable. n must be an exact nonnegative fixnum not greater than the

length of bytevector . If n is zero, bytevector-truncate! returns the empty bytevector.

Otherwise, bytevector-truncate! destructively truncates bytevector to its first n bytes and

returns bytevector .

(define bv (make-bytevector 7 19))
(bytevector-truncate! bv 0) ⇒ #vu8()
bv ⇒ #vu8(19 19 19 19 19 19 19)
(bytevector-truncate! bv 3) ⇒ #vu8(19 19 19)
bv ⇒ #vu8(19 19 19)
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(bytevector-u24-ref bytevector n eness) procedure

returns: the 24-bit unsigned integer at index n (zero-based) of bytevector
(bytevector-s24-ref bytevector n eness) procedure

returns: the 24-bit signed integer at index n (zero-based) of bytevector
(bytevector-u40-ref bytevector n eness) procedure

returns: the 40-bit unsigned integer at index n (zero-based) of bytevector
(bytevector-s40-ref bytevector n eness) procedure

returns: the 40-bit signed integer at index n (zero-based) of bytevector
(bytevector-u48-ref bytevector n eness) procedure

returns: the 48-bit unsigned integer at index n (zero-based) of bytevector
(bytevector-s48-ref bytevector n eness) procedure

returns: the 48-bit signed integer at index n (zero-based) of bytevector
(bytevector-u56-ref bytevector n eness) procedure

returns: the 56-bit unsigned integer at index n (zero-based) of bytevector
(bytevector-s56-ref bytevector n eness) procedure

returns: the 56-bit signed integer at index n (zero-based) of bytevector
libraries: (chezscheme)

n must be an exact nonnegative integer and indexes the starting byte of the value. The
sum of n and the number of bytes occupied by the value (3 for 24-bit values, 5 for 40-bit
values, 6 for 48-bit values, and 7 for 56-bit values) must not exceed the length of bytevector .
eness must be a valid endianness symbol naming the endianness.

The return value is an exact integer in the appropriate range for the number of bytes
occupied by the value. Signed values are the equivalent of the stored value treated as a
two’s complement value.

(bytevector-u24-set! bytevector n u24 eness) procedure

(bytevector-s24-set! bytevector n s24 eness) procedure

(bytevector-u40-set! bytevector n u40 eness) procedure

(bytevector-s40-set! bytevector n s40 eness) procedure

(bytevector-u48-set! bytevector n u48 eness) procedure

(bytevector-s48-set! bytevector n s48 eness) procedure

(bytevector-u56-set! bytevector n u56 eness) procedure

(bytevector-s56-set! bytevector n s56 eness) procedure

returns: unspecified
libraries: (chezscheme)

bytevector must be mutable. n must be an exact nonnegative integer and indexes the
starting byte of the value. The sum of n and the number of bytes occupied by the value
must not exceed the length of bytevector . u24 must be a 24-bit unsigned value, i.e., a value
in the range 0 to 224 − 1 inclusive; s24 must be a 24-bit signed value, i.e., a value in the
range −223 to 223 − 1 inclusive; u40 must be a 40-bit unsigned value, i.e., a value in the
range 0 to 240 − 1 inclusive; s40 must be a 40-bit signed value, i.e., a value in the range
−239 to 239 − 1 inclusive; u48 must be a 48-bit unsigned value, i.e., a value in the range 0
to 248 − 1 inclusive; s48 must be a 48-bit signed value, i.e., a value in the range −247 to
247−1 inclusive; u56 must be a 56-bit unsigned value, i.e., a value in the range 0 to 256−1
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inclusive; and s56 must be a 56-bit signed value, i.e., a value in the range −255 to 255 − 1

inclusive. eness must be a valid endianness symbol naming the endianness.

These procedures store the given value in the 3, 5, 6, or 7 bytes starting at index n (zero-

based) of bytevector . Negative values are stored as their two’s complement equivalent.

(mutable-bytevector? obj) procedure

returns: #t if obj is a mutable bytevector, #f otherwise
(immutable-bytevector? obj) procedure

returns: #t if obj is an immutable bytevector, #f otherwise
libraries: (chezscheme)

(mutable-bytevector? (bytevector 1 2 3)) ⇒ #t
(mutable-bytevector?

(bytevector->immutable-bytevector (bytevector 1 2 3))) ⇒ #f
(immutable-bytevector? (bytevector 1 2 3)) ⇒ #f
(immutable-bytevector?

(bytevector->immutable-bytevector (bytevector 1 2 3))) ⇒ #t
(immutable-bytevector? (cons 3 4)) ⇒ #f

(bytevector->immutable-bytevector bytevector) procedure

returns: an immutable bytevector equal to bytevector
libraries: (chezscheme)

The result is bytevector itself if bytevector is immutable; otherwise, the result is an im-

mutable bytevector with the same content as bytevector .

(define bv (bytevector->immutable-bytevector (bytevector 1 2 3)))
(bytevector-u8-set! bv 0 0) ⇒ exception: not mutable

(bytevector-compress bytevector) procedure

returns: a new bytevector containing compressed content of bytevector
libraries: (chezscheme)

The result is the raw compressed data with a minimal header to record the uncompressed

size and the compression mode. The result does not include the header that is written by

port-based compression using the compressed option.

(bytevector-uncompress bytevector) procedure

returns: a bytevector containing uncompressed content of bytevector
libraries: (chezscheme)

Uncompresses a bytevector produced by bytevector-compress to a new bytevector with

the same content as the original given to bytevector-compress.
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7.8. Boxes

Boxes are single-cell objects that are primarily useful for providing an “extra level of indi-
rection.” This extra level of indirection is typically used to allow more than one body of
code or data structure to share a reference, or pointer, to an object. For example, boxes
may be used to implement call-by-reference semantics in an interpreter for a language
employing this parameter passing discipline.

Boxes are written with the prefix #& (pronounced “hash-ampersand”). For example,
#&(a b c) is a box holding the list (a b c). The box syntax is disabled in an input
stream after #!r6rs has been seen by the reader, unless #!chezscheme has been seen more
recently.

All boxes are mutable by default, including constants. A program can create immutable
boxes via box-immutable. Any attempt to modify an immutable box causes an exception
to be raised.

(box? obj) procedure

returns: #t if obj is a box, #f otherwise
libraries: (chezscheme)

(box? ’#&a) ⇒ #t
(box? ’a) ⇒ #f
(box? (box 3)) ⇒ #t

(box obj) procedure

returns: a new box containing obj
libraries: (chezscheme)

(box ’a) ⇒ #&a
(box (box ’(a b c))) ⇒ #&#&(a b c)

(unbox box) procedure

returns: contents of box
libraries: (chezscheme)

(unbox #&a) ⇒ a
(unbox #&#&(a b c)) ⇒ #&(a b c)

(let ([b (box "hi")])
(unbox b)) ⇒ "hi"

(set-box! box obj) procedure

returns: unspecified
libraries: (chezscheme)

box must be mutable. set-box! sets the contents of box to obj .
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(let ([b (box ’x)])
(set-box! b ’y)
b) ⇒ #&y

(let ([incr!
(lambda (x)
(set-box! x (+ (unbox x) 1)))])

(let ([b (box 3)])
(incr! b)
(unbox b))) ⇒ 4

(mutable-box? obj) procedure

returns: #t if obj is a mutable box, #f otherwise
(immutable-box? obj) procedure

returns: #t if obj is an immutable box, #f otherwise
libraries: (chezscheme)

(mutable-box? (box 1)) ⇒ #t
(mutable-box? (box-immutable 1)) ⇒ #f
(immutable-box? (box 1)) ⇒ #f
(immutable-box? (box-immutable 1)) ⇒ #t
(mutable-box? (cons 3 4)) ⇒ #f

(box-immutable obj) procedure

returns: a new immutable box containing obj
libraries: (chezscheme)

Boxes are typically intended to support shared, mutable structure, so immutable boxes are
not often useful.

(define b (box-immutable 1))
(set-box! b 0) ⇒ exception: not mutable

7.9. Symbols

Chez Scheme extends the standard symbol syntax in several ways:

• Symbol names may begin with @, but ,@abc is parsed as (unquote-splicing abc);
to produce (unquote @abc) one can type , @abc, \x40;abc, or ,|@abc|.

• The single-character sequences { and } are read as symbols.

• A symbol’s name may begin with any character that might normally start a number,
including a digit, ., +, -, as long as the delimited sequence of characters starting with
that character cannot be parsed as a number.

• A symbol whose name contains arbitrary characters may be written by escaping them
with \ or with |. \ is used to escape a single character (except ’x’, since \x marks
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the start of a hex scalar value), whereas | is used to escape the group of characters

that follow it up through the matching |.

The printer always prints symbols using the standard R6RS syntax, so that, e.g., @abc

prints as \x40;abc and 1- prints as \x31;-. ’

Gensyms are printed #{ and } brackets that enclose both the “pretty” and “unique” names,

e.g., #{g1426 e5g1c94g642dssw-a}. They may also be printed using the pretty name only

with the prefix #:, e.g., #:g1426.

These extensions are disabled in an input stream after #!r6rs has been seen by the reader,

unless #!chezscheme has been seen more recently.

(gensym) procedure

(gensym pretty-name) procedure

(gensym pretty-name unique-name) procedure

returns: a unique generated symbol
libraries: (chezscheme)

Each call to gensym returns a unique generated symbol, or gensym. Each generated symbol

has two names: a “pretty” name and a “unique” name.

In the first form above, the pretty name is formed (lazily—see below) by combining an

internal prefix with the value of an internal counter. After each name is formed, the inter-

nal counter is incremented. The parameters gensym-prefix and gensym-count, described

below, may be used to access and set the internal prefix and counter. By default, the

prefix is the single-character string "g". In the second and third forms, the pretty name of

the new gensym is pretty-name, which must be a string. The pretty name of a gensym is

returned by the procedure symbol->string.

In both the first and second forms, the unique name is an automatically generated globally

unique name. Globally unique names are constructed (lazily—see below) from some com-

bination of a unique machine identifier (such as the network address), the current process

identifier (PID), and the time at which the Scheme session began, along with an internal

counter. In the third form of gensym, the unique name of the new gensym is unique-name,

which must be a string. The unique name of a gensym may be obtained via the procedure

gensym->unique-string.

The unique name allows gensyms to be written in such a way that they can be read back

and reliably commonized on input. The syntax for gensyms includes both the pretty name

and the unique name, as shown in the example below:

(gensym) ⇒ #{g0 bcsfg5eq4e9b3h9o-a}

When the parameter print-gensym is set to pretty, the printer prints the pretty name

only, with a #: syntax, so

(parameterize ([print-gensym ’pretty])
(write (gensym)))
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prints #:g0.

When the reader sees the #: syntax, it produces a gensym with the given pretty name, but
the original unique name is lost.

When the parameter is set to #f, the printer prints just the pretty name, so

(parameterize ([print-gensym #f])
(write (gensym)))

prints g0. This is useful only when gensyms do not need to be read back in as gensyms.

In order to reduce construction and (when threaded) synchronization overhead when gen-
syms are frequently created but rarely printed or stored in an object file, generated pretty
and unique names are created lazily, i.e., not until first requested, either by the printer, fasl
writer, or explicitly by one of the procedures symbol->string or gensym->unique-string.
In addition, a gensym is not placed into the system’s internal symbol table (the oblist; see
page 155) until the unique name is requested. This allows a gensym to be reclaimed by the
storage manager if no references to the gensym exist and no unique name exists by which
to access it, even if it has a top-level binding or a nonempty property list.

(define x (gensym))
x ⇒ #{g2 bcsfg5eq4e9b3h9o-c}
(symbol->string x) ⇒ "g2"
(gensym->unique-string x) ⇒ "bcsfg5eq4e9b3h9o-c"

Gensyms subsume the notion of uninterned symbols supported by earlier versions of
Chez Scheme. Similarly, the predicate uninterned-symbol? has been replaced by gensym?.

gensym-prefix thread parameter

gensym-count thread parameter

libraries: (chezscheme)

The parameters gensym-prefix and gensym-count are used to access and set the internal
prefix and counter from which the pretty name of a gensym is generated when gensym is
not given an explicit string argument. gensym-prefix defaults to the string "g" and may
be set to any object. gensym-count starts at 0 and may be set to any nonnegative integer.

As described above, Chez Scheme delays the creation of the pretty name until the name is
first requested by the printer or by an explicit call to symbol->string. These parameters
are not consulted until that time; setting them when gensym is called thus has no effect on
the generated name.

(let ([x (parameterize ([gensym-prefix "genny"]
[gensym-count 17]
[print-gensym ’pretty])

(gensym))])
(format "~s" x)) ⇒ "#{g4 bcsfg5eq4e9b3h9o-e}"

(let ([x (gensym)])
(parameterize ([gensym-prefix "genny"]

[gensym-count 17]
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[print-gensym #f])
(format "~s" (gensym)))) ⇒ "genny17"

(gensym->unique-string gensym) procedure

returns: the unique name of gensym
libraries: (chezscheme)

(gensym->unique-string (gensym)) ⇒ "bd3kufa7ypjcuvut-g"

(gensym? obj) procedure

returns: #t if obj is gensym, #f otherwise
libraries: (chezscheme)

(gensym? (string->symbol "z")) ⇒ #f
(gensym? (gensym "z")) ⇒ #t
(gensym? ’a) ⇒ #f
(gensym? 3) ⇒ #f
(gensym? (gensym)) ⇒ #t
(gensym? ’#{g2 bcsfg5eq4e9b3h9o-c}) ⇒ #t

(putprop symbol key value) procedure

returns: unspecified
libraries: (chezscheme)

Chez Scheme associates a property list with each symbol, allowing multiple key-value pairs
to be stored directly with the symbol. New key-value pairs may be placed in the property
list or retrieved in a manner analogous to the use of association lists, using the procedures
putprop and getprop. Property lists are often used to store information related to the
symbol itself. For example, a natural language program might use symbols to represent
words, using their property lists to store information about use and meaning.

putprop associates value with key on the property list of symbol . key and value may be
any types of object, although key is typically a symbol.

putprop may be used to establish a new property or to change an existing property.

See the examples under getprop below.

(getprop symbol key) procedure

(getprop symbol key default) procedure

returns: the value associated with key on the property list of symbol
libraries: (chezscheme)

getprop searches the property list of symbol for a key identical to key (in the sense of eq?),
and returns the value associated with this key, if any. If no value is associated with key on
the property list of symbol , getprop returns default , or #f if the default argument is not
supplied.
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(putprop ’fred ’species ’snurd)
(putprop ’fred ’age 4)
(putprop ’fred ’colors ’(black white))

(getprop ’fred ’species) ⇒ snurd
(getprop ’fred ’colors) ⇒ (black white)
(getprop ’fred ’nonkey) ⇒ #f
(getprop ’fred ’nonkey ’unknown) ⇒ unknown

(putprop ’fred ’species #f)
(getprop ’fred ’species ’unknown) ⇒ #f

(remprop symbol key) procedure

returns: unspecified
libraries: (chezscheme)

remprop removes the property with key key from the property list of symbol , if such a
property exists.

(putprop ’fred ’species ’snurd)
(getprop ’fred ’species) ⇒ snurd

(remprop ’fred ’species)
(getprop ’fred ’species ’unknown) ⇒ unknown

(property-list symbol) procedure

returns: a copy of the internal property list for symbol
libraries: (chezscheme)

A property list is a list of alternating keys and values, i.e., (key value ...).

(putprop ’fred ’species ’snurd)
(putprop ’fred ’colors ’(black white))
(property-list ’fred) ⇒ (colors (black white) species snurd)

(oblist) procedure

returns: a list of interned symbols
libraries: (chezscheme)

The system maintains an internal symbol table used to insure that any two occurrences of
the same symbol name resolve to the same symbol object. The oblist procedure returns
a list of the symbols currently in this symbol table.

The list of interned symbols grows when a new symbol is introduced into the system or
when the unique name of a gensym (see page 152) is requested. It shrinks when the garbage
collector determines that it is safe to discard a symbol. It is safe to discard a symbol only
if the symbol is not accessible except through the oblist, has no top-level binding, and has
no properties on its property list.
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(if (memq ’tiger (oblist)) ’yes ’no) ⇒ yes
(equal? (oblist) (oblist)) ⇒ #t
(= (length (oblist)) (length (oblist))) ⇒ #t or #f

The first example above follows from the property that all interned symbols are in the

oblist from the time they are read, which happens prior to evaluation. The second example

follows from the fact that no symbols can be removed from the oblist while references

to those symbols exist, in this case, within the list returned by the first call to oblist

(whichever call is performed first). The expression in the third example can return #f only

if a garbage collection occurs sometime between the two calls to oblist, and only if one or

more symbols are removed from the oblist by that collection.

7.10. Void

Many Scheme operations return an unspecified result. Chez Scheme typically returns a spe-

cial void object when the value returned by an operation is unspecified. The Chez Scheme

void object is not meant to be used as a datum, and consequently does not have a reader

syntax. As for other objects without a reader syntax, such as procedures and ports,

Chez Scheme output procedures print the void object using a nonreadable representa-

tion, i.e., #<void>. Since the void object should be returned only by operations that do

not have “interesting” values, the default waiter printer (see waiter-write) suppresses the

printing of the void object. set!, set-car!, load, and write are examples of Chez Scheme

operations that return the void object.

(void) procedure

returns: the void object
libraries: (chezscheme)

void is a procedure of no arguments that returns the void object. It can be used to force

expressions that are used for effect or whose values are otherwise unspecified to evaluate to a

consistent, trivial value. Since most Chez Scheme operations that are used for effect return

the void object, however, it is rarely necessary to explicitly invoke the void procedure.

Since the void object is used explicitly as an “unspecified” value, it is a bad idea to use it

for any other purpose or to count on any given expression evaluating to the void object.

The default waiter printer suppresses the void object; that is, nothing is printed for ex-

pressions that evaluate to the void object.

(eq? (void) #f) ⇒ #f
(eq? (void) #t) ⇒ #f
(eq? (void) ’()) ⇒ #f
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7.11. Sorting

(sort predicate list) procedure

(sort! predicate list) procedure

returns: a list containing the elements of list sorted according to predicate
libraries: (chezscheme)

sort is identical to the Revised6 Report list-sort, and sort! is a destructive version of
sort, i.e., it reuses pairs from the input list to form the output list.

(sort < ’(3 4 2 1 2 5)) ⇒ (1 2 2 3 4 5)
(sort! < ’(3 4 2 1 2 5)) ⇒ (1 2 2 3 4 5)

(merge predicate list1 list2) procedure

(merge! predicate list1 list2) procedure

returns: list1 merged with list2 in the order specified by predicate
libraries: (chezscheme)

predicate should be a procedure that expects two arguments and returns #t if its first
argument must precede its second in the merged list. It should not have any side effects.
That is, if predicate is applied to two objects x and y , where x is taken from the second
list and y is taken from the first list, it should return true only if x should appear before
y in the output list. If this constraint is met, merge and merge! are stable, in that items
from list1 are placed in front of equivalent items from list2 in the output list. Duplicate
elements are included in the merged list.

merge! combines the lists destructively, using pairs from the input lists to form the output
list.

(merge char<?
’(#\a #\c)
’(#\b #\c #\d)) ⇒ (#\a #\b #\c #\c #\d)

(merge <
’(1/2 2/3 3/4)
’(0.5 0.6 0.7)) ⇒ (1/2 0.5 0.6 2/3 0.7 3/4)

7.12. Hashtables

Chez Scheme provides several extensions to the hashtable mechanism, including a mecha-
nism for directly accessing a key, value pair in a hashtable, support for weak eq and eqv
hashtables, and a set of procedures specialized to eq and symbol hashtables.

(hashtable-cell hashtable key default) procedure

returns: a pair (see below)
libraries: (chezscheme)

hashtable must be a hashtable. key and default may be any Scheme values.
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If no value is associated with key in hashtable, hashtable-cell modifies hashtable to asso-
ciate key with default . It returns a pair whose car is key and whose cdr is the associated
value. Changing the cdr of this pair effectively updates the table to associate key with a
new value. The key in the car field should not be changed. The advantage of this procedure
over the Revised6 Report procedures for manipulating hashtable entries is that the value
associated with a key may be read or written many times with only a single hashtable
lookup.

(define ht (make-eq-hashtable))
(define v (vector ’a ’b ’c))
(define cell (hashtable-cell ht v 3))
cell ⇒ (#(a b c) . 3)
(hashtable-ref ht v 0) ⇒ 3
(set-cdr! cell 4)
(hashtable-ref ht v 0) ⇒ 4

(hashtable-values hashtable) procedure

returns: a vector containing the values in hashtable
libraries: (chezscheme)

Each value is the value of one of the keys in hashtable. Duplicate values are not removed.
The values may appear in any order in the returned vector.

(define ht (make-eq-hashtable))
(define p1 (cons ’a ’b))
(define p2 (cons ’a ’b))
(hashtable-set! ht p1 "one")
(hashtable-set! ht p2 "two")
(hashtable-set! ht ’q "two")
(hashtable-values ht) ⇒ #("one" "two" "two")

This procedure is equivalent to:

(lambda (ht)
(let-values ([(keys values) (hashtable-entries ht)])
values))

but more efficient since the separate vector of keys need not be created.

(make-weak-eq-hashtable) procedure

(make-weak-eq-hashtable size) procedure

(make-weak-eqv-hashtable) procedure

(make-weak-eqv-hashtable size) procedure

returns: a new weak eq hashtable
libraries: (chezscheme)

These procedures are like the Revised6 Report procedures make-eq-hashtable and
make-eqv-hashtable except the keys of the hashtable are held weakly, i.e., they are not
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protected from the garbage collector. Keys reclaimed by the garbage collector are removed
from the table, and their associated values are dropped the next time the table is modified,
if not sooner.

Values in the hashtable are referenced normally as long as the key is not reclaimed,
since keys are paired values using weak pairs. Consequently, if a value in the hashtable
refers to its own key, then garbage collection is prevented from reclaiming the key. See
make-ephemeron-eq-hashtable and make-ephemeron-eqv-hashtable.

A copy of a weak eq or eqv hashtable created by hashtable-copy is also weak. If the
copy is immutable, inaccessible keys may still be dropped from the hashtable, even though
the contents of the table is otherwise unchanging. The effect of this can be observed via
hashtable-keys and hashtable-entries.

(define ht1 (make-weak-eq-hashtable))
(define ht2 (make-weak-eq-hashtable 32))

(make-ephemeron-eq-hashtable) procedure

(make-ephemeron-eq-hashtable size) procedure

(make-ephemeron-eqv-hashtable) procedure

(make-ephemeron-eqv-hashtable size) procedure

returns: a new ephemeron eq hashtable
libraries: (chezscheme)

These procedures are like make-weak-eq-hashtable and make-weak-eqv-hashtable, but a
value in the hashtable can refer to a key in the hashtable (directly or indirectly) without
preventing garbage collection from reclaiming the key, because keys are paired with values
using ephemeron pairs.

A copy of an ephemeron eq or eqv hashtable created by hashtable-copy is also an
ephemeron table, and an inaccesible key can be dropped from an immutable ephemeron
hashtable in the same way as for an immutable weak hashtable.

(define ht1 (make-ephemeron-eq-hashtable))
(define ht2 (make-ephemeron-eq-hashtable 32))

(hashtable-weak? obj) procedure

returns: #t if obj is a weak eq or eqv hashtable, #f otherwise
libraries: (chezscheme)

(define ht1 (make-weak-eq-hashtable))
(define ht2 (hashtable-copy ht1))
(hashtable-weak? ht2) ⇒ #t

(hashtable-ephemeron? obj) procedure

returns: #t if obj is an ephemeron eq or eqv hashtable, #f otherwise
libraries: (chezscheme)
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(define ht1 (make-ephemeron-eq-hashtable))
(define ht2 (hashtable-copy ht1))
(hashtable-ephemeron? ht2) ⇒ #t

(eq-hashtable? obj) procedure

returns: #t if obj is an eq hashtable, #f otherwise
libraries: (chezscheme)

(eq-hashtable? (make-eq-hashtable)) ⇒ #t
(eq-hashtable? ’(not a hash table)) ⇒ #f

(eq-hashtable-weak? hashtable) procedure

returns: #t if hashtable is weak, #f otherwise
libraries: (chezscheme)

hashtable must be an eq hashtable.

(eq-hashtable-weak? (make-eq-hashtable)) ⇒ #f
(eq-hashtable-weak? (make-weak-eq-hashtable)) ⇒ #t

(eq-hashtable-ephemeron? hashtable) procedure

returns: #t if hashtable uses ephemeron pairs, #f otherwise
libraries: (chezscheme)

hashtable must be an eq hashtable.

(eq-hashtable-ephemeron? (make-eq-hashtable)) ⇒ #f
(eq-hashtable-ephemeron? (make-ephemeron-eq-hashtable)) ⇒ #t

(eq-hashtable-set! hashtable key value) procedure

returns: unspecified
libraries: (chezscheme)

hashtable must be a mutable eq hashtable. key and value may be any Scheme values.

eq-hashtable-set! associates the value value with the key key in hashtable.

(define ht (make-eq-hashtable))
(eq-hashtable-set! ht ’a 73)

(eq-hashtable-ref hashtable key default) procedure

returns: see below
libraries: (chezscheme)

hashtable must be an eq hashtable. key and default may be any Scheme values.
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eq-hashtable-ref returns the value associated with key in hashtable. If no value is asso-

ciated with key in hashtable, eq-hashtable-ref returns default .

(define ht (make-eq-hashtable))
(define p1 (cons ’a ’b))
(define p2 (cons ’a ’b))
(eq-hashtable-set! ht p1 73)
(eq-hashtable-ref ht p1 55) ⇒ 73
(eq-hashtable-ref ht p2 55) ⇒ 55

(eq-hashtable-contains? hashtable key) procedure

returns: #t if an association for key exists in hashtable, #f otherwise
libraries: (chezscheme)

hashtable must be an eq hashtable. key may be any Scheme value.

(define ht (make-eq-hashtable))
(define p1 (cons ’a ’b))
(define p2 (cons ’a ’b))
(eq-hashtable-set! ht p1 73)
(eq-hashtable-contains? ht p1) ⇒ #t
(eq-hashtable-contains? ht p2) ⇒ #f

(eq-hashtable-update! hashtable key procedure default) procedure

returns: unspecified
libraries: (chezscheme)

hashtable must be a mutable eq hashtable. key and default may be any Scheme values.

procedure should accept one argument, should return one value, and should not modify

hashtable.

eq-hashtable-update! applies procedure to the value associated with key in hashtable,

or to default if no value is associated with key in hashtable. If procedure returns,

eq-hashtable-update! associates key with the value returned by procedure, replacing the

old association, if any.

A version of eq-hashtable-update! that does not verify that it receives arguments of the

proper type might be defined as follows.

(define eq-hashtable-update!
(lambda (ht key proc value)
(eq-hashtable-set! ht key

(proc (eq-hashtable-ref ht key value)))))

An implementation may, however, be able to implement eq-hashtable-update! more effi-

ciently by avoiding multiple hash computations and hashtable lookups.
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(define ht (make-eq-hashtable))
(eq-hashtable-update! ht ’a

(lambda (x) (* x 2))
55)

(eq-hashtable-ref ht ’a 0) ⇒ 110
(eq-hashtable-update! ht ’a

(lambda (x) (* x 2))
0)

(eq-hashtable-ref ht ’a 0) ⇒ 220

(eq-hashtable-cell hashtable key default) procedure

returns: a pair (see below)
libraries: (chezscheme)

hashtable must be an eq hashtable. key and default may be any Scheme values.

If no value is associated with key in hashtable, eq-hashtable-cell modifies hashtable to

associate key with default . It returns a pair whose car is key and whose cdr is the associated

value. Changing the cdr of this pair effectively updates the table to associate key with a

new value. The key should not be changed.

(define ht (make-eq-hashtable))
(define v (vector ’a ’b ’c))
(define cell (eq-hashtable-cell ht v 3))
cell ⇒ (#(a b c) . 3)
(eq-hashtable-ref ht v 0) ⇒ 3
(set-cdr! cell 4)
(eq-hashtable-ref ht v 0) ⇒ 4

(eq-hashtable-delete! hashtable key) procedure

returns: unspecified
libraries: (chezscheme)

hashtable must be a mutable eq hashtable. key may be any Scheme value.

eq-hashtable-delete! drops any association for key from hashtable.

(define ht (make-eq-hashtable))
(define p1 (cons ’a ’b))
(define p2 (cons ’a ’b))
(eq-hashtable-set! ht p1 73)
(eq-hashtable-contains? ht p1) ⇒ #t
(eq-hashtable-delete! ht p1)
(eq-hashtable-contains? ht p1) ⇒ #f
(eq-hashtable-contains? ht p2) ⇒ #f
(eq-hashtable-delete! ht p2)
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(symbol-hashtable? obj) procedure

returns: #t if obj is an eq hashtable, #f otherwise
libraries: (chezscheme)

(symbol-hashtable? (make-hashtable symbol-hash eq?)) ⇒ #t
(symbol-hashtable? (make-eq-hashtable)) ⇒ #f

(symbol-hashtable-set! hashtable key value) procedure

returns: unspecified
libraries: (chezscheme)

hashtable must be a mutable symbol hashtable. (A symbol hashtable is a hashtable created
with hash function symbol-hash and equivalence function eq?, eqv?, equal?, or symbol=?.)
key must be a symbol, and value may be any Scheme value.

symbol-hashtable-set! associates the value value with the key key in hashtable.

(define ht (make-hashtable symbol-hash eq?))
(symbol-hashtable-ref ht ’a #f) ⇒ #f
(symbol-hashtable-set! ht ’a 73)
(symbol-hashtable-ref ht ’a #f) ⇒ 73

(symbol-hashtable-ref hashtable key default) procedure

returns: see below
libraries: (chezscheme)

hashtable must be a symbol hashtable. (A symbol hashtable is a hashtable created with
hash function symbol-hash and equivalence function eq?, eqv?, equal?, or symbol=?.) key
must be a symbol, and default may be any Scheme value.

symbol-hashtable-ref returns the value associated with key in hashtable. If no value is
associated with key in hashtable, symbol-hashtable-ref returns default .

(define ht (make-hashtable symbol-hash eq?))
(define k1 ’abcd)
(define k2 ’not-abcd)
(symbol-hashtable-set! ht k1 "hi")
(symbol-hashtable-ref ht k1 "bye") ⇒ "hi"
(symbol-hashtable-ref ht k2 "bye") ⇒ "bye"

(symbol-hashtable-contains? hashtable key) procedure

returns: #t if an association for key exists in hashtable, #f otherwise
libraries: (chezscheme)

hashtable must be a symbol hashtable. (A symbol hashtable is a hashtable created with
hash function symbol-hash and equivalence function eq?, eqv?, equal?, or symbol=?.) key
must be a symbol.
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(define ht (make-hashtable symbol-hash eq?))
(define k1 ’abcd)
(define k2 ’not-abcd)
(symbol-hashtable-set! ht k1 "hi")
(symbol-hashtable-contains? ht k1) ⇒ #t
(symbol-hashtable-contains? ht k2 ) ⇒ #f

(symbol-hashtable-update! hashtable key procedure default) procedure

returns: unspecified
libraries: (chezscheme)

hashtable must be a mutable symbol hashtable. (A symbol hashtable is a hashtable created
with hash function symbol-hash and equivalence function eq?, eqv?, equal?, or symbol=?.)
key must be a symbol, and default may be any Scheme value. procedure should accept one
argument, should return one value, and should not modify hashtable.

symbol-hashtable-update! applies procedure to the value associated with key in hashtable,
or to default if no value is associated with key in hashtable. If procedure returns,
symbol-hashtable-update! associates key with the value returned by procedure, replac-
ing the old association, if any.

A version of symbol-hashtable-update! that does not verify that it receives arguments of
the proper type might be defined as follows.

(define symbol-hashtable-update!
(lambda (ht key proc value)
(symbol-hashtable-set! ht key

(proc (symbol-hashtable-ref ht key value)))))

An implementation may, however, be able to implement symbol-hashtable-update! more
efficiently by avoiding multiple hash computations and hashtable lookups.

(define ht (make-hashtable symbol-hash eq?))
(symbol-hashtable-update! ht ’a

(lambda (x) (* x 2))
55)

(symbol-hashtable-ref ht ’a 0) ⇒ 110
(symbol-hashtable-update! ht ’a

(lambda (x) (* x 2))
0)

(symbol-hashtable-ref ht ’a 0) ⇒ 220

(symbol-hashtable-cell hashtable key default) procedure

returns: a pair (see below)
libraries: (chezscheme)

hashtable must be a mutable symbol hashtable. (A symbol hashtable is a hashtable created
with hash function symbol-hash and equivalence function eq?, eqv?, equal?, or symbol=?.)
key must be a symbol, and default may be any Scheme value.
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If no value is associated with key in hashtable, symbol-hashtable-cell modifies hashtable

to associate key with default . It returns a pair whose car is key and whose cdr is the

associated value. Changing the cdr of this pair effectively updates the table to associate

key with a new value. The key should not be changed.

(define ht (make-hashtable symbol-hash eq?))
(define k ’a-key)
(define cell (symbol-hashtable-cell ht k 3))
cell ⇒ (a-key . 3)
(symbol-hashtable-ref ht k 0) ⇒ 3
(set-cdr! cell 4)
(symbol-hashtable-ref ht k 0) ⇒ 4

(symbol-hashtable-delete! hashtable key) procedure

returns: unspecified
libraries: (chezscheme)

hashtable must be a mutable symbol hashtable. (A symbol hashtable is a hashtable created

with hash function symbol-hash and equivalence function eq?, eqv?, equal?, or symbol=?.)

key must be a symbol.

symbol-hashtable-delete! drops any association for key from hashtable.

(define ht (make-hashtable symbol-hash eq?))
(define k1 (gensym))
(define k2 (gensym))
(symbol-hashtable-set! ht k1 73)
(symbol-hashtable-contains? ht k1) ⇒ #t
(symbol-hashtable-delete! ht k1)
(symbol-hashtable-contains? ht k1) ⇒ #f
(symbol-hashtable-contains? ht k2) ⇒ #f
(symbol-hashtable-delete! ht k2)

7.13. Record Types

Chez Scheme extends the Revised6 Report’s define-record-type syntax in one way, which

is that it allows a generative record type to be declared explicitly as such (in a double-

negative sort of way) by including a nongenerative clause with #f as the uid, i.e.:

(nongenerative #f)

This can be used in conjunction with the parameter require-nongenerative-clause to

catch the accidental use of generative record types while avoiding spurious errors for record

types that must be generative. Generative record types are rarely needed and are gen-

erally less efficient since a run-time representation of the type is created each time the

define-record-clause is evaluated, rather than once at compile (expansion) time.
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require-nongenerative-clause thread parameter

libraries: (chezscheme)

This parameter holds a boolean value that determines whether define-record-type re-

quires a nongenerative clause. The default value is #f. The lead-in above describes why

one might want to set this to #t.

7.14. Record Equality and Hashing

By default, the equal? primitive compares record instances using eq?, i.e., it distinguishes

non-eq? instances even if they are of the same type and have equal contents. A program

can override this behavior for instances of a record type (and its subtypes that do not

have their own equality procedures) by using record-type-equal-procedure to associate

an equality procedure with the record-type descriptor (rtd) that describes the record type.

When comparing two eq? instances, equal? always returns #t. When comparing two

non-eq? instances that share an equality procedure equal-proc, equal? uses equal-proc

to compare the instances. Two instances x and y share an equality procedure if they

inherit an equality procedure from the same point in the inheritance chain, i.e., if

(record-equal-procedure x y) returns a procedure (equal-proc) rather than #f. equal?

passes equal-proc three arguments: the two instances plus a eql? procedure that should

be used for recursive comparison of values within the two instances. Use of eql? for re-

cursive comparison is necessary to allow comparison of potentially cyclic structure. When

comparing two non-eq? instances that do not share an equality procedure, equal? returns

#f.

A default equality procedure to be used for all record types (including opaque types) can

be specified via the parameter default-record-equal-procedure. The default equality

procedure is used only if neither instance’s type has or inherits a type-specific record

equality procedure.

Similarly, when the equal-hash primitive hashes a record instance, it defaults to a value

that is independent of the record type and contents of the instance. A program can override

this behavior for instances of a record type by using record-type-hash-procedure to asso-

ciate a hash procedure with the record-type descriptor (rtd) that describes the record type.

The procedure record-hash-procedure can be used to find the hash procedure for a given

record instance, following the inheritance chain. equal-hash passes the hash procedure two

arguments: the instance plus a hash procedure that should be used for recursive hashing of

values within the instance. Use of hash for recursive hashing is necessary to allow hashing

of potentially cyclic structure and to make the hashing of shared structure more efficient.

A default hash procedure to be used for all record types (including opaque types) can be

specified via the parameter default-record-hash-procedure. The default hash procedure

is used only if an instance’s type does not have or inherit a type-specific hash procedure.

The following example illustrates the setting of equality and hash procedures.
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(define-record-type marble
(nongenerative)
(fields color quality))

(record-type-equal-procedure (record-type-descriptor marble)) ⇒ #f
(equal? (make-marble ’blue ’medium) (make-marble ’blue ’medium)) ⇒ #f
(equal? (make-marble ’blue ’medium) (make-marble ’blue ’high)) ⇒ #f

; Treat marbles as equal when they have the same color
(record-type-equal-procedure (record-type-descriptor marble)

(lambda (m1 m2 eql?)
(eql? (marble-color m1) (marble-color m2))))

(record-type-hash-procedure (record-type-descriptor marble)
(lambda (m hash)
(hash (marble-color m))))

(equal? (make-marble ’blue ’medium) (make-marble ’blue ’high)) ⇒ #t
(equal? (make-marble ’red ’high) (make-marble ’blue ’high)) ⇒ #f

(define ht (make-hashtable equal-hash equal?))
(hashtable-set! ht (make-marble ’blue ’medium) "glass")
(hashtable-ref ht (make-marble ’blue ’high) #f) ⇒ "glass"

(define-record-type shooter
(nongenerative)
(parent marble)
(fields size))

(equal? (make-marble ’blue ’medium) (make-shooter ’blue ’large 17)) ⇒ #t
(equal? (make-shooter ’blue ’large 17) (make-marble ’blue ’medium)) ⇒ #t
(hashtable-ref ht (make-shooter ’blue ’high 17) #f) ⇒ "glass"

This example illustrates the application of equality and hash procedures to cyclic record

structures.

(define-record-type node
(nongenerative)
(fields (mutable left) (mutable right)))

(record-type-equal-procedure (record-type-descriptor node)
(lambda (x y e?)
(and

(e? (node-left x) (node-left y))
(e? (node-right x) (node-right y)))))

(record-type-hash-procedure (record-type-descriptor node)
(lambda (x hash)
(+ (hash (node-left x)) (hash (node-right x)) 23)))

(define graph1
(let ([x (make-node "a" (make-node #f "b"))])
(node-left-set! (node-right x) x)
x))

(define graph2
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(let ([x (make-node "a" (make-node (make-node "a" #f) "b"))])
(node-right-set! (node-left (node-right x)) (node-right x))
x))

(define graph3
(let ([x (make-node "a" (make-node #f "c"))])
(node-left-set! (node-right x) x)
x))

(equal? graph1 graph2) ⇒ #t
(equal? graph1 graph3) ⇒ #f
(equal? graph2 graph3) ⇒ #f

(define h (make-hashtable equal-hash equal?))
(hashtable-set! h graph1 #t)
(hashtable-ref h graph1 #f) ⇒ #t
(hashtable-ref h graph2 #f) ⇒ #t
(hashtable-ref h graph3 #f) ⇒ #f

(record-type-equal-procedure rtd equal-proc) procedure

returns: unspecified
(record-type-equal-procedure rtd) procedure

returns: equality procedure associated with rtd , if any, otherwise #f

libraries: (chezscheme)

In the first form, equal-proc must be a procedure or #f. If equal-proc is a procedure, a new

association between rtd and equal-proc is established, replacing any existing such associa-

tion. If equal-proc is #f, any existing association between rtd and an equality procedure is

dropped.

In the second form, record-type-equal-procedure returns the equality procedure associ-

ated with rtd , if any, otherwise #f.

When changing a record type’s equality procedure, the record type’s hash procedure, if

any, should be updated if necessary to maintain the property that it produces the same

hash value for any two instances the equality procedure considers equal.

(record-equal-procedure record1 record2) procedure

returns: the shared equality procedure for record1 and record2, if there is one, otherwise
#f

libraries: (chezscheme)

record-equal-procedure traverses the inheritance chains for both record instances in an

attempt to find the most specific type for each that is associated with an equality procedure,

if any. If such type is found and is the same for both instances, the equality procedure

associated with the type is returned. Otherwise, #f is returned.
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(record-type-hash-procedure rtd hash-proc) procedure

returns: unspecified
(record-type-hash-procedure rtd) procedure

returns: hash procedure associated with rtd , if any, otherwise #f

libraries: (chezscheme)

In the first form, hash-proc must be a procedure or #f. If hash-proc is a procedure, a new
association between rtd and hash-proc is established, replacing any existing such associ-
ation. If hash-proc is #f, any existing association between rtd and a hash procedure is
dropped.

In the second form, record-type-hash-procedure returns the hash procedure associated
with rtd , if any, otherwise #f.

The procedure hash-proc should accept two arguments, the instance for which it should
compute a hash value and a hash procedure to use to compute hash values for arbitrary
fields of the instance, and it return a nonnegative exact integer. A record type’s hash
procedure should produce the same hash value for any two instances the record type’s
equality procedure considers equal.

(record-hash-procedure record) procedure

returns: the hash procedure for record , if there is one, otherwise #f

libraries: (chezscheme)

record-hash-procedure traverses the inheritance chain for the record instance in an at-
tempt to find the most specific type that is associated with a hash procedure, if any. If
such type is found, the hash procedure associated with the type is returned. Otherwise, #f
is returned.

default-record-equal-procedure thread parameter

libraries: (chezscheme)

This parameter determines how two record instances are compared by equal? if neither
has a type-specific equality procedure. When the parameter has the value #f (the default),
equal? compares the instances with eq?, i.e., there is no attempt at determining structural
equivalence. Otherwise, the parameter’s value must be a procedure, and equal? invokes
that procedure to compare the instances, passing it three arguments: the two instances
and a procedure that should be used to recursively compare arbitrary values within the
instances.

default-record-hash-procedure thread parameter

libraries: (chezscheme)

This parameter determines the hash procedure used when equal-hash is called on a record
instance and the instance does not have a type-specific hash procedure. When the pa-
rameter has the value #f (the default), equal-hash returns a value that is independent of
the record type and contents of the instance. Otherwise, the parameter’s value must be
a procedure, and equal-hash invokes the procedure to compute the instance’s hash value,
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passing it the record instance and a procedure to invoke to recursively compute hash values
for arbitrary values contained within the record. The procedure should return a nonneg-
ative exact integer, and the return value should be the same for any two instances the
default equal procedure considers equivalent.

7.15. Legacy Record Types

In addition to the Revised6 Report record-type creation and definition mechanisms,
which are described in Chapter 9 of The Scheme Programming Language, 4th Edition,
Chez Scheme continues to support pre-R6RS mechanisms for creating new data types, or
record types, with fixed sets of named fields. Many of the procedures described in this
section are available only when imported from the (chezscheme csv7) library.

Code intended to be portable should use the R6RS mechanism instead.

Records may be defined via the define-record syntactic form or via the make-record-type

procedure. The underlying representation of records and record-type descriptors is the same
for the Revised6 Report mechanism and the alternative mechanism. Record types created
by one can be used as parent record types for the other via the procedural mechanisms,
though not via the syntactic mechanisms.

The syntactic (define-record) interface is the most commonly used interface. Each
define-record form defines a constructor procedure for records of the new type, a type
predicate that returns true only for records of the new type, an access procedure for each
field, and an assignment procedure for each mutable field. For example,

(define-record point (x y))

creates a new point record type with two fields, x and y, and defines the following proce-
dures:

(make-point x y) constructor
(point? obj) predicate
(point-x p) accessor for field x

(point-y p) accessor for field y

(set-point-x! p obj) mutator for field x

(set-point-y! p obj) mutator for field y

The names of these procedures follow a regular naming convention by default, but the
programmer can override the defaults if desired. define-record allows the programmer to
control which fields are arguments to the generated constructor procedure and which are
explicitly initialized by the constructor procedure. Fields are mutable by default, but may
be declared immutable. Fields can generally contain any Scheme value, but the internal
representation of each field may be specified, which places implicit constraints on the type
of value that may be stored there. These customization options are covered in the formal
description of define-record later in this section.

The procedural (make-record-type) interface may be used to implement interpreters that
must handle define-record forms. Each call to make-record-type returns a record-type
descriptor representing the record type. Using this record-type descriptor, programs may
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generate constructors, type predicates, field accessors, and field mutators dynamically. The
following code demonstrates how the procedural interface might be used to create a similar
point record type and associated definitions.

(define point (make-record-type "point" ’(x y)))
(define make-point (record-constructor point))
(define point? (record-predicate point))
(define point-x (record-field-accessor point ’x))
(define point-y (record-field-accessor point ’y))
(define set-point-x! (record-field-mutator point ’x))
(define set-point-y! (record-field-mutator point ’y))

The procedural interface is more flexible than the syntactic interface, but this flexibility can
lead to less readable programs and compromises the compiler’s ability to generate efficient
code. Programmers should use the syntactic interface whenever it suffices.

A record-type descriptor may also be extracted from an instance of a record type, whether
the record type was produced by define-record or make-record-type, and the extracted
descriptor may also be used to produce constructors, predicates, accessors, and mutators,
with a few limitations noted in the description of record-type-descriptor below. This is
a powerful feature that permits the coding of portable printers and object inspectors. For
example, the printer employs this feature in its default record printer, and the inspector uses
it to allow inspection and mutation of system- and user-defined records during debugging.

A parent record may be specified in the define-record syntax or as an optional argument
to make-record-type. A new record inherits the parent record’s fields, and each instance
of the new record type is considered to be an instance of the parent type as well, so that
accessors and mutators for the parent type may be used on instances of the new type.

Record type definitions may be classified as either generative or nongenerative. A new type
results for each generative record definition, while only one type results for all occurrences
of a given nongenerative record definition. This distinction is important semantically since
record accessors and setters are applicable only to objects with the same type.

Syntactic (define-record) record definitions are expand-time generative by default, which
means that a new record is created when the code is expanded. Expansion happens once
for each form prior to compilation or interpretation, as when it is entered interactively,
loaded from source, or compiled by compile-file. As a result, multiple evaluations of a
single define-record form, e.g., in the body of a procedure called multiple times, always
produce the same record type.

Separate define-record forms usually produce different types, even if the forms are tex-
tually identical. The only exception occurs when the name of a record is specified as a
generated symbol, or gensym (page 152). Multiple copies of a record definition whose
name is given by a gensym always produce the same record type; i.e., such definitions are
nongenerative. Each copy of the record definition must contain the same fields and field
modifiers in the same order; an exception is raised with condition-type &assertion when
two differing record types with the same generated name are loaded into the same Scheme
process.

Procedural (make-record-type) record definitions are run-time generative by default. That
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is, each call to make-record-type usually produces a new record type. As with the syntactic
interface, the only exception occurs when the name of the record is specified as a gensym,
in which case the record type is fully nongenerative.

By default, a record is printed with the syntax

#[type-name field ...]

where field ... are the printed representations of the contents of the fields of the record,
and type-name is a generated symbol, or gensym (page 152), that uniquely identifies the
record type. For nongenerative records, type-name is the gensym provided by the program.
Otherwise, it is a gensym whose “pretty” name (page 152) is the name given to the record
by define-record or make-record-type.

The default printing of records of a given type may be overridden with record-writer.

The default syntax may be used as input to the reader as well, as long as the corresponding
record type has already been defined in the Scheme session in which the read occurs. The
parameter record-reader may be used to specify a different name to be recognized by the
reader in place of the generated name. Specifying a different name in this manner also
changes the name used when the record is printed. This reader extension is disabled in an
input stream after #!r6rs has been seen by the reader, unless #!chezscheme has been seen
more recently.

The mark (#n=) and reference (#n#) syntaxes may be used within the record syntax, with
the result of creating shared or cyclic structure as desired. All cycles must be resolvable,
however, without mutation of an immutable record field. That is, any cycle must contain at
least one pointer through a mutable field, whether it is a mutable record field or a mutable
field of a built-in object type such as a pair or vector.

When the parameter print-record is set to #f, records are printed using the simpler syntax

#<record of type name>

where name is the “pretty” name of the record (not the full gensym) or the reader name
first assigned to the record type.

(define-record name (fld1 ...) ((fld2 init) ...) (opt ...)) syntax

(define-record name parent (fld1 ...) ((fld2 init) ...) (opt ...)) syntax

returns: unspecified
libraries: (chezscheme)

A define-record form is a definition and may appear anywhere and only where other
definitions may appear.

define-record creates a new record type containing a specified set of named fields and
defines a set of procedures for creating and manipulating instances of the record type.

name must be an identifier. If name is a generated symbol (gensym), the record definition
is nongenerative, otherwise it is expand-time generative. (See the discussion of generativity
earlier in this section.)
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Each fld must be an identifier field-name, or it must take the form

(class type field-name)

where class and type are optional and field-name is an identifier. class, if present, must be
the keyword immutable or the keyword mutable. If the immutable class specifier is present,
the field is immutable; otherwise, the field is mutable. type, if present, specifies how the
field is represented, as described below.

ptr any Scheme object
scheme-object same as ptr

int a C int

unsigned a C unsigned int

short a C short

unsigned-short a C unsigned short

long a C long

unsigned-long a C unsigned long

iptr a signed integer the size of a ptr

uptr an unsigned integer the size of a ptr

float a C float

double a C double

integer-8 an eight-bit signed integer
unsigned-8 an eight-bit unsigned integer
integer-16 a 16-bit signed integer
unsigned-16 a 16-bit unsigned integer
integer-32 a 32-bit signed integer
unsigned-32 a 32-bit unsigned integer
integer-64 a 64-bit signed integer
unsigned-64 a 64-bit unsigned integer
single-float a 32-bit single floating point number
double-float a 64-bit double floating point number

If a type is specified, the field can contain objects only of the specified type. If no type is
specified, the field is of type ptr, meaning that it can contain any Scheme object.

The field identifiers name the fields of the record. The values of the n fields described by
fld1 ... are specified by the n arguments to the generated constructor procedure. The val-
ues of the remaining fields, fld2 ..., are given by the corresponding expressions, init ....
Each init is evaluated within the scope of the set of field names given by fld1 ... and each
field in fld2 ... that precedes it, as if within a let* expression. Each of these field names
is bound to the value of the corresponding field during initialization.

If parent is present, the record type named by parent is the parent of the record. The
new record type inherits each of the parent record’s fields, and records of the new type are
considered records of the parent type. If parent is not present, the parent record type is a
base record type with no fields.

The following procedures are defined by define-record:

• a constructor procedure whose name is make-name,
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• a type predicate whose name is name?,

• an access procedure whose name is name-fieldname for each noninherited field, and

• an assignment procedure whose name is set-name-fieldname! for each noninherited
mutable field.

If no parent record type is specified, the constructor behaves as if defined as

(define make-name
(lambda (id1 ...)
(let* ([id2 init] ...)

body)))

where id1 ... are the names of the fields defined by fld1 ..., id2 ... are the names of
the fields defined by fld2 ..., and body builds the record from the values of the identifiers
id1 ... and id2 ....

If a parent record type is specified, the parent arguments appear first, and the parent fields
are inserted into the record before the child fields.

The options opt ... control the selection of names of the generated constructor, predicate,
accessors, and mutators.

(constructor id)
(predicate id)
(prefix string)

The option (constructor id) causes the generated constructor’s name to be id rather than
make-name. The option (predicate id) likewise causes the generated predicate’s name to
be id rather than name?. The option (prefix string) determines the prefix to be used in
the generated accessor and mutator names in place of name-.

If no options are needed, the third subexpression, (opt ...), may be omitted. If no options
and no fields other than those initialized by the arguments to the constructor procedure are
needed, both the second and third subexpressions may be omitted. If options are specified,
the second subexpression must be present, even if it contains no field specifiers.

Here is a simple example with no inheritance and no options.

(define-record marble (color quality))
(define x (make-marble ’blue ’medium))
(marble? x) ⇒ #t
(pair? x) ⇒ #f
(vector? x) ⇒ #f
(marble-color x) ⇒ blue
(marble-quality x) ⇒ medium
(set-marble-quality! x ’low)
(marble-quality x) ⇒ low

(define-record marble ((immutable color) (mutable quality))
(((mutable shape) (if (eq? quality ’high) ’round ’unknown))))

(marble-shape (make-marble ’blue ’high)) ⇒ round
(marble-shape (make-marble ’blue ’low)) ⇒ unknown
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(define x (make-marble ’blue ’high))
(set-marble-quality! x ’low)
(marble-shape x) ⇒ round
(set-marble-shape! x ’half-round)
(marble-shape x) ⇒ half-round
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The following example illustrates inheritance.

(define-record shape (x y))
(define-record point shape ())
(define-record circle shape (radius))

(define a (make-point 7 -3))
(shape? a) ⇒ #t
(point? a) ⇒ #t
(circle? a) ⇒ #f

(shape-x a) ⇒ 7
(set-shape-y! a (- (shape-y a) 1))
(shape-y a) ⇒ -4

(define b (make-circle 7 -3 1))
(shape? b) ⇒ #t
(point? b) ⇒ #f
(circle? b) ⇒ #t

(circle-radius b) ⇒ 1
(circle-radius a) ⇒ exception: not of type circle

(define c (make-shape 0 0))
(shape? c) ⇒ #t
(point? c) ⇒ #f
(circle? c) ⇒ #f

This example demonstrates the use of options:

(define-record pair (car cdr)
()
((constructor cons)
(prefix "")))

(define x (cons ’a ’b))
(car x) ⇒ a
(cdr x) ⇒ b
(pair? x) ⇒ #t

(pair? ’(a b c)) ⇒ #f
x ⇒ #[#{pair bdhavk1bwafxyss1-a} a b]

This example illustrates the use a specified reader name, immutable fields, and the graph

mark and reference syntax.

(define-record triple ((immutable x1) (mutable x2) (immutable x3)))
(record-reader ’triple (type-descriptor triple))

(let ([t ’#[triple #1=(1 2) (3 4) #1#]])
(eq? (triple-x1 t) (triple-x3 t))) ⇒ #t

(let ([x ’(#1=(1 2) . #[triple #1# b c])])
(eq? (car x) (triple-x1 (cdr x)))) ⇒ #t
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(let ([t #[triple #1# (3 4) #1=(1 2)]])
(eq? (triple-x1 t) (triple-x3 t))) ⇒ #t

(let ([t ’#1=#[triple a #1# c]])
(eq? t (triple-x2 t))) ⇒ #t

(let ([t ’#1=(#[triple #1# b #1#])])
(and (eq? t (triple-x1 (car t)))

(eq? t (triple-x1 (car t))))) ⇒ #t

Cycles established with the mark and reference syntax can be resolved only if a mutable

record field or mutable location of some other object is involved the cycle, as in the last two

examples above. An exception is raised with condition type &lexical if only immutable

fields are involved.

’#1=#[triple #1# (3 4) #1#] ⇒ exception

The following example demonstrates the use of nongenerative record definitions.

(module A (point-disp)
(define-record #{point bdhavk1bwafxyss1-b} (x y))
(define square (lambda (x) (* x x)))
(define point-disp
(lambda (p1 p2)

(sqrt (+ (square (- (point-x p1) (point-x p2)))
(square (- (point-y p1) (point-y p2))))))))

(module B (base-disp)
(define-record #{point bdhavk1bwafxyss1-b} (x y))
(import A)
(define base-disp
(lambda (p)

(point-disp (make-point 0 0) p))))

(let ()
(import B)
(define-record #{point bdhavk1bwafxyss1-b} (x y))
(base-disp (make-point 3 4))) ⇒ 5

This works even if the different program components are loaded from different source files

or are compiled separately and loaded from different object files.

predicate syntax

prefix syntax

constructor syntax

libraries: (chezscheme)

These identifiers are auxiliary keywords for define-record. It is a syntax violation to ref-

erence these identifiers except in contexts where they are recognized as auxiliary keywords.

mutable and immutable are also auxiliary keywords for define-record, shared with the

Revised6 Report define-record-type.
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(type-descriptor name) syntax

returns: the record-type descriptor associated with name
libraries: (chezscheme)

name must name a record type defined by define-record or define-record-type.

This form is equivalent to the Revised6 Report record-type-descriptor form.

The record-type descriptor is useful for overriding the default read and write syntax using

record-reader and record-writer and may also be used with the procedural interface

routines described later in this section.

(define-record frob ())
(type-descriptor frob) ⇒ #<record type frob>

(record-reader name) procedure

returns: the record-type descriptor associated with name
(record-reader rtd) procedure

returns: the first name associated with rtd
(record-reader name rtd) procedure

returns: unspecified
(record-reader name #f) procedure

returns: unspecified
(record-reader rtd #f) procedure

returns: unspecified
libraries: (chezscheme)

name must be a symbol, and rtd must be a record-type descriptor.

With one argument, record-reader is used to retrieve the record type associated with

a name or name associated with a record type. If no association has been created,

record-reader returns #f

With arguments name and rtd , record-reader registers rtd as the record-type descriptor

to be used whenever the read procedure encounters a record named by name and printed

in the default record syntax.

With arguments name and #f, record-reader removes any association for name to a

record-type descriptor. Similarly, with arguments rtd and #f, record-reader removes any

association for rtd to a name.

(define-record marble (color quality))
(define m (make-marble ’blue ’perfect))
m ⇒ #[#{marble bdhavk1bwafxyss1-c} blue perfect]

(record-reader (type-descriptor marble)) ⇒ #f
(record-reader ’marble) ⇒ #f

(record-reader ’marble (type-descriptor marble))
(marble-color ’#[marble red miserable]) ⇒ red
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(record-reader (type-descriptor marble)) ⇒ marble
(record-reader ’marble) ⇒ #<record type marble>

(record-reader (type-descriptor marble) #f)
(record-reader (type-descriptor marble)) ⇒ #f
(record-reader ’marble) ⇒ #f

(record-reader ’marble (type-descriptor marble))
(record-reader ’marble #f)
(record-reader (type-descriptor marble)) ⇒ #f
(record-reader ’marble) ⇒ #f

The introduction of a record reader also changes the default printing of records. The printer
always chooses the reader name first assigned to the record, if any, in place of the unique
record name, as this continuation of the example above demonstrates.

(record-reader ’marble (type-descriptor marble))
(make-marble ’pink ’splendid) ⇒ #[marble pink splendid]

(record-writer rtd) procedure

returns: the record writer associated with rtd
(record-writer rtd procedure) procedure

returns: unspecified
libraries: (chezscheme)

rtd must be a record-type descriptor, and procedure should accept three arguments, as
described below.

When passed only one argument, record-writer returns the record writer associated with
rtd , which is initially the default record writer for all records. The default print method
prints all records in a uniform syntax that includes the generated name for the record and
the values of each of the fields, as described in the introduction to this section.

When passed two arguments, record-writer establishes a new association between rtd
and procedure so that procedure will be used by the printer in place of the default printer
for records of the given type. The printer passes procedure three arguments: the record
r , a port p, and a procedure wr that should be used to write out the values of arbitrary
Scheme objects that the print method chooses to include in the printed representation of
the record, e.g., values of the record’s fields.

(define-record marble (color quality))
(define m (make-marble ’blue ’medium))

m ⇒ #[#{marble bdhavk1bwafxyss1-d} blue medium]

(record-writer (type-descriptor marble)
(lambda (r p wr)
(display "#<" p)
(wr (marble-quality r) p)
(display " quality " p)
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(wr (marble-color r) p)
(display " marble>" p)))

m ⇒ #<medium quality blue marble>

The record writer is used only when print-record is true (the default). When the parame-
ter print-record is set to #f, records are printed using a compressed syntax that identifies
only the type of record.

(parameterize ([print-record #f])
(format "~s" m)) ⇒ "#<record of type marble>"

A print method may be called more than once during the printing of a single record
to support cycle detection and graph printing (see print-graph), so print methods that
perform side effects other than printing to the given port are discouraged. Whenever a
print method is called more than once during the printing of a single record, in all but
one call, a generic “bit sink” port is used to suppress output automatically so that only
one copy of the object appears on the actual port. In order to avoid confusing the cycle
detection and graph printing algorithms, a print method should always produce the same
printed representation for each object. Furthermore, a print method should normally use
the supplied procedure wr to print subobjects, though atomic values, such as strings or
numbers, may be printed by direct calls to display or write or by other means.

(let ()
(define-record ref () ((contents ’nothing)))
(record-writer (type-descriptor ref)
(lambda (r p wr)

(display "<" p)
(wr (ref-contents r) p)
(display ">" p)))

(let ([ref-lexive (make-ref)])
(set-ref-contents! ref-lexive ref-lexive)
ref-lexive)) ⇒ #0=<#0#>

Print methods need not be concerned with handling nonfalse values of the parameters
print-level. The printer handles print-level automatically even when user-defined print
procedures are used. Since records typically contain a small, fixed number of fields, it is
usually possible to ignore nonfalse values of print-length as well.

(print-level 3)
(let ()

(define-record ref () ((contents ’nothing)))
(record-writer (type-descriptor ref)
(lambda (r p wr)

(display "<" p)
(wr (ref-contents r) p)
(display ">" p)))

(let ([ref-lexive (make-ref)])
(set-ref-contents! ref-lexive ref-lexive)
ref-lexive)) ⇒ <<<<#[...]>>>>
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print-record thread parameter

libraries: (chezscheme)

This parameter controls the printing of records. If set to true (the default) the record
writer associated with a record type is used to print records of that type. If set to false, all
records are printed with the syntax #<record of type name>, where name is the name of
the record type as returned by record-type-name.

(make-record-type type-name fields) procedure

(make-record-type parent-rtd type-name fields) procedure

returns: a record-type descriptor for a new record type
libraries: (chezscheme)

make-record-type creates a new data type and returns a record-type descriptor, a value
representing the new data type. The new type is disjoint from all others.

If present, parent-rtd must be a record-type descriptor.

type-name must be a string or gensym. If type-name is a string, a new record type is
generated. If type-name is a gensym, a new record type is generated only if one with the
same gensym has not already been defined. If one has already been defined, the parent and
fields must be identical to those of the existing record type, and the existing record type is
used. If the parent and fields are not identical, an exception is raised with condition-type
&assertion.

fields must be a list of field descriptors, each of which describes one field of instances of
the new record type. A field descriptor is either a symbol or a list in the following form:

(class type field-name)

where class and type are optional. field-name must be a symbol. class, if present, must be
the symbol immutable or the symbol mutable. If the immutable class-specifier is present, the
field is immutable; otherwise, the field is mutable. type, if present, specifies how the field
is represented. The types are the same as those given in the description of define-record
on page 173.

If a type is specified, the field can contain objects only of the specified type. If no type is
specified, the field is of type ptr, meaning that it can contain any Scheme object.

The behavior of a program that modifies the string type-name or the list fields or any of
its sublists is unspecified.

The record-type descriptor may be passed as an argument to any of the Revised6 Report
procedures

• record-constructor,

• record-predicate,

• record-accessor, and

• record-mutator,

or to the Chez Scheme variants
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• record-constructor,

• record-field-accessor, and

• record-field-mutator

to obtain procedures for creating and manipulating records of the new type.

(define marble
(make-record-type "marble"
’(color quality)
(lambda (r p wr)

(display "#<" p)
(wr (marble-quality r) p)
(display " quality " p)
(wr (marble-color r) p)
(display " marble>" p))))

(define make-marble
(record-constructor marble))

(define marble?
(record-predicate marble))

(define marble-color
(record-field-accessor marble ’color))

(define marble-quality
(record-field-accessor marble ’quality))

(define set-marble-quality!
(record-field-mutator marble ’quality))

(define x (make-marble ’blue ’high))
(marble? x) ⇒ #t
(marble-quality x) ⇒ high
(set-marble-quality! x ’low)
(marble-quality x) ⇒ low
x ⇒ #<low quality blue marble>

The order in which the fields appear in fields is important. While field names are generally

distinct, it is permissible for one field name to be the same as another in the list of fields

or the same as an inherited name. In this case, field ordinals must be used to select fields

in calls to record-field-accessor and record-field-mutator. Ordinals range from zero

through one less than the number of fields. Parent fields come first, if any, followed by the

fields in fields, in the order given.

(define r1 (make-record-type "r1" ’(t t)))
(define r2 (make-record-type r1 "r2" ’(t)))
(define r3 (make-record-type r2 "r3" ’(t t t)))

(define x ((record-constructor r3) ’a ’b ’c ’d ’e ’f))
((record-field-accessor r3 0) x) ⇒ a
((record-field-accessor r3 2) x) ⇒ c
((record-field-accessor r3 4) x) ⇒ e
((record-field-accessor r3 ’t) x) ⇒ unspecified
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(record-constructor rcd) procedure

(record-constructor rtd) procedure

returns: a constructor for records of the type represented by rtd
libraries: (chezscheme)

Like the Revised6 Report version of this procedure, this procedure may be passed a record-
constructor descriptor, rcd , which determines the behavior of the constructor. It may also
be passed a record-type descriptor, rtd , in which case the constructor accepts as many
arguments as there are fields in the record; these arguments are the initial values of the
fields in the order given when the record-type descriptor was created.

(record-field-accessor rtd field-id) procedure

returns: an accessor for the identified field
libraries: (chezscheme csv7)

rtd must be a record-type descriptor, field-id must be a symbol or field ordinal, i.e., a
nonnegative exact integer less than the number of fields of the given record type. The
specified field must be accessible.

The generated accessor expects one argument, which must be a record of the type repre-
sented by rtd . It returns the contents of the specified field of the record.

(record-field-accessible? rtd field-id) procedure

returns: #t if the specified field is accessible, otherwise #f

libraries: (chezscheme csv7)

rtd must be a record-type descriptor, field-id must be a symbol or field ordinal, i.e., a
nonnegative exact integer less than the number of fields of the given record type.

The compiler is free to eliminate a record field if it can prove that the field is not
accessed. In making this determination, the compiler is free to ignore the possibil-
ity that an accessor might be created from a record-type descriptor obtained by calling
record-type-descriptor on an instance of the record type.

(record-field-mutator rtd field-id) procedure

returns: a mutator for the identified field
libraries: (chezscheme csv7)

rtd must be a record-type descriptor, field-id must be a symbol or field ordinal, i.e., a
nonnegative exact integer less than the number of fields of the given record type. The
specified field must be mutable.

The mutator expects two arguments, r and obj . r must be a record of the type represented
by rtd . obj must be a value that is compatible with the type declared for the specified
field when the record-type descriptor was created. obj is stored in the specified field of the
record.
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(record-field-mutable? rtd field-id) procedure

returns: #t if the specified field is mutable, otherwise #f

libraries: (chezscheme csv7)

rtd must be a record-type descriptor, field-id must be a symbol or field ordinal, i.e., a
nonnegative exact integer less than the number of fields of the given record type.

Any field declared immutable is immutable. In addition, the compiler is free to treat a field
as immutable if it can prove that the field is never assigned. In making this determination,
the compiler is free to ignore the possibility that a mutator might be created from a record-
type descriptor obtained by calling record-type-descriptor on an instance of the record
type.

(record-type-name rtd) procedure

returns: the name of the record-type represented by rtd
libraries: (chezscheme csv7)

rtd must be a record-type descriptor.

The name is a always a string. If a gensym is provided as the record-type name in a
define-record form or make-record-type call, the result is the “pretty” name of the gen-
sym (see 7.9).

(record-type-name (make-record-type "empty" ’())) ⇒ "empty"

(define-record #{point bdhavk1bwafxyss1-b} (x y))
(define p (type-descriptor #{point bdhavk1bwafxyss1-b}))
(record-type-name p) ⇒ "point"

(record-type-symbol rtd) procedure

returns: the generated symbol associated with rtd
libraries: (chezscheme csv7)

rtd must be a record-type descriptor.

(define e (make-record-type "empty" ’()))
(record-type-symbol e) ⇒ #{empty bdhavk1bwafxyss1-e}

(define-record #{point bdhavk1bwafxyss1-b} (x y))
(define p (type-descriptor #{point bdhavk1bwafxyss1-b}))
(record-type-symbol p) ⇒ #{point bdhavk1bwafxyss1-b}

(record-type-field-names rtd) procedure

returns: a list of field names of the type represented by rtd
libraries: (chezscheme csv7)

rtd must be a record-type descriptor. The field names are symbols.
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(define-record triple ((immutable x1) (mutable x2) (immutable x3)))
(record-type-field-names (type-descriptor triple)) ⇒ (x1 x2 x3)

(record-type-field-decls rtd) procedure

returns: a list of field declarations of the type represented by rtd
libraries: (chezscheme csv7)

rtd must be a record-type descriptor. Each field declaration has the following form:

(class type field-name)

where class, type, and field-name are as described under make-record-type.

(define-record shape (x y))
(define-record circle shape (radius))

(record-type-field-decls
(type-descriptor circle)) ⇒ ((mutable ptr x)

(mutable ptr y)
(mutable ptr radius))

(record? obj) procedure

returns: #t if obj is a record, otherwise #f

(record? obj rtd) procedure

returns: #t if obj is a record of the given type, otherwise #f

libraries: (chezscheme)

If present, rtd must be a record-type descriptor.

A record is “of the given type” if it is an instance of the record type or one of its ancestors.

The predicate generated by record-predicate for a record-type descriptor rtd is equivalent

to the following.

(lambda (x) (record? x rtd))

(record-type-descriptor rec) procedure

returns: the record-type descriptor of rec
libraries: (chezscheme csv7)

rec must be a record. This procedure is intended for use in the definition of portable printers

and debuggers. For records created with make-record-type, it may not be the same as the

descriptor returned by make-record-type. See the comments about field accessibility and

mutability under record-field-accessible? and record-field-mutable? above.

This procedure is equivalent to the Revised6 Report record-rtd procedure.
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(define rtd (make-record-type "frob" ’(blit blat)))
rtd ⇒ #<record type frob>
(define x ((record-constructor rtd) 1 2))
(record-type-descriptor x) ⇒ #<record type frob>
(eq? (record-type-descriptor x) rtd) ⇒ unspecified

7.16. Procedures

(procedure-arity-mask proc) procedure

returns: an exact integer bitmask identifying the accepted argument counts of proc
libraries: (chezscheme)

The bitmask is represented as two’s complement number with the bit at each index n set
if and only if proc accepts n arguments.

The two’s complement encoding implies that if proc accepts n or more arguments, the
encoding is a negative number, since all the bits from n and up are set. For example, if
proc accepts any number of arguments, the two’s complement encoding of all bits set is -1.

(procedure-arity-mask (lambda () ’none)) ⇒ 1
(procedure-arity-mask car) ⇒ 2
(procedure-arity-mask (case-lambda [() ’none] [(x) x])) ⇒ 3
(procedure-arity-mask (lambda x x)) ⇒ -1
(procedure-arity-mask (case-lambda [() ’none] [(x y . z) x])) ⇒ -3
(procedure-arity-mask (case-lambda)) ⇒ 0
(logbit? 1 (procedure-arity-mask pair?)) ⇒ #t
(logbit? 2 (procedure-arity-mask pair?)) ⇒ #f
(logbit? 2 (procedure-arity-mask cons)) ⇒ #t
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This chapter describes Chez Scheme extensions to the standard set of operations on num-
bers. See Chapter 6 of The Scheme Programming Language, 4th Edition or the Revised6

Report on Scheme for a description of standard operations on numbers.

Chez Scheme supports the full set of Scheme numeric datatypes, including exact and inexact
integer, rational, real, and complex numbers. A variety of representations are used to
support these datatypes:

Fixnums represent exact integers in the fixnum range (see most-negative-fixnum and
most-positive-fixnum). The length of a string, vector, or fxvector is constrained to
be a fixnum.

Bignums represent arbitrary-precision exact integers outside of the fixnum range.

Ratnums represent arbitrary-precision exact rational numbers. Each ratnum contains an
exact integer (fixnum or bignum) numerator and an exact integer denominator. Ra-
tios are always reduced to lowest terms and never have a denominator of one or a
numerator of zero.

Flonums represent inexact real numbers. Flonums are IEEE 64-bit floating-point numbers.
(Since flonums cannot represent irrational numbers, all inexact real numbers are
actually rational, although they may approximate irrational quantities.)

Exact complexnums represent exact complex numbers. Each exact complexnum contains
an exact rational (fixnum, bignum, or ratnum) real part and an exact rational imag-
inary part.

Inexact complexnums represent inexact complex numbers. Each inexact complexnum con-
tains a flonum real part and a flonum imaginary part.

Most numbers can be represented in only one way; however, real numbers are sometimes
represented as inexact complex numbers with imaginary component equal to zero.

Chez Scheme extends the syntax of numbers with arbitrary radixes from two through 36,
nondecimal floating-point and scientific notation, and printed representations for IEEE
infinities and NANs. (NAN stands for “not-a-number.”)

Arbitrary radixes are specified with the prefix #nr, where n ranges from 2 through 36.
Digits beyond 9 are specified with the letters (in either upper or lower case) a through z.
For example, #2r101 is 510, and #36rZ is 3510.

For higher radixes, an ambiguity arises between the interpretation of certain letters, e.g.,
e, as digits or exponent specifiers; in such cases, the letter is assumed to be a digit. For
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example, the e in #x3.2e5 is interpreted as a digit, not as an exponent marker, whereas in

3.2e5 it is treated as an exponent marker.

IEEE infinities are printed as +inf.0 and -inf.0, while IEEE NANs are printed as +nan.0

or -nan.0. (+nan.0 is used on output for all NANs.)

(/ 1.0 0.0) ⇒ +inf.0
(/ 1.0 -0.0) ⇒ -inf.0
(/ 0.0 0.0) ⇒ +nan.0
(/ +inf.0 -inf.0) ⇒ +nan.0

The first section of this chapter describes type-specific numeric type predicates. Sections 8.2

through 8.4 describe fast, type-specific numeric operations on fixnums, flonums, and in-

exact complex numbers (flonums and/or inexact complexnums). The fixnum-specific ver-

sions should be used only when the programmer is certain that the operands and results

(where appropriate) will be fixnums, i.e., integers in the range (most-negative-fixnum)

to (most-positive-fixnum), inclusive. The flonum-specific versions should be used only

when the inputs and outputs (where appropriate) are certain to be flonums. The mixed

flonum/complexnum versions should be used only when the inputs are certain to be either

flonums or inexact complexnums. Section 8.5 describes operations, both arbitrary precision

and fixnum-specific, that allow exact integers to be treated as sets or sequences of bits.

Random number generation is covered Section 8.6, and miscellaneous numeric operations

are covered in the Section 8.7.

8.1. Numeric Type Predicates

The Revised6 Report distinguishes two types of special numeric objects: fixnums and

flonums. Chez Scheme additionally distinguishes bignums (exact integers outside of the

fixnum range) and ratnums (ratios of exact integers). It also provides a predicate for

recognizing cflonums, which are flonums or inexact complex numbers.

(bignum? obj) procedure

returns: #t if obj is a bignum, otherwise #f

libraries: (chezscheme)

(bignum? 0) ⇒ #f
(bignum? (most-positive-fixnum)) ⇒ #f
(bignum? (most-negative-fixnum)) ⇒ #f
(bignum? (* (most-positive-fixnum) 2)) ⇒ #t
(bignum? 3/4) ⇒ #f
(bignum? ’a) ⇒ #f
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(ratnum? obj) procedure

returns: #t if obj is a ratnum, otherwise #f

libraries: (chezscheme)

(ratnum? 0) ⇒ #f
(ratnum? (* (most-positive-fixnum) 2)) ⇒ #f
(ratnum? 3/4) ⇒ #t
(ratnum? -10/2) ⇒ #f
(ratnum? -11/2) ⇒ #t
(ratnum? ’a) ⇒ #f

(cflonum? obj) procedure

returns: #t if obj is an inexact complexnum or flonum, otherwise #f

libraries: (chezscheme)

(cflonum? 0) ⇒ #f
(cflonum? 0.0) ⇒ #t
(cflonum? 3+4i) ⇒ #f
(cflonum? 3.0+4i) ⇒ #t
(cflonum? +i) ⇒ #f
(cflonum? +1.0i) ⇒ #t

8.2. Fixnum Operations

Fixnum-specific procedures normally check their inputs and outputs (where appropriate),
but at optimization level 3 the compiler generates, in most cases, code that does not perform
these checks.

(most-positive-fixnum) procedure

returns: the most positive fixnum supported by the system
(most-negative-fixnum) procedure

returns: the most negative fixnum supported by the system
libraries: (chezscheme)

These procedures are identical to the Revised6 Report greatest-fixnum and least-fixnum

procedures.

(fx= fixnum1 fixnum2 ...) procedure

(fx< fixnum1 fixnum2 ...) procedure

(fx> fixnum1 fixnum2 ...) procedure

(fx<= fixnum1 fixnum2 ...) procedure

(fx>= fixnum1 fixnum2 ...) procedure

returns: #t if the relation holds, #f otherwise
libraries: (chezscheme)

The predicate fx= returns #t if its arguments are equal. The predicate fx< returns #t if its
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arguments are monotonically increasing, i.e., each argument is greater than the preceding

ones, while fx> returns #t if its arguments are monotonically decreasing. The predicate

fx<= returns #t if its arguments are monotonically nondecreasing, i.e., each argument is

not less than the preceding ones, while fx>= returns #t if its arguments are monotonically

nonincreasing. When passed only one argument, each of these predicates returns #t.

These procedures are similar to the Revised6 Report procedures fx=?, fx<?, fx>?, fx<=?,

and fx>=? except that the Revised6 Report procedures require two or more arguments, and

their names have the “?” suffix.

(fx= 0) ⇒ #t
(fx= 0 0) ⇒ #t
(fx< (most-negative-fixnum) 0 (most-positive-fixnum)) ⇒ #t
(let ([x 3]) (fx<= 0 x 9)) ⇒ #t
(fx<= 0 3 3) ⇒ #t
(fx>= 0 0 (most-negative-fixnum)) ⇒ #t

(fxnonpositive? fixnum) procedure

returns: #t if fixnum is not greater than zero, #f otherwise
(fxnonnegative? fixnum) procedure

returns: #t if fixnum is not less than zero, #f otherwise
libraries: (chezscheme)

fxnonpositive? is equivalent to (lambda (x) (fx<= x 0)), and fxnonnegative? is equiv-

alent to (lambda (x) (fx>= x 0)).

(fxnonpositive? 128) ⇒ #f
(fxnonpositive? 0) ⇒ #t
(fxnonpositive? -1) ⇒ #t

(fxnonnegative? -65) ⇒ #f
(fxnonnegative? 0) ⇒ #t
(fxnonnegative? 1) ⇒ #t

(fx+ fixnum ...) procedure

returns: the sum of the arguments fixnum ...

libraries: (chezscheme)

When called with no arguments, fx+ returns 0.

(fx+) ⇒ 0
(fx+ 1 2) ⇒ 3
(fx+ 3 4 5) ⇒ 12
(apply fx+ ’(1 2 3 4 5)) ⇒ 15
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(fx- fixnum1 fixnum2 ...) procedure

returns: a fixnum
libraries: (chezscheme)

When called with one argument, fx- returns the negative of fixnum1. Thus, (fx- fixnum1)

is an idiom for (fx- 0 fixnum1).

When called with two or more arguments, fx- returns the result of subtracting the sum of

the numbers fixnum2 ... from fixnum1.

(fx- 3) ⇒ -3
(fx- 4 3) ⇒ 1
(fx- 4 3 2 1) ⇒ -2

(fx* fixnum ...) procedure

returns: the product of the arguments fixnum ...

libraries: (chezscheme)

When called with no arguments, fx* returns 1.

(fx*) ⇒ 1
(fx* 1 2) ⇒ 2
(fx* 3 -4 5) ⇒ -60
(apply fx* ’(1 -2 3 -4 5)) ⇒ 120

(fx/ fixnum1 fixnum2 ...) procedure

returns: see explanation
libraries: (chezscheme)

When called with one argument, fx/ returns the reciprocal of fixnum1. That is,

(fx/ fixnum1) is an idiom for (fx/ 1 fixnum1).

When called with two or more arguments, fx/ returns the result of dividing fixnum1 by

the product of the remaining arguments fixnum2 ....

(fx/ 1) ⇒ 1
(fx/ -17) ⇒ 0
(fx/ 8 -2) ⇒ -4
(fx/ -9 2) ⇒ -4
(fx/ 60 5 3 2) ⇒ 2

(fx1+ fixnum) procedure

(fx1- fixnum) procedure

returns: fixnum plus 1 or fixnum minus 1
libraries: (chezscheme)
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(define fxplus
(lambda (x y)
(if (fxzero? x)

y
(fxplus (fx1- x) (fx1+ y)))))

(fxplus 7 8) ⇒ 15

fx1+ and fx1- can be defined as follows:

(define fx1+ (lambda (x) (fx+ x 1)))
(define fx1- (lambda (x) (fx- x 1)))

(fxquotient fixnum1 fixnum2 ...) procedure

returns: see explanation
libraries: (chezscheme)

fxquotient is identical to fx/. See the description of fx/ above.

(fxremainder fixnum1 fixnum2) procedure

returns: the fixnum remainder of fixnum1 divided by fixnum2

libraries: (chezscheme)

The result of fxremainder has the same sign as fixnum1.

(fxremainder 16 4) ⇒ 0
(fxremainder 5 2) ⇒ 1
(fxremainder -45 7) ⇒ -3
(fxremainder 10 -3) ⇒ 1
(fxremainder -17 -9) ⇒ -8

(fxmodulo fixnum1 fixnum2) procedure

returns: the fixnum modulus of fixnum1 and fixnum2

libraries: (chezscheme)

The result of fxmodulo has the same sign as fixnum2.

(fxmodulo 16 4) ⇒ 0
(fxmodulo 5 2) ⇒ 1
(fxmodulo -45 7) ⇒ 4
(fxmodulo 10 -3) ⇒ -2
(fxmodulo -17 -9) ⇒ -8

(fxabs fixnum) procedure

returns: the absolute value of fixnum
libraries: (chezscheme)

(fxabs 1) ⇒ 1
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(fxabs -1) ⇒ 1
(fxabs 0) ⇒ 0

8.3. Flonum Operations

Inexact real numbers are normally represented by flonums. A flonum is a single 64-bit
double-precision floating point number. This section describes operations on flonums, most
of which accept flonum arguments and return flonum values. In most cases, the operations
are inline-coded or coded as machine language subroutines at optimize-level 3 with no
argument type checking; full type checking is performed at lower optimize levels. Flonum-
specific procedure names begin with the prefix “fl” to set them apart from their generic
counterparts.

Inexact real numbers may also be represented by inexact complexnums with imaginary
parts equal to zero, which cannot be used as input to the flonum-specific operators. Such
numbers are produced, however, only from operations involving complex numbers with
nonzero imaginary parts, by explicit calls to fl-make-rectangular, make-rectangular, or
make-polar, or by numeric input in either polar or rectangular format.

(flonum->fixnum flonum) procedure

returns: the fixnum representation of flonum, truncated
libraries: (chezscheme)

The truncated value of flonum must fall within the fixnum range. flonum->fixnum is a
restricted version of exact, which converts any numeric representation to its exact equiva-
lent.

(flonum->fixnum 0.0) ⇒ 0
(flonum->fixnum 3.9) ⇒ 3
(flonum->fixnum -2.2) ⇒ -2

(fl= flonum1 flonum2 ...) procedure

(fl< flonum1 flonum2 ...) procedure

(fl> flonum1 flonum2 ...) procedure

(fl<= flonum1 flonum2 ...) procedure

(fl>= flonum1 flonum2 ...) procedure

returns: #t if the relation holds, #f otherwise
libraries: (chezscheme)

The predicate fl= returns #t if its arguments are equal. The predicate fl< returns #t if its
arguments are monotonically increasing, i.e., each argument is greater than the preceding
ones, while fl> returns #t if its arguments are monotonically decreasing. The predicate
fl<= returns #t if its arguments are monotonically nondecreasing, i.e., each argument is
not less than the preceding ones, while fl>= returns #t if its arguments are monotonically
nonincreasing. When passed only one argument, each of these predicates returns #t.
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IEEE NANs are not comparable, i.e., comparisons involving NANs always return #f.

These procedures are similar to the Revised6 Report procedures fl=?, fl<?, fl>?, fl<=?,

and fl>=? except that the Revised6 Report procedures require two or more arguments, and

their names have the “?” suffix.

(fl= 0.0) ⇒ #t
(fl= 0.0 0.0) ⇒ #t
(fl< -1.0 0.0 1.0) ⇒ #t
(fl> -1.0 0.0 1.0) ⇒ #f
(fl<= 0.0 3.0 3.0) ⇒ #t
(fl>= 4.0 3.0 3.0) ⇒ #t
(fl< 7.0 +inf.0) ⇒ #t
(fl= +nan.0 0.0) ⇒ #f
(fl= +nan.0 +nan.0) ⇒ #f
(fl< +nan.0 +nan.0) ⇒ #f
(fl> +nan.0 +nan.0) ⇒ #f

(flnonpositive? fl) procedure

returns: #t if fl is not greater than zero, #f otherwise
(flnonnegative? fl) procedure

returns: #t if fl is not less than zero, #f otherwise
libraries: (chezscheme)

flnonpositive? is equivalent to (lambda (x) (fl<= x 0.0)), and flnonnegative? is

equivalent to (lambda (x) (fl>= x 0.0)).

Even if the flonum representation distinguishes -0.0 from +0.0, both are considered non-

positive and nonnegative.

(flnonpositive? 128.0) ⇒ #f
(flnonpositive? 0.0) ⇒ #t
(flnonpositive? -0.0) ⇒ #t
(flnonpositive? -1.0) ⇒ #t

(flnonnegative? -65.0) ⇒ #f
(flnonnegative? 0.0) ⇒ #t
(flnonnegative? -0.0) ⇒ #t
(flnonnegative? 1.0) ⇒ #t

(flnonnegative? +nan.0) ⇒ #f
(flnonpositive? +nan.0) ⇒ #f

(flnonnegative? +inf.0) ⇒ #t
(flnonnegative? -inf.0) ⇒ #f
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(decode-float x) procedure

returns: see below
libraries: (chezscheme)

x must be a flonum. decode-float returns a vector with three integer elements, m, e, and
s, such that x = sm2e. It is useful primarily in the printing of floating-point numbers.

(decode-float 1.0) ⇒ #(4503599627370496 -52 1)
(decode-float -1.0) ⇒ #(4503599627370496 -52 -1)

(define slow-identity
(lambda (x)
(inexact

(let ([v (decode-float x)])
(let ([m (vector-ref v 0)]

[e (vector-ref v 1)]
[s (vector-ref v 2)])

(* s m (expt 2 e)))))))

(slow-identity 1.0) ⇒ 1.0
(slow-identity -1e20) ⇒ -1e20

(fllp flonum) procedure

returns: see below
libraries: (chezscheme)

fllp returns the 12-bit integer consisting of the exponent plus highest order represented
bit of a flonum (ieee 64-bit floating-point number). It can be used to compute a fast
approximation of the logarithm of the number.

(fllp 0.0) ⇒ 0
(fllp 1.0) ⇒ 2046
(fllp -1.0) ⇒ 2046

(fllp 1.5) ⇒ 2047

(fllp +inf.0) ⇒ 4094
(fllp -inf.0) ⇒ 4094

(fllp #b1.0e-1111111111) ⇒ 1
(fllp #b1.0e-10000000000) ⇒ 0

8.4. Inexact Complex Operations

The procedures described in this section provide mechanisms for creating and operating
on inexact complex numbers. Inexact complex numbers with nonzero imaginary parts
are represented as inexact complexnums. An inexact complexnum contains two 64-bit
double-precision floating point numbers. Inexact complex numbers with imaginary parts
equal to zero (in other words, inexact real numbers) may be represented as either inexact
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complexnums or flonums. The operations described in this section accept any mix of inexact
complexnum and flonum arguments (collectively, “cflonums”).

In most cases, the operations are performed with minimal type checking at optimize-level
3; full type checking is performed at lower optimize levels. Inexact complex procedure
names begin with the prefix “cfl” to set them apart from their generic counterparts.

(fl-make-rectangular flonum1 flonum2) procedure

returns: an inexact complexnum
libraries: (chezscheme)

The inexact complexnum produced by fl-make-rectangular has real part equal to flonum1

and imaginary part equal to flonum2.

(fl-make-rectangular 2.0 -3.0) ⇒ 2.0-3.0i
(fl-make-rectangular 2.0 0.0) ⇒ 2.0+0.0i
(fl-make-rectangular 2.0 -0.0) ⇒ 2.0-0.0i

(cfl-real-part cflonum) procedure

returns: the real part of cflonum
(cfl-imag-part cflonum) procedure

returns: the imaginary part of cflonum
libraries: (chezscheme)

(cfl-real-part 2.0-3.0i) ⇒ 2.0
(cfl-imag-part 2.0-3.0i) ⇒ -3.0
(cfl-imag-part 2.0-0.0i) ⇒ -0.0
(cfl-imag-part 2.0-inf.0i) ⇒ -inf.0

(cfl= cflonum ...) procedure

returns: #t if its arguments are equal, #f otherwise
libraries: (chezscheme)

(cfl= 7.0+0.0i 7.0) ⇒ #t
(cfl= 1.0+2.0i 1.0+2.0i) ⇒ #t
(cfl= 1.0+2.0i 1.0-2.0i) ⇒ #f

(cfl+ cflonum ...) procedure

(cfl* cflonum ...) procedure

(cfl- cflonum1 cflonum2 ...) procedure

(cfl/ cflonum1 cflonum2 ...) procedure

returns: a cflonum
libraries: (chezscheme)

These procedures compute the sum, difference, product, or quotient of inexact complex
quantities, whether these quantities are represented by flonums or inexact complexnums.
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For example, if cfl+ receives two flonum arguments a and b, it returns the sum a + b; in
this case, it behaves the same as fl+. With two inexact complexnum arguments a+ bi and
c + di, it returns the sum (a + c) + (b + d)i. If one argument is a flonum a and the other
an inexact complexnum c+ di, cfl+ returns (a+ c) + di.

When passed zero arguments, cfl+ returns 0.0 and cfl* returns 1.0. When passed one
argument, cfl- returns the additive inverse of the argument, and cfl/ returns the multi-
plicative inverse of the argument. When passed three or more arguments, cfl- returns the
difference between its first and the sum of its remaining arguments, and cfl/ returns the
quotient of its first and the product of its remaining arguments.

(cfl+) ⇒ 0.0
(cfl*) ⇒ 1.0
(cfl- 5.0+1.0i) ⇒ -5.0-1.0i
(cfl/ 2.0+2.0i) ⇒ 0.25-0.25i

(cfl+ 1.0+2.2i -3.7+5.3i) ⇒ -2.7+7.5i
(cfl+ 1.0 -5.3) ⇒ -4.3
(cfl+ 1.0 2.0 -5.3i) ⇒ 3.0-5.3i
(cfl- 1.0+2.5i -3.7) ⇒ 4.7+2.5i
(cfl* 1.0+2.0i 3.0+4.0i) ⇒ -5.0+10.0i
(cfl/ -5.0+10.0i 1.0+2.0i 2.0) ⇒ 1.5+2.0i

(cfl-conjugate cflonum) procedure

returns: complex conjugate of cflonum
libraries: (chezscheme)

The procedure cfl-conjugate, when passed an inexact complex argument a + bi, returns
its complex conjugate a+ (−b)i.
See also conjugate, which is a generic version of this operator that returns the complex
conjugate of any valid representation for a complex number.

(cfl-conjugate 3.0) ⇒ 3.0
(cfl-conjugate 3.0+4.0i) ⇒ 3.0-4.0i
(cfl-conjugate 1e-20-2e-30i) ⇒ 1e-20+2e-30i

(cfl-magnitude-squared cflonum) procedure

returns: magnitude of cflonum squared
libraries: (chezscheme)

The procedure cfl-magnitude-squared, when passed an inexact complex argument a+ bi
returns a flonum representing the magnitude of the argument squared, i.e., a2 + b2.

See also magnitude-squared, which is a generic version of this operator that returns the
magnitude squared of any valid representation for a complex number. Both operations
are similar to the magnitude procedure, which returns the magnitude, sqrt(a2 + b2), of its
generic complex argument.



198 8. Numeric Operations

(cfl-magnitude-squared 3.0) ⇒ 9.0
(cfl-magnitude-squared 3.0-4.0i) ⇒ 25.0

8.5. Bitwise and Logical Operators

Chez Scheme provides a set of logical operators that allow exact integers (fixnums and
bignums) to be treated as sets or sequences of bits. These operators include logand (bit-
wise logical and), logior (bitwise logical or), logxor (bitwise logical exclusive or), lognot
(bitwise logical not), logtest (test multiple bits), logbit? (test single bit), logbit0 (reset
single bit), logbit1 (set single bit), and ash (arithmetic shift). Each of these operators
treats its arguments as two’s complement integers, regardless of the underlying represen-
tation. This treatment can be exploited to represent infinite sets: a negative number
represents an infinite number of one bits beyond the leftmost zero, and a nonnegative
number represents an infinite number of zero bits beyond the leftmost one bit.

Fixnum equivalents of the logical operators are provided, as fxlogand, fxlogior, fxlogxor,
fxlognot, fxlogtest, fxlogbit?, fxlogbit0, and fxlogbit1. Three separate fixnum oper-
ators are provided for shifting: fxsll (shift-left logical), fxsrl (shift-right logical), fxsra
(shift-right arithmetic). Logical and arithmetic shifts differ only for right shifts. Shift-right
logical shifts in zero bits on the left end, and shift-right arithmetic replicates the sign bit.

Logical shifts do not make sense for arbitrary-precision integers, since these have no “left
end” into which bits must be shifted.

(logand int ...) procedure

returns: the logical “and” of the arguments int ...

libraries: (chezscheme)

The arguments must be exact integers (fixnums or bignums) and are treated as two’s
complement integers, regardless of the underlying representation. With no arguments,
logand returns -1, i.e., all bits set.

(logand) ⇒ -1
(logand 15) ⇒ 15
(logand -1 -1) ⇒ -1
(logand -1 0) ⇒ 0
(logand 5 3) ⇒ 1
(logand #x173C8D95 7) ⇒ 5
(logand #x173C8D95 -8) ⇒ #x173C8D90
(logand #b1100 #b1111 #b1101) ⇒ #b1100

(logior int ...) procedure

(logor int ...) procedure

returns: the logical “or” of the arguments int ...

libraries: (chezscheme)

The arguments must be exact integers (fixnums or bignums) and are treated as two’s
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complement integers, regardless of the underlying representation. With no arguments,
logior returns 0, i.e., all bits reset.

(logior) ⇒ 0
(logior 15) ⇒ 15
(logior -1 -1) ⇒ -1
(logior -1 0) ⇒ -1
(logior 5 3) ⇒ 7
(logior #b111000 #b101010) ⇒ #b111010
(logior #b1000 #b0100 #b0010) ⇒ #b1110
(apply logior ’(1 2 4 8 16)) ⇒ 31

(logxor int ...) procedure

returns: the logical “exclusive or” of the arguments int ...

libraries: (chezscheme)

The arguments must be exact integers (fixnums or bignums) and are treated as two’s
complement integers, regardless of the underlying representation. With no arguments,
logxor returns 0, i.e., all bits reset.

(logxor) ⇒ 0
(logxor 15) ⇒ 15
(logxor -1 -1) ⇒ 0
(logxor -1 0) ⇒ -1
(logxor 5 3) ⇒ 6
(logxor #b111000 #b101010) ⇒ #b010010
(logxor #b1100 #b0100 #b0110) ⇒ #b1110

(lognot int) procedure

returns: the logical “not” of int
libraries: (chezscheme)

The argument must be an exact integer (fixnum or bignum) and is treated as a two’s
complement integer, regardless of the underlying representation.

(lognot -1) ⇒ 0
(lognot 0) ⇒ -1
(lognot 7) ⇒ -8
(lognot -8) ⇒ 7

(logbit? index int) procedure

returns: #t if the specified bit is set, otherwise #f

libraries: (chezscheme)

index must be a nonnegative exact integer. int must be an exact integer (fixnum or bignum)
and is treated as a two’s complement integer, regardless of the underlying representation.
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logbit? returns #t if the bit at index index of int is set (one) and #f otherwise. The index
is zero-based, counting from the lowest-order toward higher-order bits. There is no upper
limit on the index; for nonnegative values of int , the bits above the highest order set bit
are all considered to be zero, and for negative values, the bits above the highest order reset
bit are all considered to be one.

logbit? is equivalent to

(lambda (k n) (not (zero? (logand n (ash 1 k)))))

but more efficient.

(logbit? 0 #b1110) ⇒ #f
(logbit? 1 #b1110) ⇒ #t
(logbit? 2 #b1110) ⇒ #t
(logbit? 3 #b1110) ⇒ #t
(logbit? 4 #b1110) ⇒ #f
(logbit? 100 #b1110) ⇒ #f

(logbit? 0 -6) ⇒ #f ; the two′s complement of -6 is 1...1010
(logbit? 1 -6) ⇒ #t
(logbit? 2 -6) ⇒ #f
(logbit? 3 -6) ⇒ #t
(logbit? 100 -6) ⇒ #t

(logbit? (random 1000000) 0) ⇒ #f
(logbit? (random 1000000) -1) ⇒ #t

(logbit? 20000 (ash 1 20000)) ⇒ #t

(logtest int1 int2) procedure

returns: #t if any common bits are set, otherwise #f

libraries: (chezscheme)

The arguments must be exact integers (fixnums or bignums) and are treated as two’s
complement integers, regardless of the underlying representation.

logtest returns #t if any bit set in one argument is also set in the other. It returns #f if
the two arguments have no set bits in common.

logtest is equivalent to

(lambda (n1 n2) (not (zero? (logand n1 n2))))

but more efficient.

(logtest #b10001 #b1110) ⇒ #f
(logtest #b10101 #b1110) ⇒ #t
(logtest #b111000 #b110111) ⇒ #t

(logtest #b101 -6) ⇒ #f ; the two′s complement of -6 is 1...1010
(logtest #b1000 -6) ⇒ #t
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(logtest 100 -6) ⇒ #t

(logtest (+ (random 1000000) 1) 0) ⇒ #f
(logtest (+ (random 1000000) 1) -1) ⇒ #t

(logtest (ash #b101 20000) (ash #b111 20000)) ⇒ #t

(logbit0 index int) procedure

returns: the result of clearing bit index of int
libraries: (chezscheme)

index must be a nonnegative exact integer. int must be an exact integer (fixnum or bignum)

and is treated as a two’s complement integer, regardless of the underlying representation.

The index is zero-based, counting from the lowest-order toward higher-order bits. As with

logbit?, there is no upper limit on the index.

logbit0 is equivalent to

(lambda (i n) (logand (lognot (ash 1 i)) n))

but more efficient.

(logbit0 3 #b10101010) ⇒ #b10100010
(logbit0 4 #b10101010) ⇒ #b10101010
(logbit0 0 -1) ⇒ -2

(logbit1 index int) procedure

returns: the result of setting bit index of int
libraries: (chezscheme)

index must be a nonnegative exact integer. int must be an exact integer (fixnum or bignum)

and is treated as a two’s complement integer, regardless of the underlying representation.

The index is zero-based, counting from the lowest-order toward higher-order bits. As with

logbit?, there is no upper limit on the index.

logbit1 is equivalent to

(lambda (i n) (logor (ash 1 i) n))

but more efficient.

(logbit1 3 #b10101010) ⇒ #b10101010
(logbit1 4 #b10101010) ⇒ #b10111010
(logbit1 4 0) ⇒ #b10000
(logbit1 0 -2) ⇒ -1
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(ash int count) procedure

returns: int shifted left arithmetically by count .
libraries: (chezscheme)

Both arguments must be exact integers. The first argument is treated as a two’s comple-

ment integer, regardless of the underlying representation. If count is negative, int is shifted

right by −count bits.

(ash 8 0) ⇒ 8
(ash 8 2) ⇒ 32
(ash 8 -2) ⇒ 2
(ash -1 2) ⇒ -4
(ash -1 -2) ⇒ -1

(fxlogand fixnum ...) procedure

returns: the logical “and” of the arguments fixnum ...

libraries: (chezscheme)

The arguments are treated as two’s complement integers, regardless of the underlying

representation. With no arguments, fxlogand returns -1, i.e., all bits set.

(fxlogand) ⇒ -1
(fxlogand 15) ⇒ 15
(fxlogand -1 -1) ⇒ -1
(fxlogand -1 0) ⇒ 0
(fxlogand 5 3) ⇒ 1
(fxlogand #b111000 #b101010) ⇒ #b101000
(fxlogand #b1100 #b1111 #b1101) ⇒ #b1100

(fxlogior fixnum ...) procedure

(fxlogor fixnum ...) procedure

returns: the logical “or” of the arguments fixnum ...

libraries: (chezscheme)

The arguments are treated as two’s complement integers, regardless of the underlying

representation. With no arguments, fxlogior returns 0, i.e., all bits reset.

(fxlogior) ⇒ 0
(fxlogior 15) ⇒ 15
(fxlogior -1 -1) ⇒ -1
(fxlogior -1 0) ⇒ -1
(fxlogior #b111000 #b101010) ⇒ #b111010
(fxlogior #b1000 #b0100 #b0010) ⇒ #b1110
(apply fxlogior ’(1 2 4 8 16)) ⇒ 31
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(fxlogxor fixnum ...) procedure

returns: the logical “exclusive or” of the arguments fixnum ...

libraries: (chezscheme)

The arguments are treated as two’s complement integers, regardless of the underlying

representation. With no arguments, fxlogxor returns 0, i.e., all bits reset.

(fxlogxor) ⇒ 0
(fxlogxor 15) ⇒ 15
(fxlogxor -1 -1) ⇒ 0
(fxlogxor -1 0) ⇒ -1
(fxlogxor 5 3) ⇒ 6
(fxlogxor #b111000 #b101010) ⇒ #b010010
(fxlogxor #b1100 #b0100 #b0110) ⇒ #b1110

(fxlognot fixnum) procedure

returns: the logical “not” of fixnum
libraries: (chezscheme)

The argument is treated as a two’s complement integer, regardless of the underlying rep-

resentation.

(fxlognot -1) ⇒ 0
(fxlognot 0) ⇒ -1
(fxlognot 1) ⇒ -2
(fxlognot -2) ⇒ 1

(fxlogbit? index fixnum) procedure

returns: #t if the specified bit is set, otherwise #f

libraries: (chezscheme)

index must be a nonnegative fixnum. fixnum is treated as a two’s complement integer,

regardless of the underlying representation.

fxlogbit? returns #t if the bit at index index of fixnum is set (one) and #f otherwise. The

index is zero-based, counting from the lowest-order toward higher-order bits. The index

is limited only by the fixnum range; for nonnegative values of fixnum, the bits above the

highest order set bit are all considered to be zero, and for negative values, the bits above

the highest order reset bit are all considered to be one.

(fxlogbit? 0 #b1110) ⇒ #f
(fxlogbit? 1 #b1110) ⇒ #t
(fxlogbit? 2 #b1110) ⇒ #t
(fxlogbit? 3 #b1110) ⇒ #t
(fxlogbit? 4 #b1110) ⇒ #f
(fxlogbit? 100 #b1110) ⇒ #f
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(fxlogbit? 0 -6) ⇒ #f ; the two′s complement of -6 is 1...1010
(fxlogbit? 1 -6) ⇒ #t
(fxlogbit? 2 -6) ⇒ #f
(fxlogbit? 3 -6) ⇒ #t
(fxlogbit? 100 -6) ⇒ #t

(fxlogbit? (random 1000000) 0) ⇒ #f
(fxlogbit? (random 1000000) -1) ⇒ #t

(fxlogtest fixnum1 fixnum2) procedure

returns: #t if any common bits are set, otherwise #f

libraries: (chezscheme)

The arguments are treated as two’s complement integers, regardless of the underlying

representation.

fxlogtest returns #t if any bit set in one argument is also set in the other. It returns #f

if the two arguments have no set bits in common.

(fxlogtest #b10001 #b1110) ⇒ #f
(fxlogtest #b10101 #b1110) ⇒ #t
(fxlogtest #b111000 #b110111) ⇒ #t

(fxlogtest #b101 -6) ⇒ #f ; the two′s complement of -6 is 1...1010
(fxlogtest #b1000 -6) ⇒ #t
(fxlogtest 100 -6) ⇒ #t

(fxlogtest (+ (random 1000000) 1) 0) ⇒ #f
(fxlogtest (+ (random 1000000) 1) -1) ⇒ #t

(fxlogbit0 index fixnum) procedure

returns: the result of clearing bit index of fixnum
libraries: (chezscheme)

fixnum is treated as a two’s complement integer, regardless of the underlying representation.

index must be nonnegative and less than the number of bits in a fixnum, excluding the sign

bit, i.e., less than (integer-length (most-positive-fixnum)). The index is zero-based,

counting from the lowest-order toward higher-order bits.

fxlogbit0 is equivalent to

(lambda (i n) (fxlogand (fxlognot (fxsll 1 i)) n))

but more efficient.

(fxlogbit0 3 #b10101010) ⇒ #b10100010
(fxlogbit0 4 #b10101010) ⇒ #b10101010
(fxlogbit0 0 -1) ⇒ -2
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(fxlogbit1 index fixnum) procedure

returns: the result of setting bit index of fixnum
libraries: (chezscheme)

fixnum is treated as a two’s complement integer, regardless of the underlying representation.
index must be nonnegative and less than the number of bits in a fixnum, excluding the sign
bit, i.e., less than (integer-length (most-positive-fixnum)). The index is zero-based,
counting from the lowest-order toward higher-order bits.

fxlogbit1 is equivalent to

(lambda (i n) (fxlogor (fxsll 1 i) n))

but more efficient.

(fxlogbit1 3 #b10101010) ⇒ #b10101010
(fxlogbit1 4 #b10101010) ⇒ #b10111010
(fxlogbit1 4 0) ⇒ #b10000
(fxlogbit1 0 -2) ⇒ -1

(fxsll fixnum count) procedure

returns: fixnum shifted left by count
libraries: (chezscheme)

fixnum is treated as a two’s complement integer, regardless of the underlying representa-
tion. count must be nonnegative and not more than the number of bits in a fixnum, i.e.,
(+ (integer-length (most-positive-fixnum)) 1). An exception is raised with condition-
type &implementation-restriction if the result cannot be represented as a fixnum.

(fxsll 1 2) ⇒ 4
(fxsll -1 2) ⇒ -4

(fxsrl fixnum count) procedure

returns: fixnum logically shifted right by count
libraries: (chezscheme)

fixnum is treated as a two’s complement integer, regardless of the underlying representa-
tion. count must be nonnegative and not more than the number of bits in a fixnum, i.e.,
(+ (integer-length (most-positive-fixnum)) 1).

(fxsrl 4 2) ⇒ 1
(= (fxsrl -1 1) (most-positive-fixnum)) ⇒ #t

(fxsra fixnum count) procedure

returns: fixnum arithmetically shifted right by count
libraries: (chezscheme)

fixnum is treated as a two’s complement integer, regardless of the underlying representa-
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tion. count must be nonnegative and not more than the number of bits in a fixnum, i.e.,
(+ (integer-length (most-positive-fixnum)) 1).

(fxsra 64 3) ⇒ 8
(fxsra -1 1) ⇒ -1
(fxsra -64 3) ⇒ -8

8.6. Random Number Generation

(random real) procedure

returns: a nonnegative pseudo-random number less than real
libraries: (chezscheme)

real must be a positive integer or positive inexact real number.

(random 1) ⇒ 0
(random 1029384535235) ⇒ 1029384535001, every now and then
(random 1.0) ⇒ 0.5, every now and then

random-seed thread parameter

libraries: (chezscheme)

The random number generator allows the current random seed to be obtained and modified
via the parameter random-seed.

When called without arguments, random-seed returns the current random seed. When
called with one argument, which must be a nonnegative exact integer ranging from 1
through 232 − 1, random-seed sets the current random seed to the argument.

(let ([s (random-seed)])
(let ([r1 (random 1.0)])
(random-seed s)
(eqv? (random 1.0) r1))) ⇒ #t

8.7. Miscellaneous Numeric Operations

(= num1 num2 num3 ...) procedure

(< real1 real2 real3 ...) procedure

(> real1 real2 real3 ...) procedure

(<= real1 real2 real3 ...) procedure

(>= real1 real2 real3 ...) procedure

returns: #t if the relation holds, #f otherwise
libraries: (chezscheme)

These predicates are identical to the Revised6 Report counterparts, except they are ex-
tended to accept one or more rather than two or more arguments. When passed one
argument, each of these predicates returns #t.
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(> 3/4) ⇒ #t
(< 3/4) ⇒ #t
(= 3/4) ⇒ #t

(1+ num) procedure

(add1 num) procedure

(1- num) procedure

(-1+ num) procedure

(sub1 num) procedure

returns: num plus 1 or num minus 1
libraries: (chezscheme)

1+ and add1 are equivalent to (lambda (x) (+ x 1)); 1-, -1+, and sub1 are equivalent to

(lambda (x) (- x 1)).

(define plus
; x should be a nonnegative integer
(lambda (x y)
(if (zero? x)

y
(plus (1- x) (1+ y)))))

(plus 7 8) ⇒ 15

(define double
; x should be a nonnegative integer
(lambda (x)
(if (zero? x)

0
(add1 (add1 (double (sub1 x)))))))

(double 7) ⇒ 14

(expt-mod int1 int2 int3) procedure

returns: int1 raised to the int2 power, modulo int3
libraries: (chezscheme)

int1, int2 and int3 must be nonnegative integers. expt-mod performs its computation

in such a way that the intermediate results are never much larger than int3. This

means that when int2 is large, expt-mod is more efficient than the equivalent procedure

(lambda (x y z) (modulo (expt x y) z)).

(expt-mod 2 4 3) ⇒ 1
(expt-mod 2 76543 76543) ⇒ 2
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(isqrt n) procedure

returns: the integer square root of n
libraries: (chezscheme)

n must be a nonnegative integer. The integer square root of n is defined to be
⌊√

n
⌋
.

(isqrt 0) ⇒ 0
(isqrt 16) ⇒ 4
(isqrt 16.0) ⇒ 4.0
(isqrt 20) ⇒ 4
(isqrt 20.0) ⇒ 4.0
(isqrt (* 2 (expt 10 20))) ⇒ 14142135623

(integer-length n) procedure

returns: see below
libraries: (chezscheme)

The procedure integer-length returns the length in bits of the smallest two’s complement

representation for n, with an assumed leading 1 (sign) bit for negative numbers. For zero,

integer-length returns 0.

(integer-length 0) ⇒ 0
(integer-length 1) ⇒ 1
(integer-length 2) ⇒ 2
(integer-length 3) ⇒ 2
(integer-length 4) ⇒ 3
(integer-length #b10000000) ⇒ 8
(integer-length #b11111111) ⇒ 8
(integer-length -1) ⇒ 0
(integer-length -2) ⇒ 1
(integer-length -3) ⇒ 2
(integer-length -4) ⇒ 2

(nonpositive? real) procedure

returns: #t if real is not greater than zero, #f otherwise
libraries: (chezscheme)

nonpositive? is equivalent to (lambda (x) (<= x 0)).

(nonpositive? 128) ⇒ #f
(nonpositive? 0.0) ⇒ #t
(nonpositive? 1.8e-15) ⇒ #f
(nonpositive? -2/3) ⇒ #t
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(nonnegative? real) procedure

returns: #t if real is not less than zero, #f otherwise
libraries: (chezscheme)

nonnegative? is equivalent to (lambda (x) (>= x 0)).

(nonnegative? -65) ⇒ #f
(nonnegative? 0) ⇒ #t
(nonnegative? -0.0121) ⇒ #f
(nonnegative? 15/16) ⇒ #t

(conjugate num) procedure

returns: complex conjugate of num
libraries: (chezscheme)

The procedure conjugate, when passed a complex argument a + bi, returns its complex

conjugate a+ (−b)i.

(conjugate 3.0+4.0i) ⇒ 3.0-4.0i
(conjugate 1e-20-2e-30i) ⇒ 1e-20+2e-30i
(conjugate 3) ⇒ 3

(magnitude-squared num) procedure

returns: magnitude of num squared
libraries: (chezscheme)

The procedure magnitude-squared, when passed a complex argument a + bi returns its

magnitude squared, i.e., a2 + b2.

(magnitude-squared 3.0-4.0i) ⇒ 25.0
(magnitude-squared 3.0) ⇒ 9.0

(sinh num) procedure

(cosh num) procedure

(tanh num) procedure

returns: the hyperbolic sine, cosine, or tangent of num
libraries: (chezscheme)

(sinh 0.0) ⇒ 0.0
(cosh 0.0) ⇒ 1.0
(tanh -0.0) ⇒ -0.0
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(asinh num) procedure

(acosh num) procedure

(atanh num) procedure

returns: the hyperbolic arc sine, arc cosine, or arc tangent of num
libraries: (chezscheme)

(acosh 0.0) ⇒ 0.0+1.5707963267948966i
(acosh 1.0) ⇒ 0.0
(atanh -1.0) ⇒ -inf.0

(string->number string) procedure

(string->number string radix) procedure

returns: the number represented by string , or #f

libraries: (chezscheme)

This procedure is identical to the Revised6 Report version except that radix may be any
exact integer between 2 and 36, inclusive. The Revised6 Report version requires radix to
be in the set {2, 8, 10, 16}.

(string->number "211012" 3) ⇒ 559
(string->number "tobeornottobe" 36) ⇒ 140613689159812836698

(number->string num) procedure

(number->string num radix) procedure

(number->string num radix precision) procedure

returns: an external representation of num as a string
libraries: (chezscheme)

This procedure is identical to the Revised6 Report version except that radix may be any
exact integer between 2 and 36, inclusive. The Revised6 Report version requires radix to
be in the set {2, 8, 10, 16}.

(number->string 10000 4) ⇒ "2130100"
(number->string 10000 27) ⇒ "DJA"



9. Input/Output Operations

This chapter describes Chez Scheme’s generic port facility, operations on ports, and various
Chez Scheme extensions to the standard set of input/output operations. See Chapter 7 of
The Scheme Programming Language, 4th Edition or the Revised6 Report on Scheme for a
description of standard input/output operations. Definitions of a few sample generic ports
are given in Section 9.17.

Chez Scheme closes file ports automatically after they become inaccessible to the program
or when the Scheme program exits, but it is best to close ports explicitly whenever possible.

9.1. Generic Ports

Chez Scheme’s “generic port” facility allows the programmer to add new types of textual
ports with arbitrary input/output semantics. It may be used, for example, to define any
of the built-in Common Lisp [30] stream types, i.e., synonym streams, broadcast streams,
concatenated streams, two-way streams, echo streams, and string streams. It may also be
used to define more exotic ports, such as ports that represent windows on a bit-mapped
display or ports that represent processes connected to the current process via pipes or
sockets.

Each port has an associated port handler. A port handler is a procedure that accepts
messages in an object-oriented style. Each message corresponds to one of the low-level
Scheme operations on ports, such as read-char and close-input-port (but not read,
which is defined in terms of the lower-level operations). Most of these operations simply
call the handler immediately with the corresponding message.

Standard messages adhere to the following conventions: the message name is the first
argument to the handler. It is always a symbol, and it is always the name of a primitive
Scheme operation on ports. The additional arguments are the same as the arguments to
the primitive procedure and occur in the same order. (The port argument to some of the
primitive procedures is optional; in the case of the messages passed to a handler, the port
argument is always supplied.) The following messages are defined for built-in ports:

block-read port string count
block-write port string count
char-ready? port
clear-input-port port
clear-output-port port
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close-port port
file-position port
file-position port position
file-length port
flush-output-port port
peek-char port
port-name port
read-char port
unread-char char port
write-char char port

Additional messages may be accepted by user-defined ports.

Chez Scheme input and output is normally buffered for efficiency. To support buffering,
each input port contains an input buffer and each output port contains an output buffer.
Bidirectional ports, ports that are both input ports and output ports, contain both input
and output buffers. Input is not buffered if the input buffer is the empty string, and output
is not buffered if the output buffer is the empty string. In the case of unbuffered input
and output, calls to read-char, write-char, and similar messages cause the handler to be
invoked immediately with the corresponding message. For buffered input and output, calls
to these procedures cause the buffer to be updated, and the handler is not called under
normal circumstances until the buffer becomes empty (for input) or full (for output). Han-
dlers for buffered ports must not count on the buffer being empty or full when read-char,
write-char, and similar messages are received, however, due to the possibility that (a)
the handler is invoked through some other mechanism, or (b) the call to the handler is
interrupted.

In the presence of keyboard, timer, and other interrupts, it is possible for a call to a port
handler to be interrupted or for the handler itself to be interrupted. If the port is accessible
outside of the interrupted code, there is a possibility that the interrupt handler will cause
input or output to be performed on the port. This is one reason, as stated above, that port
handlers must not count on the input buffer being empty or output buffer being full when a
read-char, write-char, or similar message is received. In addition, port handlers may need
to manipulate the buffers only with interrupts disabled (using with-interrupts-disabled).

Generic ports are created via one of the port construction procedures make-input-port,
make-output-port, and make-input/output-port defined later in this chapter. Ports have
seven accessible fields:

handler , accessed with port-handler;

output-buffer , accessed with port-output-buffer,

output-size, accessed with port-output-size,

output-index , accessed with port-output-index,

input-buffer , accessed with port-input-buffer,

input-size, accessed with port-input-size, and

input-index , accessed with port-input-index.

The output-size and output-index fields are valid only for output ports, and the input-size
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and input-index fields are valid only for input ports. The output and input size and index
fields may be updated as well using the corresponding “set-field!” procedure.

A port’s output size determines how much of the port’s output buffer is actually available
for writing by write-char. The output size is often the same as the string length of the
port’s output buffer, but it can be set to less (but no less than zero) at the discretion of
the programmer. The output index determines to which position in the port’s buffer the
next character will be written. The output index should be between 0 and the output size,
inclusive. If no output has occurred since the buffer was last flushed, the output index
should be 0. If the index is less than the size, write-char stores its character argument
into the specified character position within the buffer and increments the index. If the
index is equal to the size, write-char leaves the fields of the port unchanged and invokes
the handler.

A port’s input size determines how much of the port’s input buffer is actually available for
reading by read-char. A port’s input size and input index are constrained in the same
manner as output size and index, i.e., the input size must be between 0 and the string
length of the input buffer (inclusive), and the input index must be between 0 and the input
size (inclusive). Often, the input size is less than the length of the input buffer because
there are fewer characters available to read than would fit in the buffer. The input index
determines from which position in the input buffer the next character will be read. If the
index is less than the size, read-char extracts the character in this position, increments
the index, and returns the character. If the index is equal to the size, read-char leaves the
fields of the port unchanged and invokes the handler.

The operation of peek-char is similar to that of read-char, except that it does not in-
crement the input index. unread-char decrements the input index if it is greater than 0,
otherwise it invokes the handler. char-ready? returns #t if the input index is less than the
input size, otherwise it invokes the handler.

Although the fields shown and discussed above are logically present in a port, actual im-
plementation details may differ. The current Chez Scheme implementation uses a different
representation that allows read-char, write-char, and similar operations to be open-coded
with minimal overhead. The access and assignment operators perform the conversion be-
tween the actual representation and the one shown above.

Port handlers receiving a message must return a value appropriate for the corresponding
operation. For example, a handler receiving a read-char message must return a character or
eof object (if it returns). For operations that return unspecified values, such as close-port,
the handler is not required to return any particular value.

9.2. File Options

The Revised6 Report requires that the universe of a file-options enumeration set must
include no-create, no-fail, and no-truncate, whose meanings are described within the
description of the file-options syntax in Section 7.2 of The Scheme Programming Lan-
guage, 4th Edition. Chez Scheme defines a number of additional file options:



214 9. Input/Output Operations

compressed : An output file should be compressed when written; and a compressed input

file should be decompressed when read.

replace: For output files only, replace (remove and recreate) the existing file if it exists.

exclusive: For output files only, lock the file for exclusive access. On some systems the lock

is advisory, i.e., it inhibits access by other processes only if they also attempt to open

exclusively.

append : For output files only, position the output port at the end of the file before each

write so that output to the port is always appended to the file.

perm-set-user-id : For newly created output files under Unix-based systems only, set user-id

bit.

perm-set-group-id : For newly created output files under Unix-based systems only, set

group-id bit.

perm-sticky : For newly created output files under Unix-based systems only, set sticky bit.

perm-no-user-read : For newly created output files under Unix-based systems only, do not

set user read bit. (User read bit is set by default, unless masked by the process

umask.)

perm-no-user-write: For newly created output files under Unix-based systems only, do not

set user write bit. (User write bit is set by default, unless masked by the process

umask.)

perm-user-execute: For newly created output files under Unix-based systems only, set user

execute bit unless masked by process umask. (User execute bit is not set by default.)

perm-no-group-read : For newly created output files under Unix-based systems only, do not

set group read bit. (Group read bit is set by default, unless masked by the process

umask.)

perm-no-group-write: For newly created output files under Unix-based systems only, do

not set group write bit. (Group write bit is set by default, unless masked by the

process umask.)

perm-group-execute: For newly created output files under Unix-based systems only, set

group execute bit unless masked by process umask. (Group execute bit is not set by

default.)

perm-no-other-read : For newly created output files under Unix-based systems only, do not

set other read bit. (Other read bit is set by default, unless masked by the process

umask.)

perm-no-other-write: For newly created output files under Unix-based systems only, do not

set other write bit. (Other write bit is set by default, unless masked by the process

umask.)

perm-other-execute: For newly created output files under Unix-based systems only, set

other execute bit unless masked by process umask. (Other execute bit is not set by

default.)
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9.3. Transcoders

The language of the Revised6 Report provides three built-in codecs: a latin-1 codec, a
utf-8 codec, and a utf-16 codec. Chez Scheme provides three additional codecs: a utf-
16le codec, utf-16be codec, and an “iconv” codec for non-Unicode character sets. It also
provides an alternative to the standard utf-16 codec that defaults to little-endian format
rather than the default big-endian format. This section describes these codecs, plus a
current-transcoder parameter that allows the programmer to determine the transcoder
used for a textual port whenever the transcoder is implicit, as for open-input-file or load,
along with the predicate transcoder?, which should be standard but is not.

(utf-16-codec) procedure

(utf-16-codec endianness) procedure

(utf-16le-codec) procedure

(utf-16be-codec) procedure

returns: a codec
libraries: (chezscheme)

endianness must be the symbol big or the symbol little.

The codec returned by utf-16-codec can be used to create process data written UFT-16 for-
mat. When called without the endianness argument or with endianness big, utf-16-codec
returns a codec for standard UTF-16 data, i.e., one that defaults to big-endian format if
no byte-order mark (BOM) is found.

When output is transcoded with a transcoder based on this codec, a BOM is emitted just
before the first character written, and each character is written as a UTF-16 character in
big-endian format. For input, a BOM is looked for at the start of the input and, if present,
controls the byte order of the remaining UTF-16 characters. If no BOM is present, big-
endian order is assumed. For input-output ports, the BOM is not emitted if the file is read
before written, and a BOM is not looked for if the file is written before read.

For textual ports created via transcoded-port, a BOM written or read via the transcoder
appears at the beginning of the underlying data stream or file only if the binary port
passed to transcoded-port is positioned at the start of the data stream or file. When the
transcoder can determine this is the case, it sets a flag that causes set-port-position!)
to position the port beyond the BOM if an attempt is made to reposition the port to the
start of the data stream or file, so that the BOM is preserved.

When called with endianness little, utf-16-codec returns a codec that defaults to the
little-endian format both for reading and for writing. For output-only streams or in-
put/output streams that are written before read, the result is standard UTF-16, with a
BOM that specifies little-endian format followed by characters in little-endian byte order.
For input-only streams or input/output streams that are read before written, this codec
allows programs to read from input streams that either begin with a BOM or are encoded
in UTF-16LE format. This is particularly useful for handling files that might have been
produced by older Windows applications that claim to produce UTF-16 files but actually
produce UTF-16LE files.
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The Revised6 Report version of utf-16-codec lacks the optional endianness argument.

The codecs returned by utf-16le-codec and utf-16be-codec are used to read and write
data in the UTF-16LE and UTF-16BE formats, i.e., UTF-16 with little-endian or big-
endian byte order and no BOM. For output, these codecs are useful for controlling whether
and where the BOM is emitted, since no BOM is emitted implicitly and a BOM can be
emitted explicitly as an ordinary character. For input, these codecs are useful for processing
files known to be in little-endian or big-endian format with no BOM.

(iconv-codec code-page) procedure

returns: a codec
libraries: (chezscheme)

code-page must be a string and should identify a codec accepted by the iconv library
installed on the target machine. The codec returned by this procedure can be used to
convert from the non-Unicode single- and multiple-byte character sets supported by iconv.
When used in the input direction, the codec converts byte sequences into Scheme strings,
and when used in the output direction, it converts Scheme strings to byte sequences.

The set of supported code pages depends on the version of iconv available; consult the
iconv documentation or use the shell command iconv --list to obtain a list of supported
code pages.

While the Windows operating system does not supply an iconv library, it is possible to
use iconv-codec on Windows systems by supplying an iconv dynamic-link library (named
iconv.dll, libiconv.dll, or libiconv-2.dll) that provides Posix-conformant iconv_open,
iconv, and iconv_close entry points either under those names or under the alternative
names libiconv_open, libiconv, and libiconv_close. The dll must be located in a stan-
dard location for dlls or in the current directory of the process the first time iconv-codec

is called.

current-transcoder thread parameter

libraries: (chezscheme)

The transcoder value of the current-transcoder parameter is used whenever a textual file
is opened with an implicit transcoder, e.g., by open-input-file and other convenience I/O
procedures, compile-file include, load, and pretty-file. Its initial value is the value of
the native-transcoder procedure.

(transcoder? obj) procedure

returns: #t if obj is a transcoder, #f otherwise
libraries: (chezscheme)

9.4. Port Operations

The procedures used to create, access, and alter ports directly are described in this section.
Also described are several nonstandard operations on ports.
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Unless otherwise specified, procedures requiring either input ports or output ports as argu-
ments accept input/output ports as well, i.e., an input/output port is both an input port
and an output port.

(make-input-port handler input-buffer) procedure

(make-output-port handler output-buffer) procedure

(make-input/output-port handler input-buffer output-buffer) procedure

returns: a new textual port
libraries: (chezscheme)

handler must be a procedure, and input-buffer and output-buffer must be strings. Each
procedure creates a generic port. The handler associated with the port is handler , the
input buffer is input-buffer , and the output buffer is output-buffer . For make-input-port,
the output buffer is undefined, and for make-output-port, the input buffer is undefined.

The input size of an input or input/output port is initialized to the string length of the
input buffer, and the input index is set to 0. The output size and index of an output or
input/output port are initialized similarly.

The length of an input or output buffer may be zero, in which case buffering is effectively
disabled.

(port-handler port) procedure

returns: a procedure
libraries: (chezscheme)

For generic ports, port-handler returns the handler passed to one of the generic port
creation procedures described above. For ports created by open-input-file and similar
procedures, port-handler returns an internal handler that may be invoked in the same
manner as any other handler.

(port-input-buffer input-port) procedure

(port-input-size input-port) procedure

(port-input-index input-port) procedure

(textual-port-input-buffer textual-input-port) procedure

(textual-port-input-size textual-input-port) procedure

(textual-port-input-index textual-input-port) procedure

(binary-port-input-buffer binary-input-port) procedure

(binary-port-input-size binary-input-port) procedure

(binary-port-input-index binary-input-port) procedure

returns: see below
libraries: (chezscheme)

These procedures return the input buffer, size, or index of the input port. The variants
specialized to textual or binary ports are slightly more efficient than their generic counter-
parts.
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(set-port-input-index! input-port n) procedure

(set-port-input-size! input-port n) procedure

(set-port-input-buffer! input-port x) procedure

(set-textual-port-input-index! textual-input-port n) procedure

(set-textual-port-input-size! textual-input-port n) procedure

(set-textual-port-input-buffer! textual-input-port string) procedure

(set-binary-port-input-index! binary-input-port n) procedure

(set-binary-port-input-size! binary-input-port n) procedure

(set-binary-port-input-buffer! binary-input-port bytevector) procedure

returns: unspecified
libraries: (chezscheme)

The procedure set-port-input-index! sets the input index field of input-port to n, which

must be a nonnegative integer less than or equal to the port’s input size.

The procedure set-port-input-size! sets the input size field of input-port to n, which

must be a nonnegative integer less than or equal to the string length of the port’s input

buffer. It also sets the input index to 0.

The procedure set-port-input-buffer! sets the input buffer field of input-port to x, which

must be a string for textual ports and a bytevector for binary ports. It also sets the input

size to the length of the string or bytevector and the input index to 0.

The variants specialized to textual or binary ports are slightly more efficient than their

generic counterparts.

(port-input-count input-port) procedure

(textual-port-input-count textual-input-port) procedure

(binary-port-input-count binary-input-port) procedure

returns: see below
libraries: (chezscheme)

These procedures return an exact integer representing the number of characters or bytes

left to be read from the port’s input buffer, i.e., the difference between the buffer size and

index.

The variants specialized to textual or binary ports are slightly more efficient than their

generic counterpart.

(port-input-empty? input-port) procedure

returns: #t if the port’s input buffer contains no more data, otherwise #f

libraries: (chezscheme)

This procedure determines whether the port’s input count is zero without computing or

returning the actual count.
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(port-output-buffer output-port) procedure

(port-output-size output-port) procedure

(port-output-index output-port) procedure

(textual-port-output-buffer output-port) procedure

(textual-port-output-size output-port) procedure

(textual-port-output-index output-port) procedure

(binary-port-output-buffer output-port) procedure

(binary-port-output-size output-port) procedure

(binary-port-output-index output-port) procedure

returns: see below
libraries: (chezscheme)

These procedures return the output buffer, size, or index of the output port. The vari-

ants specialized to textual or binary ports are slightly more efficient than their generic

counterparts.

(set-port-output-index! output-port n) procedure

(set-port-output-size! output-port n) procedure

(set-port-output-buffer! output-port x) procedure

(set-textual-port-output-index! textual-output-port n) procedure

(set-textual-port-output-size! textual-output-port n) procedure

(set-textual-port-output-buffer! textual-output-port string) procedure

(set-binary-port-output-index! output-port n) procedure

(set-binary-port-output-size! output-port n) procedure

(set-binary-port-output-buffer! binary-output-port bytevector) procedure

returns: unspecified
libraries: (chezscheme)

The procedure set-port-output-index! sets the output index field of the output port to

n, which must be a nonnegative integer less than or equal to the port’s output size.

The procedure set-port-output-size! sets the output size field of the output port to n,

which must be a nonnegative integer less than or equal to the string length of the port’s

output buffer. It also sets the output index to 0.

The procedure set-port-output-buffer! sets the output buffer field of output-port to x,

which must be a string for textual ports and a bytevector for binary ports. It also sets the

output size to the length of the string or bytevector and the output index to 0.

The variants specialized to textual or binary ports are slightly more efficient than their

generic counterparts.
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(port-output-count output-port) procedure

(textual-port-output-count textual-output-port) procedure

(binary-port-output-count binary-output-port) procedure

returns: see below
libraries: (chezscheme)

These procedures return an exact integer representing the amount of space in characters
or bytes available to be written in the port’s output buffer, i.e., the difference between the
buffer size and index.

The variants specialized to textual or binary ports are slightly more efficient than their
generic counterpart.

(port-output-full? output-port) procedure

returns: #t if the port’s input buffer has no more room, otherwise #f

libraries: (chezscheme)

This procedure determines whether the port’s output count is zero without computing or
returning the actual count.

(mark-port-closed! port) procedure

returns: unspecified
libraries: (chezscheme)

This procedure directly marks the port closed so that no further input or output operations
are allowed on it. It is typically used by handlers upon receipt of a close-port message.

(port-closed? port) procedure

returns: #t if port is closed, #f otherwise
libraries: (chezscheme)

(let ([p (open-output-string)])
(port-closed? p)) ⇒ #f

(let ([p (open-output-string)])
(close-port p)
(port-closed? p)) ⇒ #t

(set-port-bol! output-port obj) procedure

returns: unspecified
libraries: (chezscheme)

When obj is #f, the port’s beginning-of-line (BOL) flag is cleared; otherwise, the port’s
BOL flag is set.

The BOL flag is consulted by fresh-line (page 240) to determine if it needs to emit a
newline. This flag is maintained automatically for file output ports, string output ports,
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and transcript ports. The flag is set for newly created file and string output ports, except
for file output ports created with the append option, for which the flag is reset. The BOL
flag is clear for newly created generic ports and never set automatically, but may be set
explicitly using set-port-bol!. The port is always flushed immediately before the flag is
consulted, so it need not be maintained on a per-character basis for buffered ports.

(port-bol? port) procedure

returns: #t if port ’s BOL flag is set, #f otherwise
libraries: (chezscheme)

(set-port-eof! input-port obj) procedure

returns: unspecified
libraries: (chezscheme)

When obj is not #f, set-port-eof! marks input-port so that, once its buffer is empty, the
port is treated as if it were at eof even if more data is available in the underlying byte or
character stream. Once this artificial eof has been read, the eof mark is cleared, making
any additional data in the stream available beyond the eof. This feature can be used by a
generic port to simulate a stream consisting of multiple input files.

When obj is #f, the eof mark is cleared.

The following example assumes /dev/zero provides an infinite stream of zero bytes.

(define p
(parameterize ([file-buffer-size 3])
(open-file-input-port "/dev/zero")))

(set-port-eof! p #t)
(get-u8 p) ⇒ #!eof
(get-u8 p) ⇒ 0
(set-port-eof! p #t)
(get-u8 p) ⇒ 0
(get-u8 p) ⇒ 0
(get-u8 p) ⇒ #!eof
(get-u8 p) ⇒ 0

(port-name port) procedure

returns: the name associated with port
libraries: (chezscheme)

The name may be any object but is usually a string or #f (denoting no name). For file
ports, the name is typically a string naming the file.

(let ([p (open-input-file "myfile.ss")])
(port-name p)) ⇒ "myfile.ss"

(let ([p (open-output-string)])
(port-name p)) ⇒ "string"
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(set-port-name! port obj) procedure

returns: unspecified
libraries: (chezscheme)

This procedure sets port ’s name to obj , which should be a string or #f (denoting no name).

(port-length port) procedure

(file-length port) procedure

returns: the length of the file or other object to which port refers
(port-has-port-length? port) procedure

returns: #t if the port supports port-length, #f otherwise
libraries: (chezscheme)

A port may allow the length of the underlying stream of characters or bytes to be deter-

mined. If so, the procedure port-has-port-length? returns #t and port-length returns

the current length. For binary ports, the length is always an exact nonnegative integer

byte count. For textual ports, the representation of a length is unspecified; it may not

be an exact nonnegative integer and, even if it is, it may not represent either a byte or

character count. The length may be used at some later time to reset the length if the port

supports set-port-length!. If port-length is called on a port that does not support it,

an exception with condition type &assertion is raised.

File lengths beyond 232 might not be reported property for compressed files on 32-bit

versions of the system.

file-length is identical to port-length.

(set-port-length! port len) procedure

returns: unspecified
(port-has-set-port-length!? port) procedure

returns: #t if the port supports set-port-length!, #f otherwise
libraries: (chezscheme)

A port may allow the length of the underlying stream of characters or bytes to be set,

i.e., extended or truncated. If so, the procedure port-has-set-port-length!? returns #t

and set-port-length! changes the length. For binary ports, the length len must be an

exact nonnegative integer byte count. For textual ports, the representation of a length is

unspecified, as described in the entry for port-length above, but len must be an appro-

priate length for the textual port, which is usually guaranteed to be the case only if it was

obtained from a call to port-length on the same port. If set-port-length! is called on a

port that does not support it, an exception with condition type &assertion is raised.

It is not possible to set the length of a port opened with compression to an arbitrary

position, and the result of an attempt to set the length of a compressed file beyond 232 on

32-bit versions of the system is undefined.
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(port-nonblocking? port) procedure

returns: #t if the port is in nonblocking mode, #f otherwise
(port-has-port-nonblocking?? port) procedure

returns: #t if the port supports port-nonblocking?, #f otherwise
libraries: (chezscheme)

A port may allow the nonblocking status of the port to be determined. If so, the procedure
port-has-port-nonblocking?? returns #t and port-nonblocking? returns a boolean value
reflecting whether the port is in nonblocking mode.

(set-port-nonblocking! port obj) procedure

returns: unspecified
(port-has-set-port-nonblocking!? port) procedure

returns: #t if the port supports set-port-nonblocking!, #f otherwise
libraries: (chezscheme)

A port may allow reads or writes to be performed in a “nonblocking” fashion. If so, the
procedure port-has-set-port-nonblocking!? returns #t and set-port-nonblocking! sets
the port to nonblocking mode (if obj is a true value) or blocking mode (if obj is #f). If
set-port-nonblocking! is called on a port that does not support it, an exception with
condition type &assertion is raised.

Ports created by the standard Revised6 port opening procedures are initially set in blocking
mode by default. The same is true for most of the procedures described in this document.
A generic port based on a nonblocking source may be nonblocking initially. A port returned
by open-fd-input-port, open-fd-output-port, or open-fd-input/output-port is initially
in nonblocking mode if the file-descriptor passed in is in nonblocking mode. Similarly, a
port returned by standard-input-port, standard-output-port, or standard-error-port

is initially in nonblocking mode if the underlying stdin, stdout, or stderr file descriptor is
in nonblocking mode.

Although get-bytevector-some and get-string-some normally cannot return an empty
bytevector or empty string, they can if the port is in nonblocking mode and no input is
available. Also, get-bytevector-some! and get-string-some! may not read any data if
the port is in nonblocking mode and no data is available. Similarly, put-bytevector-some
and put-string-some may not write any data if the port is in nonblocking mode and no
room is available.

Nonblocking mode is not supported under Windows.

(file-position port) procedure

(file-position port pos) procedure

returns: see below
libraries: (chezscheme)

When the second argument is omitted, this procedure behaves like the R6RS port-position

procedure, and when present, like the R6RS set-port-position! procedure.
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For compressed files opened with the compressed flag, file-position returns the position
in the uncompressed stream of data. Changing the position of a compressed input file
opened with the compressed flag generally requires rewinding and rereading the file and
might thus be slow. The position of a compressed output file opened with the compressed

flag can be moved forward only; this is accomplished by writing a (compressed) sequence
of zeros. File positions beyond 232 might not be reported property for compressed files on
32-bit versions of the system.

(clear-input-port) procedure

(clear-input-port input-port) procedure

returns: unspecified
libraries: (chezscheme)

If input-port is not supplied, it defaults to the current input port. This procedure discards
any data in the buffer associated with input-port . This may be necessary, for example, to
clear any type-ahead from the keyboard in preparation for an urgent query.

(clear-output-port) procedure

(clear-output-port output-port) procedure

returns: unspecified
libraries: (chezscheme)

If output-port is not supplied, it defaults to the current output port. This procedure
discards any data in the buffer associated with output-port . This may be necessary, for
example, to clear any pending output on an interactive port in preparation for an urgent
message.

(flush-output-port) procedure

(flush-output-port output-port) procedure

returns: unspecified
libraries: (chezscheme)

If output-port is not supplied, it defaults to the current output port. This procedure forces
any data in the buffer associated with output-port to be printed immediately. The console
output port is automatically flushed after a newline and before input from the console
input port; all ports are automatically flushed when they are closed. flush-output-port

may be necessary, however, to force a message without a newline to be sent to the console
output port or to force output to appear on a file without delay.

(port-file-compressed! port) procedure

returns: unspecified
libraries: (chezscheme)

port must be an input or an output port, but not an input/output port. It must be a file
port pointing to a regular file, i.e., a file on disk rather than, e.g., a socket. The port can be
a binary or textual port. If the port is an output port, subsequent output sent to the port
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will be compressed. If the port is an input port, subsequent input will be decompressed if
and only if the port is currently pointing at compressed data. This procedure has no effect
if the port is already set for compression.

9.5. String Ports

String ports allow the creation and manipulation of strings via port operations. The
procedure open-input-string converts a string into a textual input port, allowing the
characters in the string to be read in sequence via input operations such as read-char or
read. The procedure open-output-string allows new strings to be built up with output
operations such as write-char and write.

While string ports could be defined as generic ports, they are instead supported as primitive
by the implementation.

(open-input-string string) procedure

returns: a new string input port
libraries: (chezscheme)

A string input port is similar to a file input port, except that characters and objects drawn
from the port come from string rather than from a file.

A string port is at “end of file” when the port reaches the end of the string. It is not
necessary to close a string port, although it is okay to do so.

(let ([p (open-input-string "hi mom!")])
(let ([x (read p)])
(list x (read p)))) ⇒ (hi mom!)

(with-input-from-string string thunk) procedure

returns: the values returned by thunk
libraries: (chezscheme)

thunk must be a procedure and should accept zero arguments. with-input-from-string

parameterizes the current input port to be the result of opening string for input during
the application of thunk .

(with-input-from-string "(cons 3 4)"
(lambda ()
(eval (read)))) ⇒ (3 . 4)

(open-output-string) procedure

returns: a new string output port
libraries: (chezscheme)

A string output port is similar to a file output port, except that characters and objects
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written to the port are placed in a string (which grows as needed) rather than to a file. The
string built by writing to a string output port may be obtained with get-output-string.
See the example given for get-output-string below. It is not necessary to close a string
port, although it is okay to do so.

(get-output-string string-output-port) procedure

returns: the string associated with string-output-port
libraries: (chezscheme)

string-output-port must be an port returned by open-output-string.

As a side effect, get-output-string resets string-output-port so that subsequent output to
string-output-port is placed into a fresh string.

(let ([p (open-output-string)])
(write ’hi p)
(write-char #\space p)
(write ’mom! p)
(get-output-string p)) ⇒ "hi mom!"

An implementation of format (Section 9.13) might be written using string-output ports to
produce string output.

(with-output-to-string thunk) procedure

returns: a string containing the output
libraries: (chezscheme)

thunk must be a procedure and should accept zero arguments. with-output-to-string

parameterizes the current output port to a new string output port during the application
of thunk . If thunk returns, the string associated with the new string output port is returned,
as with get-output-string.

(with-output-to-string
(lambda ()
(display "Once upon a time ...")
(newline))) ⇒ "Once upon a time ...\n"

9.6. File Ports

file-buffer-size thread parameter

libraries: (chezscheme)

file-buffer-size is a parameter that determines the size of each buffer created when
the buffer mode is not none for a port created by one of the file open operations, e.g.,
open-input-file or open-file-output-port. When called with no arguments, the param-
eter returns the current buffer size. When called with a positive fixnum k , it sets the
current buffer size to k .
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(file-port? port) procedure

returns: #t if port is a file port, #f otherwise
libraries: (chezscheme)

A file port is any port based directly on an O/S file descriptor, e.g., one created by
open-file-input-port, open-output-port, open-fd-input-port, etc., but not a string,
bytevector, or custom port.

(port-file-descriptor port) procedure

returns: the file descriptor associated with port
libraries: (chezscheme)

port must be a file port, i.e., a port for which file-port? returns #t.

9.7. Custom Ports

custom-port-buffer-size thread parameter

libraries: (chezscheme)

custom-port-buffer-size is a parameter that determines the sizes of the buffers associated
with newly created custom ports. When called with no arguments, the parameter returns
the current buffer size. When called with a positive fixnum k , it sets the current buffer size
to k .

9.8. Input Operations

console-input-port global parameter

libraries: (chezscheme)

console-input-port is a parameter that determines the input port used by the waiter and
interactive debugger. When called with no arguments, it returns the console input port.
When called with one argument, which must be a textual input port, it changes the value
of the console input port. The initial value of this parameter is a port tied to the standard
input (stdin) stream of the Scheme process.

current-input-port thread parameter

libraries: (chezscheme)

current-input-port is a parameter that determines the default port argument for most
input procedures, including read-char, peek-char, and read, When called with no argu-
ments, current-input-port returns the current input port. When called with one argu-
ment, which must be a textual input port, it changes the value of the current input port.
The Revised6 Report version of current-input-port accepts only zero arguments, i.e., it
cannot be used to change the current input port. The initial value of this parameter is the
same port as the initial value of console-input-port.
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(open-input-file path) procedure

(open-input-file path options) procedure

returns: a new input port
libraries: (chezscheme)

path must be a string. open-input-file opens a textual input port for the file named by
path. An exception is raised with condition type &i/o-filename if the file does not exist
or cannot be opened for input.

options, if present, is a symbolic option name or option list. Possible symbolic option
names are compressed, uncompressed, buffered, and unbuffered. An option list is a list
containing zero or more symbolic option names.

The mutually exclusive compressed and uncompressed options determine whether the input
file should be decompressed if it is compressed. (See open-output-file.) The default is
uncompressed, so the uncompressed option is useful only as documentation.

The mutually exclusive buffered and unbuffered options determine whether input is
buffered. When input is buffered, it is read in large blocks and buffered internally for effi-
ciency to reduce the number of operating system requests. When the unbuffered option is
specified, input is unbuffered, but not fully, since one character of buffering is required to
support peek-char and unread-char. Input is buffered by default, so the buffered option
is useful only as documentation.

For example, the call

(open-input-file "frob" ’(compressed))

opens the file frob with decompression enabled.

The Revised6 Report version of open-input-file does not support the optional options
argument.

(call-with-input-file path procedure) procedure

(call-with-input-file path procedure options) procedure

returns: the values returned by procedure
libraries: (chezscheme)

path must be a string. procedure should accept one argument.

call-with-input-file creates a new input port for the file named by path, as if with
open-input-file, and passes this port to procedure. If procedure returns normally,
call-with-input-file closes the input port and returns the values returned by procedure.

call-with-input-file does not automatically close the input port if a continuation created
outside of procedure is invoked, since it is possible that another continuation created inside
of procedure will be invoked at a later time, returning control to procedure. If procedure
does not return, an implementation is free to close the input port only if it can prove that
the input port is no longer accessible. As shown in Section 5.6 of The Scheme Programming
Language, 4th Edition, dynamic-wind may be used to ensure that the port is closed if a
continuation created outside of procedure is invoked.
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See open-input-file above for a description of the optional options argument.

The Revised6 Report version of call-with-input-file does not support the optional input
argument.

(with-input-from-file path thunk) procedure

(with-input-from-file path thunk options) procedure

returns: the values returned by thunk
libraries: (chezscheme)

path must be a string. thunk must be a procedure and should accept zero arguments.

with-input-from-file temporarily changes the current input port to be the result of open-
ing the file named by path, as if with open-input-file, during the application of thunk . If
thunk returns, the port is closed and the current input port is restored to its old value.

The behavior of with-input-from-file is unspecified if a continuation created outside of
thunk is invoked before thunk returns. An implementation may close the port and restore
the current input port to its old value—but it may not.

See open-input-file above for a description of the optional options argument.

The Revised6 Report version of with-input-from-file does not support the optional
options argument.

(open-fd-input-port fd) procedure

(open-fd-input-port fd b-mode) procedure

(open-fd-input-port fd b-mode ?transcoder) procedure

returns: a new input port for the file descriptor fd
libraries: (chezscheme)

fd must be a nonnegative exact integer and should be a valid open file descriptor. If
?transcoder is present and not #f, it must be a transcoder, and this procedure returns a
textual input port whose transcoder is ?transcoder . Otherwise, this procedure returns a
binary input port. See the lead-in to Section 7.2 of The Scheme Programming Language,
4th Edition for a description of the constraints on and effects of the other arguments.

The file descriptor is closed when the port is closed.

(standard-input-port) procedure

(standard-input-port b-mode) procedure

(standard-input-port b-mode ?transcoder) procedure

returns: a new input port connected to the process’s standard input
libraries: (chezscheme)

If ?transcoder is present and not #f, it must be a transcoder, and this procedure returns
a textual input port whose transcoder is ?transcoder . Otherwise, this procedure returns a
binary input port. The buffer mode b-mode defaults to block, which differs from block in
Chez Scheme only for textual output ports. See the lead-in to Section 7.2 of The Scheme
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Programming Language, 4th Edition for a description of the constraints on and effects of
the other arguments.

The Revised6 Report version of this procedure does not accept the optional b-mode and
?transcoder arguments, which limits it to an implementation-dependent buffering mode
(block in Chez Scheme) and binary output.

(get-string-some textual-input-port) procedure

returns: a nonempty string or the eof object
libraries: (chezscheme)

If textual-input-port is at end of file, the eof object is returned. Otherwise, get-string-some
reads (as if with get-u8) at least one character and possibly more, and returns a string
containing these characters. The port’s position is advanced past the characters read. The
maximum number of characters read by this operation is implementation-dependent.

An exception to the “at least one character” guarantee occurs if the port is in nonblocking
mode (see set-port-nonblocking!) and no input is ready. In this case, an empty string is
returned.

(get-string-some! textual-input-port string start n) procedure

returns: the count of characters read, as an exact nonnegative integer, or the eof object
libraries: (chezscheme)

start and n must be exact nonnegative integers, and the sum of start and n must not
exceed the length of string .

If n is 0, this procedure returns zero without attempting to read from textual-input-port
and without modifying string .

Otherwise, if textual-input-port is at end of file, this procedure returns the eof object, except
it returns zero when the port is in nonblocking mode (see set-port-nonblocking!) and
the port cannot be determined to be at end of file without blocking. In either case, string
is not modified.

Otherwise, this procedure reads (as if with get-char) up to n characters from the port,
stores the characters in consecutive locations of string starting at start , advances the port’s
position just past the characters read, and returns the count of characters read.

If the port is in nonblocking mode, this procedure reads no more than it can without
blocking and thus might read zero characters; otherwise, it reads at least one character but
no more than are available when the first character becomes available.

(get-bytevector-some! binary-input-port bytevector start n) procedure

returns: the count of bytes read, as an exact nonnegative integer, or the eof object
libraries: (chezscheme)

start and n must be exact nonnegative integers, and the sum of start and n must not
exceed the length of bytevector .
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If n is 0, this procedure returns zero without attempting to read from binary-input-port
and without modifying bytevector .

Otherwise, if binary-input-port is at end of file, this procedure returns the eof object, except
it returns zero when the port is in nonblocking mode (see set-port-nonblocking!) and the
port cannot be determined to be at end of file without blocking. In either case, bytevector
is not modified.

Otherwise, this procedure reads (as if with get-u8) up to n bytes from the port, stores the
bytes in consecutive locations of bytevector starting at start , advances the port’s position
just past the bytes read, and returns the count of bytes read.

If the port is in nonblocking mode, this procedure reads no more than it can without
blocking and thus might read zero bytes; otherwise, it reads at least one byte but no more
than are available when the first byte becomes available.

(unread-char char) procedure

(unread-char char textual-input-port) procedure

(unget-char textual-input-port char) procedure

returns: unspecified
libraries: (chezscheme)

For unread-char, if textual-input-port is not supplied, it defaults to the current input port.
These procedures “unread” the last character read from textual-input-port. char may
or may not be ignored, depending upon the implementation. In any case, char should be
last character read from the port. A character should not be unread twice on the same
port without an intervening call to read-char or get-char.

unread-char and unget-char are provided for applications requiring one character of
lookahead and may be used in place of, or even in combination with, peek-char or
lookahead-char. One character of lookahead is required in the procedure read-word, which
is defined below in terms of unread-char. read-word returns the next word from a textual
input port as a string, where a word is defined to be a sequence of alphabetic characters.
Since it does not know until it reads one character too many that it has read the entire
word, read-word uses unread-char to return the character to the input port.

(define read-word
(lambda (p)
(list->string

(let f ([c (read-char p)])
(cond

[(eof-object? c) ’()]
[(char-alphabetic? c)
(cons c (f (read-char p)))]

[else
(unread-char c p)
’()])))))

In the alternate version below, peek-char is used instead of unread-char.
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(define read-word
(lambda (p)
(list->string

(let f ([c (peek-char p)])
(cond

[(eof-object? c) ’()]
[(char-alphabetic? c)
(read-char p)
(cons c (f (peek-char p)))]

[else ’()])))))

The advantage of unread-char in this situation is that only one call to unread-char per

word is required, whereas one call to peek-char is required for each character in the word

plus the first character beyond. In many cases, unread-char and unget-char do not enjoy

this advantage, and peek-char or lookahead-char should be used instead.

(unget-u8 binary-input-port octet) procedure

returns: unspecified
libraries: (chezscheme)

This procedures “unreads” the last byte read from binary-input-port. octet may or may

not be ignored, depending upon the implementation. In any case, octet should be last

byte read from the port. A byte should not be unread twice on the same port without an

intervening call to get-u8.

(input-port-ready? input-port) procedure

returns: #t if data is available on input-port , #f otherwise
libraries: (chezscheme)

input-port-ready? allows a program to check to see if input is available on a textual

or binary input port without hanging. If input is available or the port is at end of file,

input-port-ready? returns #t. If it cannot determine from the port whether input is ready,

input-port-ready? raises an exception with condition type &i/o-read-error. Otherwise,

it returns #f.

(char-ready?) procedure

(char-ready? textual-input-port) procedure

returns: #t if a character is available on textual-input-port , #f otherwise
libraries: (chezscheme)

If textual-input-port is not supplied, it defaults to the current input port. char-ready? is

like input-port-ready? except it is restricted to textual input ports.
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(block-read textual-input-port string) procedure

(block-read textual-input-port string count) procedure

returns: see below
libraries: (chezscheme)

count must be a nonnegative fixnum less than or equal to the length of string . If not
provided, it defaults to the length of string .

If textual-input-port is at end-of-file, an eof object is returned. Otherwise, string is filled
with as many characters as are available for reading from textual-input-port up to count ,
and the number of characters placed in the string is returned.

If textual-input-port is buffered and the buffer is nonempty, the buffered input or a portion
thereof is returned; otherwise block-read bypasses the buffer entirely.

(read-token) procedure

(read-token textual-input-port) procedure

returns: see below
libraries: (chezscheme)

Parsing of a Scheme datum is conceptually performed in two steps. First, the sequence
of characters that form the datum are grouped into tokens, such as symbols, numbers,
left parentheses, and double quotes. During this first step, whitespace and comments are
discarded. Second, these tokens are grouped into data.

read performs both of these steps and creates an internal representation of each datum
it parses. read-token may be used to perform the first step only, one token at a time.
read-token is intended to be used by editors and program formatters that must be able to
parse a program or datum without actually reading it.

If textual-input-port is not supplied, it defaults to the current input port. One token is
read from the input port and returned as four values:

type: a symbol describing the type of token read,

value: the token value,

start : the position of the first character of the token, relative to the starting position of
the input port, and

end : the first position beyond the token, relative to the starting position of the input port.

When the token type fully specifies the token, read-token returns #f for the value. The
token types are listed below with the corresponding value in parentheses.

atomic (atom) an atomic value, i.e., a symbol, boolean, number, character, #!eof, or #!bwp

box (#f) box prefix, i.e., #&

dot (#f) dotted pair separator, i.e., .

eof (#!eof) end of file

fasl (#f) fasl prefix, i.e., #@

insert (n) graph reference, i.e., #n#
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lbrack (#f) open square bracket

lparen (#f) open parenthesis

mark (n) graph mark, i.e., #n=

quote (quote, quasiquote, syntax, unquote, unquote-splicing, or datum-comment) an ab-

breviation mark, e.g., ’ or ,@ or datum-comment prefix

rbrack (#f) close square bracket

record-brack (#f) record open bracket, i.e., #[

rparen (#f) close parenthesis

vfxnparen (n) fxvector prefix, i.e., #nvfx(

vfxparen (#f) fxvector prefix, i.e., #vfx(

vnparen (n) vector prefix, i.e., #n(

vparen (#f) vector prefix, i.e., #(

vu8nparen (n) bytevector prefix, i.e., #nvu8(

vu8paren (#f) bytevector prefix, i.e., #vu8(

The set of token types is likely to change in future releases of the system; check the release

notes for details on such changes.

The input port is left pointing to the first character position beyond the token, i.e., end

characters from the starting position.

(define s (open-input-string "(a b c)"))
(read-token s) ⇒ lparen

#f
0
1

(define s (open-input-string "abc 123"))
(read-token s) ⇒ atomic

abc
0
3

(define s (open-input-string ""))
(read-token s) ⇒ eof

#!eof
0
0

(define s (open-input-string "#7=#7#"))
(read-token s) ⇒ mark

7
0
3

(read-token s) ⇒ insert
7
3
6
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The information read-token returns is not always sufficient for reconstituting the exact

sequence of characters that make up a token. For example, 1.0 and 1e0 both return

type atomic with value 1.0. The exact sequence of characters may be obtained only by

repositioning the port and reading a block of characters of the appropriate length, using

the relative positions given by start and end .

9.9. Output Operations

console-output-port global parameter

libraries: (chezscheme)

console-output-port is a parameter that determines the output port used by the waiter

and interactive debugger. When called with no arguments, it returns the console output

port. When called with one argument, which must be a textual output port, it changes

the value of the console output port. The initial value of this parameter is a port tied to

the standard output (stdout) stream of the Scheme process.

current-output-port thread parameter

libraries: (chezscheme)

current-output-port is a parameter that determines the default port argument for most

output procedures, including write-char, newline, write, display, and pretty-print.

When called with no arguments, current-output-port returns the current output port.

When called with one argument, which must be a textual output port, it changes the value

of the current output port. The Revised6 Report version of current-output-port accepts

only zero arguments, i.e., it cannot be used to change the current output port. The initial

value of this parameter is the same port as the initial value of console-output-port.

console-error-port thread parameter

libraries: (chezscheme)

console-error-port is a parameter that can be used to set or obtain the console error

port, which determines the port to which conditions and other messages are printed by the

default exception handler. When called with no arguments, console-error-port returns

the console error port. When called with one argument, which must be a textual output

port, it changes the value of the console error port.

If the system determines that the standard output (stdout) and standard error (stderr)

streams refer to the same file, socket, pipe, virtual terminal, device, etc., this parameter

is initially set to the same value as the parameter console-output-port. Otherwise, this

parameter is initially set to a different port tied to the standard error (stderr) stream of

the Scheme process.
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current-error-port thread parameter

libraries: (chezscheme)

current-error-port is a parameter that can be used to set or obtain the current error
port. When called with no arguments, current-error-port returns the current error port.
When called with one argument, which must be a textual output port, it changes the value
of the current error port. The Revised6 Report version of current-error-port accepts
only zero arguments, i.e., it cannot be used to change the current error port. The initial
value of this parameter is the same port as the initial value of console-error-port.

(open-output-file path) procedure

(open-output-file path options) procedure

returns: a new output port
libraries: (chezscheme)

path must be a string. open-output-file opens a textual output port for the file named
by path.

options, if present, is a symbolic option name or option list. Possible symbolic option names
are error, truncate, replace, append, compressed, uncompressed, buffered, unbuffered,
exclusive, and nonexclusive. An option list is a list containing zero or more symbolic
option names and possibly the two-element option mode mode.

The mutually exclusive error, truncate, replace, and append options are used to direct
what happens when the file to be opened already exists.

error: An exception is raised with condition-type &i/o-filename.

replace: The existing file is deleted before the new file is opened.

truncate: The existing file is opened and truncated to zero length.

append: The existing file is opened and the output port is positioned at the end of the file
before each write so that output to the port is always appended to the file.

The default behavior is to raise an exception.

The mutually exclusive compressed and uncompressed options determine whether the out-
put file is to be compressed. Compression is performed with the use of the zlib compres-
sion library developed by Jean-loup Gailly and Mark Adler. It is therefore compatible
with the gzip program, which means that gzip may be used to uncompress files produced
by Chez Scheme and visa versa. Files are uncompressed by default, so the uncompressed

option is useful only as documentation.

The mutually exclusive buffered and unbuffered options determine whether output is
buffered. Unbuffered output is sent immediately to the file, whereas buffered output not
written until the port’s output buffer is filled or the port is flushed (via flush-output-port)
or closed (via flush-output-port or by the storage management system when the port
becomes inaccessible). Output is buffered by default for efficiency, so the buffered option
is useful only as documentation.

The mutually exclusive exclusive and nonexclusive options determine whether access to
the file is “exclusive.” When the exclusive option is specified, the file is locked until the port



9.9. Output Operations 237

is closed to prevent access by other processes. On some systems the lock is advisory, i.e.,
it inhibits access by other processes only if they also attempt to open exclusively. Nonex-
clusive access is the default, so the nonexclusive option is useful only as documentation.

The mode option determines the permission bits on Unix systems when the file is created
by the operation, subject to the process umask. The subsequent element in the options
list must be an exact integer specifying the permissions in the manner of the Unix open

function. The mode option is ignored under Windows.

For example, the call

(open-output-file "frob" ’(compressed truncate mode #o644))

opens the file frob with compression enabled. If frob already exists it is truncated. On
Unix-based systems, if frob does not already exist, the permission bits on the newly created
file are set to logical and of #o644 and the process’s umask.

The Revised6 Report version of open-output-file does not support the optional options
argument.

(call-with-output-file path procedure) procedure

(call-with-output-file path procedure options) procedure

returns: the values returned by procedure
libraries: (chezscheme)

path must be a string. procedure should accept one argument.

call-with-output-file creates a new output port for the file named by path, as
if with open-output-file, and passes this port to procedure. If procedure returns,
call-with-output-file closes the output port and returns the values returned by
procedure.

call-with-output-file does not automatically close the output port if a continuation
created outside of procedure is invoked, since it is possible that another continuation created
inside of procedure will be invoked at a later time, returning control to procedure. If
procedure does not return, an implementation is free to close the output port only if it can
prove that the output port is no longer accessible. As shown in Section 5.6 of The Scheme
Programming Language, 4th Edition, dynamic-wind may be used to ensure that the port
is closed if a continuation created outside of procedure is invoked.

See open-output-file above for a description of the optional options argument.

The Revised6 Report version of call-with-output-file does not support the optional
options argument.

(with-output-to-file path thunk) procedure

(with-output-to-file path thunk options) procedure

returns: the value returned by thunk
libraries: (chezscheme)

path must be a string. thunk must be a procedure and should accept zero arguments.
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with-output-to-file temporarily rebinds the current output port to be the result of open-

ing the file named by path, as if with open-output-file, during the application of thunk .

If thunk returns, the port is closed and the current output port is restored to its old value.

The behavior of with-output-to-file is unspecified if a continuation created outside of

thunk is invoked before thunk returns. An implementation may close the port and restore

the current output port to its old value—but it may not.

See open-output-file above for a description of the optional options argument.

The Revised6 Report version of with-output-to-file does not support the optional options

argument.

(open-fd-output-port fd) procedure

(open-fd-output-port fd b-mode) procedure

(open-fd-output-port fd b-mode ?transcoder) procedure

returns: a new output port for the file descriptor fd
libraries: (chezscheme)

fd must be a nonnegative exact integer and should be a valid open file descriptor. If

?transcoder is present and not #f, it must be a transcoder, and this procedure returns a

textual output port whose transcoder is ?transcoder . Otherwise, this procedure returns a

binary output port. See the lead-in to Section 7.2 of The Scheme Programming Language,

4th Edition for a description of the constraints on and effects of the other arguments.

The file descriptor is closed when the port is closed.

(standard-output-port) procedure

(standard-output-port b-mode) procedure

(standard-output-port b-mode ?transcoder) procedure

returns: a new output port connected to the process’s standard output
libraries: (chezscheme)

If ?transcoder is present and not #f, it must be a transcoder, and this procedure returns a

textual output port whose transcoder is ?transcoder . Otherwise, this procedure returns a

binary output port. The buffer mode b-mode defaults to line, which differs from block in

Chez Scheme only for textual output ports. See the lead-in to Section 7.2 of The Scheme

Programming Language, 4th Edition for a description of the constraints on and effects of

the other arguments.

The Revised6 Report version of this procedure does not accept the optional b-mode and

?transcoder arguments, which limits it to an implementation-dependent buffering mode

(line in Chez Scheme) and binary output.



9.9. Output Operations 239

(standard-error-port) procedure

(standard-error-port b-mode) procedure

(standard-error-port b-mode ?transcoder) procedure

returns: a new output port connected to the process’s standard error
libraries: (chezscheme)

If ?transcoder is present and not #f, it must be a transcoder, and this procedure returns a

textual output port whose transcoder is ?transcoder . Otherwise, this procedure returns a

binary output port. The buffer mode b-mode defaults to none. See the lead-in to Section 7.2

of The Scheme Programming Language, 4th Edition for a description of the constraints on

and effects of the other arguments.

The Revised6 Report version of this procedure does not accept the optional b-mode and

?transcoder arguments, which limits it to an implementation-dependent buffering mode

(none in Chez Scheme) and binary output.

(put-bytevector-some binary-output-port bytevector) procedure

(put-bytevector-some binary-output-port bytevector start) procedure

(put-bytevector-some binary-output-port bytevector start n) procedure

returns: the number of bytes written
libraries: (chezscheme)

start and n must be nonnegative exact integers, and the sum of start and n must not

exceed the length of bytevector . If not supplied, start defaults to zero and n defaults to

the difference between the length of bytevector and start .

This procedure normally writes the n bytes of bytevector starting at start to the port and

advances the its position past the end of the bytes written. If the port is in nonblocking

mode (see set-port-nonblocking!), however, the number of bytes written may be less

than n, if the system would have to block to write more bytes.

(put-string-some textual-output-port string) procedure

(put-string-some textual-output-port string start) procedure

(put-string-some textual-output-port string start n) procedure

returns: the number of characters written
libraries: (chezscheme)

start and n must be nonnegative exact integers, and the sum of start and n must not

exceed the length of string . If not supplied, start defaults to zero and n defaults to the

difference between the length of string and start .

This procedure normally writes the n characters of string starting at start to the port and

advances the its position past the end of the characters written. If the port is in nonblocking

mode (see set-port-nonblocking!), however, the number of characters written may be less

than n, if the system would have to block to write more characters.
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(display-string string) procedure

(display-string string textual-output-port) procedure

returns: unspecified
libraries: (chezscheme)

display-string writes the characters contained within string to textual-output-port or
to the current-output port if textual-output-port is not specified. The enclosing
string quotes are not printed, and special characters within the string are not escaped.
display-string is a more efficient alternative to display for displaying strings.

(block-write textual-output-port string) procedure

(block-write textual-output-port string count) procedure

returns: unspecified
libraries: (chezscheme)

count must be a nonnegative fixnum less than or equal to the length of string . If not
provided, it defaults to the length of string .

block-write writes the first count characters of string to textual-output-port . If the port
is buffered and the buffer is nonempty, the buffer is flushed before the contents of string
are written. In any case, the contents of string are written immediately, without passing
through the buffer.

(truncate-port output-port) procedure

(truncate-port output-port pos) procedure

(truncate-file output-port) procedure

(truncate-file output-port pos) procedure

returns: unspecified
libraries: (chezscheme)

truncate-port and truncate-file are identical.

pos must be an exact nonnegative integer. It defaults to 0.

These procedures truncate the file or other object associated with output-port to pos and
repositions the port to that position, i.e., it combines the functionality of set-port-length!
and set-port-position! and can be called on a port only if port-has-set-port-length!?
and port-has-set-port-position!? are both true of the port.

(fresh-line) procedure

(fresh-line textual-output-port) procedure

returns: unspecified
libraries: (chezscheme)

If textual-output-port is not supplied, it defaults to the current output port.

This procedure behaves like newline, i.e., sends a newline character to textual-output-port ,
unless it can determine that the port is already positioned at the start of a line. It does
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this by flushing the port and consulting the “beginning-of-line” (BOL) flag associated with
the port. (See page 220.)
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(open-input-output-file path) procedure

(open-input-output-file path options) procedure

returns: a new input-output port
libraries: (chezscheme)

path must be a string. open-input-output-file opens a textual input-output port for the
file named by path.

The port may be used to read from or write to the named file. The file is created if it does
not already exist.

options, if present, is a symbolic option name or option list. Possible symbolic option names
are buffered, unbuffered, exclusive, and nonexclusive. An option list is a list containing
zero or more symbolic option names and possibly the two-element option mode mode. See
the description of open-output-file for an explanation of these options.

Input/output files are usually closed using close-port but may also be closed with either
close-input-port or close-output-port.

(open-fd-input/output-port fd) procedure

(open-fd-input/output-port fd b-mode) procedure

(open-fd-input/output-port fd b-mode ?transcoder) procedure

returns: a new input/output port for the file descriptor fd
libraries: (chezscheme)

fd must be a nonnegative exact integer and should be a valid open file descriptor. If
?transcoder is present and not #f, it must be a transcoder, and this procedure returns
a textual input/output port whose transcoder is ?transcoder . Otherwise, this procedure
returns a binary input/output port. See the lead-in to Section 7.2 of The Scheme Pro-
gramming Language, 4th Edition for a description of the constraints on and effects of the
other arguments.

The file descriptor is closed when the port is closed.

9.11. Non-Unicode Bytevector/String Conversions

The procedures described in this section convert bytevectors containing single- and
multiple-byte sequences in non-Unicode character sets to and from Scheme strings. They
are available only under Windows. Under other operating systems, and when an iconv

DLL is available under Windows, bytevector->string and string->bytevector can be
used with a transcoder based on a codec constructed via iconv-codec to achieve the same
results, with more control over the handling of invalid characters and line endings.
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(multibyte->string code-page bytevector) procedure

returns: a string containing the characters encoded in bytevector
(string->multibyte code-page string) procedure

returns: a bytevector containing the encodings of the characters in string
libraries: (chezscheme)

These procedures are available only under Windows. The procedure multibyte->string is
a wrapper for the Windows API MultiByteToWideChar function, and string->multibyte

is a wrapper for the Windows API WideCharToMultiByte function.

code-page declares the encoding of the byte sequences in the input or output bytevectors.
It must be an exact nonnegative integer identifying a code page or one of the symbols
cp-acp, cp-maccp, cp-oemcp, cp-symbol, cp-thread-acp, cp-utf7, or cp-utf8, which have
the same meanings as the API function meanings for the like-named constants.

9.12. Pretty Printing

The pretty printer is a version of the write procedure that produces more human-readable
output via introduced whitespace, i.e., line breaks and indentation. The pretty printer is
the default printer used by the read-eval-print loop (waiter) to print the output(s) of each
evaluated form. The pretty printer may also be invoked explicitly by calling the procedure
pretty-print.

The pretty printer’s operation can be controlled via the pretty-format procedure described
later in this section, which allows the programmer to specify how specific forms are to be
printed, various pretty-printer controls, also described later in this section, and also by the
generic input/output controls described in Section 9.14.

(pretty-print obj) procedure

(pretty-print obj textual-output-port) procedure

returns: unspecified
libraries: (chezscheme)

If textual-output-port is not supplied, it defaults to the current output port.

pretty-print is similar to write except that it uses any number of spaces and newlines in
order to print obj in a style that is pleasing to look at and which shows the nesting level
via indentation. For example,

(pretty-print ’(define factorial (lambda (n) (let fact ((i n) (a 1))
(if (= i 0) a (fact (- i 1) (* a i)))))))

might produce

(define factorial
(lambda (n)
(let fact ([i n] [a 1])

(if (= i 0) a (fact (- i 1) (* a i))))))
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(pretty-file ifn ofn) procedure

returns: unspecified
libraries: (chezscheme)

ifn and ofn must be strings. pretty-file reads each object in turn from the file named by
ifn and pretty prints the object to the file named by ofn. Comments present in the input
are discarded by the reader and so do not appear in the output file. If the file named by
ofn already exists, it is replaced.

(pretty-format sym) procedure

returns: see below
(pretty-format sym fmt) procedure

returns: unspecified
libraries: (chezscheme)

By default, the pretty printer uses a generic algorithm for printing each form. This pro-
cedure is used to override this default and guide the pretty-printers treatment of specific
forms. The symbol sym names a syntactic form or procedure. With just one argument,
pretty-format returns the current format associated with sym, or #f if no format is asso-
ciated with sym.

In the two-argument case, the format fmt is associated with sym for future invocations of
the pretty printer. fmt must be in the formatting language described below.

〈fmt〉 −→ (quote symbol)
| var

| symbol
| (read-macro string symbol)
| (meta)

| (bracket . fmt-tail)
| (alt fmt fmt*)
| fmt-tail

fmt-tail −→ ()

| (tab fmt ...)

| (fmt tab ...)

| (tab fmt . fmt-tail)
| (fmt ...)

| (fmt . fmt-tail)
| (fill tab fmt ...)

tab −→ int
| #f

Some of the format forms are used for matching when there are multiple alternatives, while
others are used for matching and control indentation or printing. A description of each
fmt is given below.

(quote symbol): This matches only the symbol symbol .
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var: This matches any symbol.

symbol : This matches any input.

(read-macro string symbol): This is used for read macros like quote and syntax . It
matches any input of the form (symbol subform). For forms that match, the pretty
printer prints string immediately followed by subform.

(meta): This is a special case used for the meta keyword (Section 11.8) which is used as a
keyword prefix of another form.

(alt fmt fmt*): This compares the input against the specified formats and uses the one
that is the closest match. Most often, one of the formats will match exactly, but in
other cases, as when input is malformed or appears in abstract form in the template
of a syntactic abstraction, none of the formats will match exactly.

(bracket . fmt-tail): This matches any list-structured input and prints the input enclosed
in square brackets, i.e., [ and ], rather than parentheses.

fmt-tail : This matches any list-structured input.

Indentation of list-structured forms is determined via the fmt-tail specifier used to the last
two cases above. A description of each fmt-tail is given below.

(): This matches an empty list tail.

(tab fmt ...): This matches the tail of any proper list; if the tail is nonempty and the
list does not fit entirely on the current line, a line break is inserted before the first
subform of the tail and tab (see below) determines the amount by which this and all
subsequent subforms are indented.

(fmt tab ...): This matches the tail of any proper list; if the tail is nonempty and the
list does not fit entirely on the current line, a line break is inserted after the first
subform of the tail and tab (see below) determines the amount by which all subsequent
subforms are indented.

(tab fmt . fmt-tail): This matches a nonempty tail if the tail of the tail matches fmt-tail .
If the list does not fit entirely on the current line, a line break is inserted before the
first subform of the tail and tab (see below) determines the amount by which the
subform is indented.

(fmt ...): This matches the tail of any proper list and specified that no line breaks are
to be inserted before or after the current or subsequent subforms.

(fmt . fmt-tail): This matches a nonempty tail if the tail of the tail matches fmt-tail and
specifies that no line break is to be inserted before or after the current subform.

(fill tab fmt ...): This matches the tail of any proper list and invokes a fill mode in
which the forms are packed with as many as will fit on each line.

A tab determines the amount by which a list subform is indented. If tab is a nonnegative
exact integer int , the subform is indented int spaces in from the character position just
after the opening parenthesis or bracket of the parent form. If tab is #f, the standard
indentation is used. The standard indentation can be determined or changed via the
parameter pretty-standard-indent, which is described later in this section.
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In cases where a format is given that doesn’t quite match, the pretty printer tries to use
the given format as far as it can. For example, if a format matches a list-structured form
with a specific number of subforms, but more or fewer subform are given, the pretty printer
will discard or replicate subform formats as necessary.

Here is an example showing the formatting of let might be specified.

(pretty-format ’let
’(alt (let ([bracket var x] 0 ...) #f e #f e ...)

(let var ([bracket var x] 0 ...) #f e #f e ...)))

Since let comes in two forms, named and unnamed, two alternatives are specified. In
either case, the bracket fmt is used to enclose the bindings in square brackets, with all
bindings after the first appearing just below the first (and just after the enclosing opening
parenthesis), if they don’t all fit on one line. Each body form is indented by the standard
indentation.

pretty-line-length thread parameter

pretty-one-line-limit thread parameter

libraries: (chezscheme)

The value of each of these parameters must be a positive fixnum.

The parameters pretty-line-length and pretty-one-line-limit control the output pro-
duced by pretty-print. pretty-line-length determines after which character position
(starting from the first) on a line the pretty printer attempts to cut off output. This is a
soft limit only; if necessary, the pretty-printer will go beyond pretty-line-length.

pretty-one-line-limit is similar to pretty-line-length, except that it is relative to the
first nonblank position on each line of output. It is also a soft limit.

pretty-initial-indent thread parameter

libraries: (chezscheme)

The value of this parameter must be a nonnegative fixnum.

The parameter pretty-initial-indent is used to tell pretty-print where on an output
line it has been called. If pretty-initial-indent is zero (the default), pretty-print

assumes that the first line of output it produces will start at the beginning of the line. If
set to a nonzero value n, pretty-print assumes that the first line will appear at character
position n and will adjust its printing of subsequent lines.

pretty-standard-indent thread parameter

libraries: (chezscheme)

The value of this parameter must be a nonnegative fixnum.

This determines the amount by which pretty-print indents subexpressions of most forms,
such as let expressions, from the form’s keyword or first subexpression.
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pretty-maximum-lines thread parameter

libraries: (chezscheme)

The parameter pretty-maximum-lines controls how many lines pretty-print prints when
it is called. If set to #f (the default), no limit is imposed; if set to a nonnegative fixnum n,
at most n lines are printed.

9.13. Formatted Output

(format format-string obj ...) procedure

(format #f format-string obj ...) procedure

(format #t format-string obj ...) procedure

(format textual-output-port format-string obj ...) procedure

returns: see below
libraries: (chezscheme)

When the first argument to format is a string or #f (first and second forms above), format
constructs an output string from format-string and the objects obj .... Characters are
copied from format-string to the output string from left to right, until format-string is
exhausted. The format string may contain one or more format directives, which are multi-
character sequences prefixed by a tilde ( ~ ). Each directive is replaced by some other text,
often involving one or more of the obj ... arguments, as determined by the semantics of
the directive.

When the first argument is #t, output is sent to the current output port instead, as with
printf. When the first argument is a port, output is sent to that port, as with fprintf.
printf and fprintf are described later in this section.

Chez Scheme’s implementation of format supports all of the Common Lisp [30] format
directives except for those specific to the Common Lisp pretty printer. Please consult a
Common Lisp reference or the Common Lisp Hyperspec, for complete documentation. A
few of the most useful directives are described below.

Absent any format directives, format simply displays its string argument.

(format "hi there") ⇒ "hi there"

The ~s directive is replaced by the printed representation of the next obj , which may be
any object, in machine-readable format, as with write.

(format "hi ~s" ’mom) ⇒ "hi mom"
(format "hi ~s" "mom") ⇒ "hi \"mom\""
(format "hi ~s~s" ’mom #\!) ⇒ "hi mom#\\!"

The general form of a ~s directive is actually ~mincol,colinc,minpad,padchars, and the
s can be preceded by an at sign ( @ ) modifier. These additional parameters are used
to control padding in the output, with at least minpad copies of padchar plus an integer
multiple of colinc copies of padchar to make the total width, including the written object,
mincol characters wide. The padding is placed on the left if the @ modifier is present,
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otherwise on the right. mincol and minpad default to 0, colinc defaults to 1, and padchar
defaults to space. If specified, padchar is prefixed by a single quote mark.

(format "~10s" ’hello) ⇒ "hello "
(format "~10@s" ’hello) ⇒ " hello"
(format "~10,,,’*@s" ’hello) ⇒ "*****hello"

The ~a directive is similar, but prints the object as with display.

(format "hi ~s~s" "mom" #\!) ⇒ "hi \"mom\"#\\!"
(format "hi ~a~a" "mom" #\!) ⇒ "hi mom!"

A tilde may be inserted into the output with ~~, and a newline may be inserted with ~%

(or embedded in the string with \n).

(format "~~line one,~%line two.~~") ⇒ "~line one,\nline two.~"
(format "~~line one,\nline two.~~") ⇒ "~line one,\nline two.~"

Real numbers may be printed in floating-point notation with ~f.

(format "~f" 3.14159) ⇒ 3.14159

Exact numbers may printed as well as inexact numbers in this manner; they are simply
converted to inexact first as if with exact->inexact.

(format "~f" 1/3) ⇒ "0.3333333333333333"

The general form is actually ~w,d,k,overflowchar,padcharf. If specified, w determines
the overall width of the output, and d the number of digits to the right of the decimal point.
padchar , which defaults to space, is the pad character used if padding is needed. Padding
is always inserted on the left. The number is scaled by 10k when printed; k defaults to
zero. The entire w -character field is filled with copies of overflowchar if overflowchar is
specified and the number cannot be printed in w characters. k defaults to 1 If an @ modifier
is present, a plus sign is printed before the number for nonnegative inputs; otherwise, a
sign is printed only if the number is negative.

(format "~,3f" 3.14159) ⇒ "3.142"
(format "~10f" 3.14159) ⇒ " 3.14159"
(format "~10,,,’#f" 1e20) ⇒ "##########"

Real numbers may also be printed with ~e for scientific notation or with ~g, which uses
either floating-point or scientific notation based on the size of the input.

(format "~e" 1e23) ⇒ "1.0e+23"
(format "~g" 1e23) ⇒ "1.0e+23"

A real number may also be printed with ~$, which uses monetary notation defaulting to
two digits to the right of the decimal point.

(format "$~$" (* 39.95 1.06)) ⇒ "$42.35"
(format "~$USD" 1/3) ⇒ "0.33USD"
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Words can be pluralized automatically using p.

(format "~s bear~:p in ~s den~:p" 10 1) ⇒ "10 bears in 1 den"

Numbers may be printed out in words or roman numerals using variations on ~r.

(format "~r" 2599) ⇒ "two thousand five hundred ninety-nine"
(format "~:r" 99) ⇒ "ninety-ninth"
(format "~@r" 2599) ⇒ "MMDXCIX"

Case conversions can be performed by bracketing a portion of the format string with the

~@( and ~) directives.

(format "~@(~r~)" 2599) ⇒ "Two thousand five hundred ninety-nine"
(format "~@:(~a~)" "Ouch!") ⇒ "OUCH!"

Some of the directives shown above have more options and parameters, and there are
other directives as well, including directives for conditionals, iteration, indirection, and
justification. Again, please consult a Common Lisp reference for complete documentation.

An implementation of a greatly simplified version of format appears in Section 12.6 of The
Scheme Programming Language, 4th Edition.

(printf format-string obj ...) procedure

(fprintf textual-output-port format-string obj ...) procedure

returns: unspecified
libraries: (chezscheme)

These procedures are simple wrappers for format. printf prints the formatted output
to the current output, as with a first-argument of #t to format, and fprintf prints the
formatted output to the textual-output-port , as when the first argument to format is a port.

9.14. Input/Output Control Operations

The I/O control operations described in this section are used to control how the reader
reads and printer writes, displays, or pretty-prints characters, symbols, gensyms, numbers,
vectors, long or deeply nested lists or vectors, and graph-structured objects.

(char-name obj) procedure

returns: see below
(char-name name char) procedure

returns: unspecified
libraries: (chezscheme)

char-name is used to associate names (symbols) with characters or to retrieve the most
recently associated name or character for a given character or name. A name can map to
only one character, but more than one name can map to the same character. The name
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most recently associated with a character determines how that character prints, and each

name associated with a character may be used after the #\ character prefix to name that

character on input.

Character associations created by char-name are ignored by the printer unless the parameter

print-char-name is set to a true value. The reader recognizes character names established

by char-name except after #!r6rs, which is implied within a library or R6RS top-level

program.

In the one-argument form, obj must be a symbol or character. If it is a symbol and a

character is associated with the symbol, char-name returns that character. If it is a symbol

and no character is associated with the symbol, char-name returns #f. Similarly, if obj is

a character, char-name returns the most recently associated symbol for the character or #f

if no name is associated with the character. For example, with the default set of character

names:

(char-name #\space) ⇒ space
(char-name ’space) ⇒ #\space
(char-name ’nochar) ⇒ #f
(char-name #\a) ⇒ #f

When passed two arguments, name is added to the set of names associated with char ,

and any other association for name is dropped. char may be #f, in which case any other

association for name is dropped and no new association is formed. In either case, any other

names associated with char remain associated with char .

The following interactive session demonstrates the use of char-name to establish and remove

associations between characters and names, including the association of more than one

name with a character.

(print-char-name #t)
(char-name ’etx) ⇒ #f
(char-name ’etx #\x3)
(char-name ’etx) ⇒ #\etx
(char-name #\x3) ⇒ etx
#\etx ⇒ #\etx
(eq? #\etx #\x3) ⇒ #t
#!r6rs #\etx ⇒ exception: invalid character name etx
#!chezscheme #\etx ⇒ #\etx
(char-name ’etx #\space)
(char-name #\x3) ⇒ #f
(char-name ’etx) ⇒ #\etx
#\space ⇒ #\etx
(char-name ’etx #f)
#\etx ⇒ exception: invalid character name etx
#\space ⇒ #\space

(When using the expression editor, it is necessary to type Control-J to force the editor to

read the erroneous #\etx input on the two inputs above that result in read errors, since

typing Enter causes the expression editor to read the input only if the input is well-formed.)
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The reader does not recognize hex scalar value escapes in character names, as it does in
symbols, so #\new\x6c;ine is not equivalent to #\newline. In general, programmers should
avoid the use of character name symbols that cannot be entered without the use of hex
scalar value escapes or other symbol-name escape mechanisms, since such character names
will not be readable.

print-char-name thread parameter

libraries: (chezscheme)

When print-char-name is set to #f (the default), associations created by char-name are
ignored by write, put-datum, pretty-print, and the format “~s” directive. Otherwise,
these procedures use the names established by char-name when printing character objects.

(char-name ’etx #\x3)
(format "~s" #\x3) ⇒ "#\\x3"
(parameterize ([print-char-name #t])
(format "~s" #\x3)) ⇒ "#\\etx"

case-sensitive thread parameter

libraries: (chezscheme)

The case-sensitive parameter determines whether the reader is case-sensitive with respect
to symbol and character names. When set to true (the default, as required by the Revised6

Report) the case of alphabetic characters within symbol names is significant. When set to
#f, case is insignificant. More precisely, when set to #f, symbol and character names are
folded (as if by string-foldcase); otherwise, they are left as they appear in the input.

The value of the case-sensitive matters only if neither #!fold-case nor #!no-fold-case

has appeared previously in the same input stream. That is, symbol and character name
are folded if #!fold-case has been seen. They are not folded if #!no-fold-case has been
seen. If neither has been seen, they are folded if and only if (case-sensitive) is #f.

(case-sensitive) ⇒ #t
(eq? ’abc ’ABC) ⇒ #f
’ABC ⇒ ABC
(case-sensitive #f)
’ABC ⇒ abc
(eq? ’abc ’ABC) ⇒ #t

print-graph thread parameter

libraries: (chezscheme)

When print-graph is set to a true value, write and pretty-print locate and print objects
with shared structure, including cycles, in a notation that may be read subsequently with
read. This notation employs the syntax “#n=obj ,” where n is a nonnegative integer and
obj is the printed representation of an object, to label the first occurrence of obj in the
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output. The syntax “#n#” is used to refer to the object labeled by n thereafter in the
output. print-graph is set to #f by default.

If graph printing is not enabled, the settings of print-length and print-level are insuf-
ficient to force finite output, and write or pretty-print detects a cycle in an object it is
given to print, a warning is issued (an exception with condition type &warning is raised)
and the object is printed as if print-graph were enabled.

Since objects printed through the ~s option in the format control strings of format, printf,
and fprintf are printed as with write, the printing of such objects is also affected by
print-graph.

(parameterize ([print-graph #t])
(let ([x (list ’a ’b)])
(format "~s" (list x x)))) ⇒ "(#0=(a b) #0#)"

(parameterize ([print-graph #t])
(let ([x (list ’a ’b)])
(set-car! x x)
(set-cdr! x x)
(format "~s" x))) ⇒ "#0=(#0# . #0#)"

The graph syntax is understood by the procedure read, allowing graph structures to be
printed and read consistently.

print-level thread parameter

print-length thread parameter

libraries: (chezscheme)

These parameters can be used to limit the extent to which nested or multiple-element
structures are printed. When called without arguments, print-level returns the current
print level and print-length returns the current print length. When called with one
argument, which must be a nonnegative fixnum or #f, print-level sets the current print
level and print-length sets the current print length to the argument.

When print-level is set to a nonnegative integer n, write and pretty-print traverse
only n levels deep into nested structures. If a structure being printed exceeds n levels of
nesting, the substructure beyond that point is replaced in the output by an ellipsis ( ... ).
print-level is set to #f by default, which places no limit on the number of levels printed.

When print-length is set to a nonnegative integer n, the procedures write and
pretty-print print only n elements of a list or vector, replacing the remainder of the
list or vector with an ellipsis ( ... ). print-length is set to #f by default, which places no
limit on the number of elements printed.

Since objects printed through the ~s option in the format control strings of format, printf,
and fprintf are printed as with write, the printing of such objects is also affected by
print-level and print-length.

The parameters print-level and print-length are useful for controlling the volume of
output in contexts where only a small portion of the output is needed to identify the
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object being printed. They are also useful in situations where circular structures may be
printed (see also print-graph).

(format "~s" ’((((a) b) c) d e f g)) ⇒ "((((a) b) c) d e f g)"

(parameterize ([print-level 2])
(format "~s" ’((((a) b) c) d e f g))) ⇒ "(((...) c) d e f g)"

(parameterize ([print-length 3])
(format "~s" ’((((a) b) c) d e f g))) ⇒ "((((a) b) c) d e ...)"

(parameterize ([print-level 2]
[print-length 3])

(format "~s" ’((((a) b) c) d e f g))) ⇒ "(((...) c) d e ...)"

print-radix thread parameter

libraries: (chezscheme)

The print-radix parameter determines the radix in which numbers are printed by write,
pretty-print, and display. Its value should be an integer between 2 and 36, inclusive.
Its default value is 10.

When the value of print-radix is not 10, write and pretty-print print a radix prefix
before the number (#b for radix 2, #o for radix 8, #x for radix 16, and #nr for any other
radix n).

Since objects printed through the ~s and ~a options in the format control strings of format,
printf, and fprintf are printed as with write and display, the printing of such objects
is also affected by print-radix.

(format "~s" 11242957) ⇒ "11242957"

(parameterize ([print-radix 16])
(format "~s" 11242957)) ⇒ "#xAB8DCD"

(parameterize ([print-radix 16])
(format "~a" 11242957)) ⇒ "AB8DCD"

print-gensym thread parameter

libraries: (chezscheme)

When print-gensym is set to #t (the default) gensyms are printed with an extended
symbol syntax that includes both the pretty name and the unique name of the gensym:
#{pretty-name unique-name}. When set to pretty, the pretty name only is shown, with
the prefix #:. When set to pretty/suffix, the printer prints the gensym’s “pretty” name
along with a suffix based on the gensym’s “unique” name, separated by a dot ( ”.” ). If
the gensym’s unique name is generated automatically during the current session, the suffix
is that portion of the unique name that is not common to all gensyms created during the
current session. Otherwise, the suffix is the entire unique name. When set to #f, the pretty
name only is shown, with no prefix.



9.14. Input/Output Control Operations 253

Since objects printed through the ~s option in the format control strings of format, printf,
errorf, etc., are printed as with write, the printing of such objects is also affected by
print-gensym.

When printing an object that may contain more than one occurrence of a gensym and
print-graph is set to pretty or #f, it is useful to set print-graph to #t so that multiple
occurrences of the same gensym are marked as identical in the output.

(let ([g (gensym)])
(format "~s" g)) ⇒ "#{g0 bdids2xl6v49vgwe-a}"

(let ([g (gensym)])
(parameterize ([print-gensym ’pretty])
(format "~s" g))) ⇒ "#:g1

(let ([g (gensym)])
(parameterize ([print-gensym #f])
(format "~s" g))) ⇒ "g2"

(let ([g (gensym)])
(parameterize ([print-graph #t] [print-gensym ’pretty])
(format "~s" (list g g)))) ⇒ "(#0=#:g3 #0#)"

(let ([g1 (gensym "x")]
[g2 (gensym "x")]
[g3 (gensym "y")])

(parameterize ([print-gensym ’pretty/suffix])
(format "~s ~s ~s" g1 g2 g3))) ⇒ "x.1 x.2 y.3"

print-brackets thread parameter

libraries: (chezscheme)

When print-brackets is set to a true value, the pretty printer (see pretty-print) uses
square brackets rather than parentheses around certain subexpressions of common control
structures, e.g., around let bindings and cond clauses. print-brackets is set to #t by
default.

(let ([p (open-output-string)])
(pretty-print ’(let ([x 3]) x) p) ⇒ "(let ([x 3]) x)
(get-output-string p)) "

(parameterize ([print-brackets #f])
(let ([p (open-output-string)])
(pretty-print ’(let ([x 3]) x) p) ⇒ "(let ((x 3)) x)
(get-output-string p))) "

print-extended-identifiers thread parameter

libraries: (chezscheme)

Chez Scheme extends the syntax of identifiers as described in Section 1.1, except within a
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set of forms prefixed by #!r6rs (which is implied by in a library or top-level program).

When this parameter is set to false (the default), identifiers in the extended set are printed
with hex scalar value escapes as necessary to conform to the R6RS syntax for identifiers.
When this parameter is set to a true value, identifiers in the extended set are printed
without the escapes. Identifiers whose names fall outside of both syntaxes are printed with
the escapes regardless of the setting of this parameter.

For example:

(parameterize ([print-extended-identifiers #f])
(printf "~s\n~s\n"
’(1+ --- { } .xyz)
(string->symbol "123")))

prints

(\x31;+ \x2D;-- \x7B; \x7D; \x2E;xyz)
\x31;23

while

(parameterize ([print-extended-identifiers #t])
(printf "~s\n~s\n"
’(1+ --- { } .xyz)
(string->symbol "123")))

prints

(1+ --- { } .xyz)
\x31;23

print-vector-length thread parameter

libraries: (chezscheme)

When print-vector-length is set to a true value, write, put-datum, and pretty-print

includes the length for all vectors between the “#” and open parenthesis, all bytevectors
between the “#vu8” and open parenthesis, and all fxvectors between the “#vfx” and open
parenthesis. This parameter is set to #f by default.

When print-vector-length is set to a true value, write, put-datum, and pretty-print

also suppress duplicated trailing elements in the vector to reduce the amount of output.
This form is also recognized by the reader.

Since objects printed through the ~s option in the format control strings of format, printf,
and fprintf are printed as with write, the printing of such objects is also affected by the
setting of print-vector-length.

(format "~s" (vector ’a ’b ’c ’c ’c)) ⇒ "#(a b c c c)"

(parameterize ([print-vector-length #t])
(format "~s" (vector ’a ’b ’c ’c ’c))) ⇒ "#5(a b c)"
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(parameterize ([print-vector-length #t])
(format "~s" (bytevector 1 2 3 4 4 4))) ⇒ "#6vu8(1 2 3 4)"

(parameterize ([print-vector-length #t])
(format "~s" (fxvector 1 2 3 4 4 4))) ⇒ "#6vfx(1 2 3 4)"

print-precision thread parameter

libraries: (chezscheme)

When print-precision is set to #f (the default), write, put-datum, pretty-print, and
the format “~s” directive do not include the vertical-bar “mantissa-width” syntax after
each floating-point number. When set to a nonnegative exact integer, the mantissa width
is included, as per the precision argument to number->string.

print-unicode thread parameter

libraries: (chezscheme)

When print-unicode is set to #f, write, put-datum, pretty-print, and the format “~s”
directive display Unicode characters with encodings 8016 (128) and above that appear
within character objects, symbols, and strings using hexadecimal character escapes. When
set to a true value (the default), they are displayed like other printing characters, as if by
put-char.

(format "~s" #\x3bb) ⇒ "#\\λ"
(parameterize ([print-unicode #f])

(format "~s" #\x3bb)) ⇒ "#\\x3BB"

9.15. Fasl Output

The procedures write and pretty-print print objects in a human readable format. For ob-
jects with external datum representations, the output produced by write and pretty-print

is also machine-readable with read. Objects with external datum representations include
pairs, symbols, vectors, strings, numbers, characters, booleans, and records but not proce-
dures and ports.

An alternative fast loading, or fasl, format may be used for objects with external datum
representations. The fasl format is not human readable, but it is machine readable and
both more compact and more quickly processed by read. This format is always used for
compiled code generated by compile-file, but it may also be used for data that needs to
be written and read quickly, such as small databases encoded with Scheme data structures.

Objects are printed in fasl format with fasl-write. Because the fasl format is a binary
format, fasl output must be written to a binary port. For this reason, it is not possible
to include data written in fasl format with textual data in the same file, as was the case
in earlier versions of Chez Scheme. Similarly, the (textual) reader does not handle objects
written in fasl format; the procedure fasl-read, which requires a binary input port, must
be used instead.
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(fasl-write obj binary-output-port) procedure

(fasl-read binary-input-port) procedure

returns: unspecified
libraries: (chezscheme)

fasl-write writes the fasl representation of obj to binary-output-port . An exception is

raised with condition-type &assertion if obj or any portion of obj has no external fasl

representation, e.g., if obj is or contains a procedure.

fasl-read reads one object from binary-input-port , which must be positioned at the front

of an object written in fasl format. fasl-read returns the eof object if the file is positioned

at the end of file.

(define bop (open-file-output-port "tmp.fsl"))
(fasl-write ’(a b c) bop)
(close-port bop)

(define bip (open-file-input-port "tmp.fsl"))
(fasl-read bip) ⇒ (a b c)
(fasl-read bip) ⇒ #!eof
(close-port bip)

(fasl-file ifn ofn) procedure

returns: unspecified
libraries: (chezscheme)

ifn and ofn must be strings. fasl-file may be used to convert a file in human-readable

format into an equivalent file written in fasl format. fasl-file reads each object in turn

from the file named by ifn and writes the fasl format for the object onto the file named by

ofn. If the file named by ofn already exists, it is replaced.

9.16. File System Interface

This section describes operations on files, directories, and pathnames.

current-directory global parameter

cd global parameter

libraries: (chezscheme)

When invoked without arguments, current-directory returns a string representing the

current working directory. Otherwise, the current working directory is changed to the

directory specified by the argument, which must be a string representing a valid directory

pathname.

cd is bound to the same parameter.
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(directory-list path) procedure

returns: a list of file names
libraries: (chezscheme)

path must be a string. The return value is a list of strings representing the names of files

found in the directory named by path. directory-list raises an exception with condition

type &i/o-filename if path does not name a directory or if the process cannot list the

directory.

(file-exists? path) procedure

(file-exists? path follow?) procedure

returns: #t if the file named by path exists, #f otherwise
libraries: (chezscheme)

path must be a string. If the optional follow? argument is true (the default), file-exists?

follows symbolic links; otherwise it does not. Thus, file-exists? will return #f when

handed the pathname of a broken symbolic link unless follow? is provided and is #f.

The Revised6 Report file-exists? does not accept the optional follow? argument.

Whether it follows symbolic links is unspecified.

(file-regular? path) procedure

(file-regular? path follow?) procedure

returns: #t if the file named by path is a regular file, #f otherwise
libraries: (chezscheme)

path must be a string. If the optional follow? argument is true (the default), file-regular?

follows symbolic links; otherwise it does not.

(file-directory? path) procedure

(file-directory? path follow?) procedure

returns: #t if the file named by path is a directory, #f otherwise
libraries: (chezscheme)

path must be a string. If the optional follow? argument is true (the default), this procedure

follows symbolic links; otherwise it does not.

(file-symbolic-link? path) procedure

returns: #t if the file named by path is a symbolic link, #f otherwise
libraries: (chezscheme)

path must be a string. file-symbolic-link? never follows symbolic links in making its

determination.
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(file-access-time path/port) procedure

(file-access-time path/port follow?) procedure

returns: the access time of the specified file
(file-change-time path/port) procedure

(file-change-time path/port follow?) procedure

returns: the change time of the specified file
(file-modification-time path/port) procedure

(file-modification-time path/port follow?) procedure

returns: the modification time of the specified file
libraries: (chezscheme)

path/port must be a string or port. If path/port is a string, the time returned is for the

file named by the string, and the optional follow? argument determines whether symbolic

links are followed. If follow? is true (the default), this procedure follows symbolic links;

otherwise it does not. If path/port is a port, it must be a file port, and the time returned

is for the associated file. In this case, follow? is ignored.

The returned times are represented as time objects (Section 12.10).

(mkdir path) procedure

(mkdir path mode) procedure

returns: unspecified
libraries: (chezscheme)

path must be a string. mode must be a fixnum.

mkdir creates a directory with the name given by path. All path path components leading

up to the last must already exist. If the optional mode argument is present, it overrides the

default permissions for the new directory. Under Windows, the mode argument is ignored.

mkdir raises an exception with condition type &i/o-filename if the directory cannot be

created.

(delete-file path) procedure

(delete-file path error?) procedure

returns: see below
libraries: (chezscheme)

path must be a string. delete-file removes the file named by path. If the optional error?

argument is #f (the default), delete-file returns a boolean value: #t if the operation is

successful and #f if it is not. Otherwise, delete-file returns an unspecified value if the

operation is successful and raises an exception with condition type &i/o-filename if it is

not.

The Revised6 Report delete-file does not accept the optional error? argument but be-

haves as if error? is true.
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(delete-directory path) procedure

(delete-directory path error?) procedure

returns: see below
libraries: (chezscheme)

path must be a string. delete-directory removes the directory named by path. If the

optional error? argument is #f (the default), delete-directory returns a boolean value:

#t if the operation is successful and #f if it is not. Otherwise, delete-directory returns

an unspecified value if the operation is successful and raises an exception with condition

type &i/o-filename if it is not. The behavior is unspecified if the directory is not empty,

but on most systems the operations will not succeed.

(rename-file old-pathname new-pathname) procedure

returns: unspecified
libraries: (chezscheme)

old-pathname and new-pathname must be strings. rename-file changes the name of the file

named by old-pathname to new-pathname. If the file does not exist or cannot be renamed,

an exception is raised with condition type &i/o-filename.

(chmod path mode) procedure

returns: unspecified
libraries: (chezscheme)

path must be a string. mode must be a fixnum.

chmod sets the permissions on the file named by path to mode. Bits 0, 1, and 2 of mode

are the execute, write, and read permission bits for users other than the file’s owner who

are not in the file’s group. Bits 3-5 are the execute, write, and read permission bits for

users other than the file’s owner but in the file’s group. Bits 6-8 are the execute, write,

and read permission bits for the file’s owner. Bits 7-9 are the Unix sticky, set-group-id,

and set-user-id bits. Under Windows, all but the user “write” bit are ignored. If the file

does not exist or the permissions cannot be changed, an exception is raised with condition

type &i/o-filename.

(get-mode path) procedure

(get-mode path follow?) procedure

returns: the current permissions mode for path
libraries: (chezscheme)

path must be a string. get-mode retrieves the permissions on the file named by path and

returns them as a fixnum in the same form as the mode argument to chmod. If the optional

follow? argument is true (the default), this procedure follows symbolic links; otherwise it

does not.



260 9. Input/Output Operations

(directory-separator? char) procedure

returns: #t if char is a directory separator, #f otherwise
libraries: (chezscheme)

The character #\/ is a directory separator on all current machine types, and #\\ is a
directory separator under Windows.

(directory-separator) procedure

returns: the preferred directory separator
libraries: (chezscheme)

The preferred directory separator is #\\ for Windows and #\/ for other systems.

(path-first path) procedure

(path-rest path) procedure

(path-last path) procedure

(path-parent path) procedure

(path-extension path) procedure

(path-root path) procedure

returns: the specified component of path
(path-absolute? path) procedure

returns: #t if path is absolute, otherwise #f

libraries: (chezscheme)

path must be a string. The return value is also a (possibly empty) string.

The path first component is the first directory in the path, or the empty string if the path
consists only of a single filename. The path rest component is the portion of the path that
does not include the path first component or the directory separator (if any) that separates
it from the rest of the path. The path last component is the last (filename) portion of
path. The path parent component is the portion of path that does not include the path last
component, if any, or the directory separator that separates it from the rest of the path.

If the first component of the path names a root directory (including drives and shares
under Windows), home directory (e.g., ~/abc or ~user/abc), the current directory (.), or
the parent directory (..), path-first returns that component. For paths that consist only
of such a directory, both path-first and path-parent act as identity procedures, while
path-rest and path-last return the empty string.

The path extension component is the portion of path that follows the last dot (period) in
the last component of a path name. The path root component is the portion of path that
does not include the extension, if any, or the dot that precedes it.

If the first component names a root directory (including drives and shares under Windows)
or home directory, path-absolute? returns #t. Otherwise, path-absolute? returns #f.

The tables below identify the components for several example paths, with underscores
representing empty strings.
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path abs first rest parent last root ext
a #f _ a _ a a _

a/ #f a _ a _ a/ _

a/b #f a b a b a/b _

a/b.c #f a b.c a b.c a/b c

/ #t / _ / _ / _

/a/b.c #t / a/b.c /a b.c /a/b c

~/a/b.c #t ~ a/b.c ~/a b.c ~/a/b c

~u/a/b.c #t ~u a/b.c ~u/a b.c ~u/a/b c

../.. #f .. .. .. .. ../.. _

The second table shows the components when Windows drives and shares are involved.

path abs first rest parent last root ext
c: #t c: _ c: _ c: _

c:/ #t c:/ _ c:/ _ c:/ _

c:a/b #t c: a/b c:a b c:a/b _

//s/a/b.c #t //s a/b.c //s/a b.c //s/a/b c

//s.com #t //s.com _ //s.com _ //s.com _

The following procedure can be used to reproduce the tables above.

(define print-table
(lambda path*
(define print-row

(lambda (abs? path first rest parent last root extension)
(printf "~a~11t~a~17t~a~28t~a~39t~a~50t~a~61t~a~73t~a\n"
abs? path first rest parent last root extension)))

(print-row "path" "abs" "first" "rest" "parent" "last" "root" "ext")
(for-each

(lambda (path)
(define uscore (lambda (s) (if (eqv? s "") "_" s)))
(apply print-row path
(map (lambda (s) (if (eqv? s "") "_" s))

(list (path-absolute? path) (path-first path)
(path-rest path) (path-parent path) (path-last path)
(path-root path) (path-extension path)))))

path*)))

For example, the first table can be produced with:

(print-table "a" "a/" "a/b" "a/b.c" "/" "/a/b.c" "~/a/b.c"
"~u/a/b.c" "../..")

while the second can be produced (under Windows) with:

(print-table "c:" "c:/" "c:a/b" "//s/a/b.c" "//s.com")
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9.17. Generic Port Examples

This section presents the definitions for three types of generic ports: two-way ports, tran-

script ports, and process ports.

Two-way ports. The first example defines make-two-way-port, which constructs a textual

input/output port from a given pair of textual input and output ports. For example:

(define ip (open-input-string "this is the input"))
(define op (open-output-string))
(define p (make-two-way-port ip op))

The port returned by make-two-way-port is both an input and an output port, and it is

also a textual port:

(port? p) ⇒ #t
(input-port? p) ⇒ #t
(output-port? p) ⇒ #t
(textual-port? p) ⇒ #t

Items read from a two-way port come from the constituent input port, and items written

to a two-way port go to the constituent output port:

(read p) ⇒ this
(write ’hello p)
(get-output-string op) ⇒ hello

The definition of make-two-way-port is straightforward. To keep the example simple, no

local buffering is performed, although it would be more efficient to do so.

(define make-two-way-port
(lambda (ip op)
(define handler

(lambda (msg . args)
(record-case (cons msg args)

[block-read (p s n) (block-read ip s n)]
[block-write (p s n) (block-write op s n)]
[char-ready? (p) (char-ready? ip)]
[clear-input-port (p) (clear-input-port ip)]
[clear-output-port (p) (clear-output-port op)]
[close-port (p) (mark-port-closed! p)]
[flush-output-port (p) (flush-output-port op)]
[file-position (p . pos) (apply file-position ip pos)]
[file-length (p) (file-length ip)]
[peek-char (p) (peek-char ip)]
[port-name (p) "two-way"]
[read-char (p) (read-char ip)]
[unread-char (c p) (unread-char c ip)]
[write-char (c p) (write-char c op)]
[else (assertion-violationf ’two-way-port
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"operation ~s not handled"
msg)])))

(make-input/output-port handler "" "")))

Most of the messages are passed directly to one of the constituent ports. Exceptions are
close-port, which is handled directly by marking the port closed, port-name, which is also
handled directly. file-position and file-length are rather arbitrarily passed off to the
input port.

Transcript ports. The next example defines make-transcript-port, which constructs a
textual input/output port from three ports: a textual input port ip and two textual output
ports, op and tp. Input read from a transcript port comes from ip, and output written
to a transcript port goes to op. In this manner, transcript ports are similar to two-way
ports. Unlike two-way ports, input from ip and output to op is also written to tp, so that
tp reflects both input from ip and output to op.

Transcript ports may be used to define the Scheme procedures transcript-on and
transcript-off, or the Chez Scheme procedure transcript-cafe. For example, here is a
definition of transcript-cafe:

(define transcript-cafe
(lambda (pathname)
(let ([tp (open-output-file pathname ’replace)])

(let ([p (make-transcript-port
(console-input-port)
(console-output-port)
tp)])

; set both console and current ports so that
; the waiter and read/write will be in sync
(parameterize ([console-input-port p]

[console-output-port p]
[current-input-port p]
[current-output-port p])

(let-values ([vals (new-cafe)])
(close-port p)
(close-port tp)
(apply values vals)))))))

The implementation of transcript ports is significantly more complex than the implemen-
tation of two-way ports defined above, primarily because it buffers input and output lo-
cally. Local buffering is needed to allow the transcript file to reflect accurately the ac-
tual input and output performed in the presence of unread-char, clear-output-port, and
clear-input-port. Here is the code:

(define make-transcript-port
(lambda (ip op tp)
(define (handler msg . args)

(record-case (cons msg args)
[block-read (p str cnt)
(with-interrupts-disabled
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(let ([b (port-input-buffer p)]
[i (port-input-index p)]
[s (port-input-size p)])

(if (< i s)
(let ([cnt (fxmin cnt (fx- s i))])
(do ([i i (fx+ i 1)]

[j 0 (fx+ j 1)])
((fx= j cnt)
(set-port-input-index! p i)
cnt)
(string-set! str j (string-ref b i))))

(let ([cnt (block-read ip str cnt)])
(unless (eof-object? cnt)

(block-write tp str cnt))
cnt))))]

[char-ready? (p)
(or (< (port-input-index p) (port-input-size p))

(char-ready? ip))]
[clear-input-port (p)
; set size to zero rather than index to size
; in order to invalidate unread-char
(set-port-input-size! p 0)]

[clear-output-port (p)
(set-port-output-index! p 0)]

[close-port (p)
(with-interrupts-disabled
(flush-output-port p)
(set-port-output-size! p 0)
(set-port-input-size! p 0)
(mark-port-closed! p))]

[file-position (p . pos)
(if (null? pos)

(most-negative-fixnum)
(assertion-violationf ’transcript-port "cannot reposition"))]

[flush-output-port (p)
(with-interrupts-disabled

(let ([b (port-output-buffer p)]
[i (port-output-index p)])

(unless (fx= i 0)
(block-write op b i)
(block-write tp b i)
(set-port-output-index! p 0)
(set-port-bol! p

(char=? (string-ref b (fx- i 1)) #\newline))))
(flush-output-port op)
(flush-output-port tp))]

[peek-char (p)
(with-interrupts-disabled
(let ([b (port-input-buffer p)]

[i (port-input-index p)]
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[s (port-input-size p)])
(if (fx< i s)

(string-ref b i)
(begin
(flush-output-port p)
(let ([s (block-read ip b)])

(if (eof-object? s)
s
(begin

(block-write tp b s)
(set-port-input-size! p s)
(string-ref b 0))))))))]

[port-name (p) "transcript"]
[constituent-ports (p) (values ip op tp)]
[read-char (p)
(with-interrupts-disabled

(let ([c (peek-char p)])
(unless (eof-object? c)
(set-port-input-index! p

(fx+ (port-input-index p) 1)))
c))]

[unread-char (c p)
(with-interrupts-disabled
(let ([b (port-input-buffer p)]

[i (port-input-index p)]
[s (port-input-size p)])

(when (fx= i 0)
(assertion-violationf ’unread-char

"tried to unread too far on ~s"
p))

(set-port-input-index! p (fx- i 1))
; following could be skipped; it’s supposed
; to be the same character anyway
(string-set! b (fx- i 1) c)))]

[write-char (c p)
(with-interrupts-disabled

(let ([b (port-output-buffer p)]
[i (port-output-index p)]
[s (port-output-size p)])

(string-set! b i c)
; could check here to be sure that we really
; need to flush; we may end up here even if
; the buffer isn’t full
(block-write op b (fx+ i 1))
(block-write tp b (fx+ i 1))
(set-port-output-index! p 0)
(set-port-bol! p (char=? c #\newline))))]

[block-write (p str cnt)
(with-interrupts-disabled
; flush buffered data
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(let ([b (port-output-buffer p)]
[i (port-output-index p)])

(unless (fx= i 0)
(block-write op b i)
(block-write tp b i)
(set-port-output-index! p 0)
(set-port-bol! p (char=? (string-ref b (fx- i 1)) #\newline))))

; write new data
(unless (fx= cnt 0)

(block-write op str cnt)
(block-write tp str cnt)
(set-port-bol! p
(char=? (string-ref str (fx- cnt 1)) #\newline))))]

[else (assertion-violationf ’transcript-port
"operation ~s not handled"
msg)]))

(let ([ib (make-string 1024)] [ob (make-string 1024)])
(let ([p (make-input/output-port handler ib ob)])

(set-port-input-size! p 0)
(set-port-output-size! p (fx- (string-length ob) 1))
p))))

The chosen length of both the input and output ports is the same; this is not necessary.
They could have different lengths, or one could be buffered locally and the other not buffered
locally. Local buffering could be disabled effectively by providing zero-length buffers.

After we create the port, the input size is set to zero since there is not yet any data to
be read. The port output size is set to one less than the length of the buffer. This is
done so that write-char always has one character position left over into which to write its
character argument. Although this is not necessary, it does simplify the code somewhat
while allowing the buffer to be flushed as soon as the last character is available.

Block reads and writes are performed on the constituent ports for efficiency and (in the
case of writes) to ensure that the operations are performed immediately.

The call to flush-output-port in the handling of read-char insures that all output written
to op appears before input is read from ip. Since block-read is typically used to support
higher-level operations that are performing their own buffering, or for direct input and
output in support of I/O-intensive applications, the flush call has been omitted from that
part of the handler.

Critical sections are used whenever the handler manipulates one of the buffers, to protect
against untimely interrupts that could lead to reentry into the handler. The critical sections
are unnecessary if no such reentry is possible, i.e., if only one “thread” of the computation
can have access to the port.

Process ports. The final example demonstrates how to incorporate the socket interface
defined in Section 4.9 into a generic port that allows transparent communication with
subprocesses via normal Scheme input/output operations.

A process port is created with open-process, which accepts a shell command as a string.
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open-process sets up a socket, forks a child process, sets up two-way communication via

the socket, and invokes the command in a subprocess.

The sample session below demonstrates the use of open-process, running and communi-

cating with another Scheme process started with the “-q” switch to suppress the greeting

and prompts.

> (define p (open-process "exec scheme -q"))
> (define s (make-string 1000 #\nul))
> (pretty-print ’(+ 3 4) p)
> (read p)
7
> (pretty-print ’(define (f x) (if (= x 0) 1 (* x (f (- x 1))))) p)
> (pretty-print ’(f 10) p)
> (read p)
3628800
> (pretty-print ’(exit) p)
> (read p)
#!eof
> (close-port p)

Since process ports, like transcript ports, are two-way, the implementation is somewhat

similar. The main difference is that a transcript port reads from and writes to its subordi-

nate ports, whereas a process port reads from and writes to a socket. When a process port

is opened, the socket is created and subprocess invoked, and when the port is closed, the

socket is closed and the subprocess is terminated.

(define open-process
(lambda (command)
(define handler

(lambda (pid socket)
(define (flush-output who p)

(let ([i (port-output-index p)])
(when (fx> i 0)
(check who (c-write socket (port-output-buffer p) i))
(set-port-output-index! p 0))))

(lambda (msg . args)
(record-case (cons msg args)

[block-read (p str cnt)
(with-interrupts-disabled

(let ([b (port-input-buffer p)]
[i (port-input-index p)]
[s (port-input-size p)])

(if (< i s)
(let ([cnt (fxmin cnt (fx- s i))])

(do ([i i (fx+ i 1)]
[j 0 (fx+ j 1)])

((fx= j cnt)
(set-port-input-index! p i)
cnt)
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(string-set! str j (string-ref b i))))
(begin

(flush-output ’block-read p)
(let ([n (check ’block-read

(c-read socket str cnt))])
(if (fx= n 0)

#!eof
n))))))]

[char-ready? (p)
(or (< (port-input-index p) (port-input-size p))

(bytes-ready? socket))]
[clear-input-port (p)
; set size to zero rather than index to size
; in order to invalidate unread-char
(set-port-input-size! p 0)]

[clear-output-port (p) (set-port-output-index! p 0)]
[close-port (p)
(with-interrupts-disabled
(flush-output ’close-port p)
(set-port-output-size! p 0)
(set-port-input-size! p 0)
(mark-port-closed! p)
(terminate-process pid))]

[file-length (p) 0]
[file-position (p . pos)
(if (null? pos)

(most-negative-fixnum)
(assertion-violationf ’process-port "cannot reposition"))]

[flush-output-port (p)
(with-interrupts-disabled
(flush-output ’flush-output-port p))]

[peek-char (p)
(with-interrupts-disabled
(let ([b (port-input-buffer p)]

[i (port-input-index p)]
[s (port-input-size p)])

(if (fx< i s)
(string-ref b i)
(begin

(flush-output ’peek-char p)
(let ([s (check ’peek-char

(c-read socket b (string-length b)))])
(if (fx= s 0)

#!eof
(begin (set-port-input-size! p s)

(string-ref b 0))))))))]
[port-name (p) "process"]
[read-char (p)
(with-interrupts-disabled
(let ([b (port-input-buffer p)]
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[i (port-input-index p)]
[s (port-input-size p)])

(if (fx< i s)
(begin

(set-port-input-index! p (fx+ i 1))
(string-ref b i))

(begin
(flush-output ’peek-char p)
(let ([s (check ’read-char

(c-read socket b (string-length b)))])
(if (fx= s 0)

#!eof
(begin (set-port-input-size! p s)

(set-port-input-index! p 1)
(string-ref b 0))))))))]

[unread-char (c p)
(with-interrupts-disabled
(let ([b (port-input-buffer p)]

[i (port-input-index p)]
[s (port-input-size p)])

(when (fx= i 0)
(assertion-violationf ’unread-char

"tried to unread too far on ~s"
p))

(set-port-input-index! p (fx- i 1))
; following could be skipped; supposed to be
; same character
(string-set! b (fx- i 1) c)))]

[write-char (c p)
(with-interrupts-disabled
(let ([b (port-output-buffer p)]

[i (port-output-index p)]
[s (port-output-size p)])

(string-set! b i c)
(check ’write-char (c-write socket b (fx+ i 1)))
(set-port-output-index! p 0)))]

[block-write (p str cnt)
(with-interrupts-disabled
; flush buffered data
(flush-output ’block-write p)

; write new data
(check ’block-write (c-write socket str cnt)))]

[else
(assertion-violationf ’process-port
"operation ~s not handled"
msg)]))))

(let* ([server-socket-name (tmpnam 0)]
[server-socket (setup-server-socket server-socket-name)])

(dofork
(lambda () ; child
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(check ’close (close server-socket))
(let ([sock (setup-client-socket server-socket-name)])

(dodup 0 sock)
(dodup 1 sock))

(check ’execl (execl4 "/bin/sh" "/bin/sh" "-c" command))
(assertion-violationf ’open-process "subprocess exec failed"))

(lambda (pid) ; parent
(let ([sock (accept-socket server-socket)])

(check ’close (close server-socket))
(let ([ib (make-string 1024)] [ob (make-string 1024)])
(let ([p (make-input/output-port

(handler pid sock)
ib ob)])

(set-port-input-size! p 0)
(set-port-output-size! p (fx- (string-length ob) 1))
p))))))))
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The Revised6 Report describes two units of portable code: libraries and top-level programs.
A library is a named collection of bindings with a declared set of explicitly exported bind-
ings, a declared set of imported libraries, and a body that initializes its bindings. A
top-level program is a stand-alone program with a declared set of imported libraries and a
body that is run when the top-level program is run. The bindings in a library are created
and its initialization code run only if the library is used, directly or indirectly, by a top-level
program.

The import declarations appearing within libraries and top-level programs serve two pur-
poses: first, they cause the imported libraries to be loaded, and second, they cause the
bindings of the imported libraries to become visible in the importing library or top-level
program. Libraries are typically stored in the file system, with one library per file, and the
library name typically identifies the file-system path to the library, possibly relative to a
default or programmer-specified set of library locations. The exact mechanism by which
top-level programs are run and libraries are loaded is implementation-dependent.

This chapter describes the mechanisms by which libraries and programs are loaded in
Chez Scheme along with various features for controlling and tracking this process. It also
describes the set of built-in libraries and syntactic forms for defining new libraries and
top-level programs outside of a library or top-level program file.

10.1. Built-in Libraries

In addition to the RNRS libraries mandated by the Revised6 Report:

(rnrs base (6))
(rnrs arithmetic bitwise (6))
(rnrs arithmetic fixnums (6))
(rnrs arithmetic flonums (6))
(rnrs bytevectors (6))
(rnrs conditions (6))
(rnrs control (6))
(rnrs enums (6))
(rnrs eval (6))
(rnrs exceptions (6))
(rnrs files (6))
(rnrs hashtables (6))
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(rnrs io ports (6))
(rnrs io simple (6))
(rnrs lists (6))
(rnrs mutable-pairs (6))
(rnrs mutable-strings (6))
(rnrs programs (6))
(rnrs r5rs (6))
(rnrs records procedural (6))
(rnrs records syntactic (6))
(rnrs records inspection (6))
(rnrs sorting (6))
(rnrs syntax-case (6))
(rnrs unicode (6))

Chez Scheme also provides two additional libraries: (chezscheme) and (chezscheme csv7).
The former can also be referenced as (scheme) and the latter can also be referenced as
(scheme csv7).

The (chezscheme) library exports bindings for every identifier whose binding is described
in this document, including those for keywords like lambda, auxiliary keywords like else,
module names like scheme, and procedure names like cons. In most cases where an
identifier exported from the (chezscheme) library corresponds to an identifier exported
from one of the RNRS libraries, the bindings are identical. In some cases, however,
the (chezscheme) bindings extend the rnrs bindings in some way. For example, the
(chezscheme) syntax-rules form allows its clauses to have fenders (Section 11.2), while
the (rnrs) syntax-rules form does not. Similarly, the (chezscheme) current-input-port

procedure accepts an optional port argument that, when specified, sets the current input
port to port (Section 9.8), while the (rnrs) current-input-port procedure does not. When
the (chezscheme) library extends an RNRS binding in some way, the (chezscheme) library
also exports the RNRS version, with the name prefixed by r6rs:, e.g., r6rs:syntax-rules
or r6rs:current-input-port.

The (chezscheme csv7) Version 7 backward compatibility library contains bindings for a
set of syntactic forms and procedures whose syntax or semantics directly conflicts with
the RNRS bindings for the same identifiers. The following identifiers are exported from
(chezscheme csv7).

record-field-accessible?
record-field-accessor
record-field-mutable?
record-field-mutator
record-type-descriptor
record-type-field-decls
record-type-field-names
record-type-name
record-type-symbol

The bindings of this library should be used only for old code; new code should use the
RNRS variants. Each of these is also available in the (chezscheme) library with the prefix
csv7:, e.g., csv7:record-type-name.
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The interaction environment in which code outside of a library or RNRS top-level program

is scoped contains all of the bindings of the (chezscheme) library, as described in Section 2.3.

10.2. Running Top-level Programs

A top-level program must reside in its own file, which may have any name and may reside

anywhere in the file system. A top-level program residing in a file is run by one of three

mechanisms: the scheme-script command, the --program command-line argument, or the

load-program procedure.

The scheme-script command is used as follows:

scheme-script program-filename arg ...

It may also be run implicitly on Unix-based systems by placing the line

#! /usr/bin/env scheme-script

at the front of the file containing the top-level program, making the top-level program file

executable, and executing the file. This line may be replaced with

#! /usr/bin/scheme-script

with /usr/bin replaced by the absolute path to the directory containing scheme-script if

it is not in /usr/bin. The first form is recommended in the nonnormative appendices to

the Revised6 Report [29], and works wherever scheme-script appears in the path.

The --program command is used similarly with the scheme or petite executables, either

by running:

scheme --program program-filename arg ...
petite --program program-filename arg ...

or by including

#! /usr/bin/scheme --script

or

#! /usr/bin/petite --script

at the front of the top-level program file, making the file executable, and executing the

file. Again, /usr/bin should be replaced with the absolute path to the actual directory in

which scheme and/or petite resides, if not /usr/bin.

The load-program procedure, described in Section 12.4, is used like load:

(load-program string)

where string names the file in which the top-level program resides.
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Regardless of the mechanism used, if the opening line is in one of the forms described
above, or more generally, consists of #! followed by a space or a forward slash, the opening
line is not considered part of the program and is ignored once the Scheme system starts
up and begins to run the program. Thus, the line may be present even in a file loaded
by load-program. In fact, load-program is ultimately used by the other two mechanisms
described above, via the value of the scheme-program parameter described in Section 12.8,
and it is load-program that scans past the #! line, if present, before evaluating the program.

A top-level program may be compiled with the compile-program procedure described
in Section 12.4. compile-program copies the #! line from the source file to the ob-
ject file, followed by a compiled version of the source code. Any libraries upon which
the top-level program depends, other than built-in libraries, must be compiled first via
compile-file or compile-library. This can be done manually or by setting the parame-
ter compile-imported-libraries to #t before compiling the program. The program must
be recompiled if any of the libraries upon which it depends are recompiled. A compiled top-
level program can be run just like a source top-level program via each of the mechanisms
described above.

In Chez Scheme, a library may also be defined in the REPL or placed in a file to be loaded
via load or load-library. The syntax for a library is the same whether the library is
placed in its own file and implicitly loaded via import, entered into the REPL, or placed in
a file along with other top-level expressions to be evaluated by load. A top-level program
may also be defined in the REPL or placed in a file to be loaded via load, but in this
case, the syntax is slightly different. In the language of the Revised6 Report, a top-level
program is merely an unwrapped sequence of subforms consisting of an import form and
a body, delimited only by the boundaries of the file in which it resides. In order for a
top-level program to be entered in the REPL or placed in a file to be evaluated by load,
Chez Scheme allows top-level programs to be enclosed in a top-level-program form.

10.3. Library and Top-level Program Forms

(library name exports imports library-body) syntax

returns: unspecified
libraries: (chezscheme)

The library form defines a new library with the specified name, exports, imports, and
body. Details on the syntax and semantics of the library form are given in Section 10.3 of
The Scheme Programming Language, 4th Edition and in the Revised6 Report.

Only one version of a library can be loaded at any given time, and an exception is raised
if a library is implicitly loaded via import when another version of the library has already
been loaded. Chez Scheme permits a different version of the library, or a new instance of
the same version, to be entered explicitly into the REPL or loaded explicitly from a file,
to facilitate interactive testing and debugging. The programmer should take care to make
sure that any code that uses the library is also reentered or reloaded, to make sure that
code accesses the bindings of the new instance of the library.
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(library (test (1)) (export x) (import (rnrs)) (define x 3))
(import (test))
(define f (lambda () x))
(f) ⇒ 3

(library (test (1)) (export x) (import (rnrs)) (define x 4))
(import (test))
(f) ⇒ 3 ; oops---forgot to redefine f
(define f (lambda () x))
(f) ⇒ 4

(library (test (2)) (export x) (import (rnrs)) (define x 5))
(import (test))
(define f (lambda () x))
(f) ⇒ 5

As with module imports (Section 11.5), a library import may appear anywhere a definition
may appear, including at top level in the REPL, in a file to be loaded by load, or within
a lambda, let, letrec, letrec*, etc., body. The same import form may be used to import
from both libraries and modules.

(library (foo) (export a) (import (rnrs)) (define a ’a-from-foo))
(module bar (b) (define b ’b-from-bar))
(let () (import (foo) bar) (list a b)) ⇒ (a-from-foo b-from-bar)

The import keyword is not visible within a library body unless the library imports it from
the (chezscheme) library.

(top-level-program imports body) syntax

returns: unspecified
libraries: (chezscheme)

A top-level-program form may be entered into the REPL or placed in a file to be loaded via
load, where it behaves as if its subforms were placed in a file and loaded via load-program.
Details on the syntax and semantics of a top-level program are given in Section 10.3 of The
Scheme Programming Language, 4th Edition and in the Revised6 Report.

The following transcript illustrates a top-level-program being tested in the REPL.

> (top-level-program (import (rnrs))
(display "hello!\n"))

hello!

10.4. Standalone import and export forms

Although not required by the Revised6 Report, Chez Scheme supports the use of standalone
import and export forms. The import forms can appear anywhere other definitions can
appear, including within a library body, module (Section 11.5) body, lambda or other local
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body, and at top level. The export forms can appear within the definitions of a library

or module body to specify additional exports for the library or module.

Within a library or top-level program, the keywords for these forms must be imported from
the (chezscheme) library to be available for use, since they are not defined in any of the
Revised6 Report libraries.

(import import-spec ...) syntax

(import-only import-spec ...) syntax

returns: unspecified
libraries: (chezscheme)

An import or import-only form is a definition and can appear anywhere other definitions
can appear, including at the top level of a program, nested within the bodies of lambda

expressions, and nested within modules and libraries.

Each import-spec must take one of the following forms.

import-set
(for import-set import-level ...)

The for wrapper and import-level are described in Chapter 10 of The Scheme Programming
Language, 4th Edition. They are ignored by Chez Scheme, which determines automatically
the levels at which identifiers must be imported, as permitted by the Revised6 Report. This
frees the programmer from the obligation to do so and results in more generality as well as
more precision in the set of libraries actually imported at compile and run time [21, 19].

An import-set must take one of the following forms:

library-spec
module-name
(only import-set identifier ...)
(except import-set identifier ...)
(prefix import-set prefix)
(add-prefix import-set prefix)
(drop-prefix import-set prefix)
(rename import-set (import-name internal-name) ...)
(alias import-set (import-name internal-name) ...)

Several of these are specified by the Revised6 Report; the remainder are Chez Scheme
extensions, including module-name and the add-prefix, drop-prefix, and alias forms.

An import or import-only form makes the specified bindings visible in the scope in which
they appear. Except at top level, they differ in that import leaves all bindings except
for those shadowed by the imported names visible, whereas import-only hides all existing
bindings, i.e., makes only the imported names visible. At top level, import-only behaves
like import.

Each import-set identifies a set of names to make visible as follows.

library-spec: all exports of the library identified by the Revised6 Report library-spec (Chap-
ter 10.
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module-name: all exports of module named by the identifier module-name

(only import-set identifier ...): of those specified by import-set , just identifier ...

(except import-set identifier ...): all specified by import-set except identifier ...

(prefix import-set prefix): all specified by import-set , each prefixed by prefix

(add-prefix import-set prefix): all specified by import-set , each prefixed by prefix (just
like prefix)

(drop-prefix import-set prefix): all specified by import-set , with prefix prefix removed

(rename import-set (import-name internal-name) ...): all specified by import-set , with
each identifier import-name renamed to the corresponding identifier internal-name

(alias import-set (import-name internal-name) ...): all specified by import-set , with
each internal-name as an alias for import-name

The alias form differs from the rename form in that both import-name and internal-name
are in the resulting set, rather than just internal-name.

It is a syntax violation if the given selection or transformation cannot be made because of
a missing export or prefix.

An identifier made visible via an import of a module or library is scoped as if its definition
appears where the import occurs. The following example illustrates these scoping rules,
using a local module m.

(library (A) (export x) (import (rnrs)) (define x 0))
(let ([x 1])

(module m (x setter)
(define-syntax x (identifier-syntax z))
(define setter (lambda (x) (set! z x)))
(define z 2))

(let ([y x] [z 3])
(import m (prefix (A) a:))
(setter 4)
(list x a:x y z))) ⇒ (4 0 1 3)

The inner let expression binds y to the value of the x bound by the outer let. The import
of m makes the definitions of x and setter visible within the inner let. The import of (A)
makes the variable x exported from (A) visible as a:x within the body of the inner let.
Thus, in the expression (list x a:x y z), x refers to the identifier macro exported from
m while a:x refers to the variable x exported from (A) and y and z refer to the bindings
established by the inner let. The identifier macro x expands into a reference to the variable
z defined within the module.

With local import forms, it is rarely necessary to use the extended import specifiers. For
example, an abstraction that encapsulates the import and reference can easily be defined
and used as follows.

(define-syntax from
(syntax-rules ()
[(_ m id) (let () (import-only m) id)]))
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(library (A) (export x) (import (rnrs)) (define x 1))
(let ([x 10])

(module M (x) (define x 2))
(cons (from (A) x) (from M x))) ⇒ (1 . 2)

The definition of from could use import rather than import-only, but by using import-only

we get feedback if an attempt is made to import an identifier from a library or module that

does not export the identifier. With import instead of import-only, the current binding,

if any, would be visible if the library or module does not export the specified name.

(define-syntax lax-from
(syntax-rules ()
[(_ m id) (let () (import m) id)]))

(library (A) (export x) (import (rnrs)) (define x 1))

(let ([x 10])
(module M (x) (define x 2))
(+ (from (A) x) (from M y))) ⇒ exception: unbound identifier y

(let ([x 10] [y 20])
(module M (x) (define x 2))
(+ (lax-from (A) x) (lax-from M y))) ⇒ 21

Import visibility interacts with hygienic macro expansion in such a way that, as one might

expect, an identifier x imported from a module M is treated in the importing context as if

the corresponding export identifier had been present in the import form along with M .

The from abstraction above works because both M and id appear in the input to the

abstraction, so the imported id captures the reference to id .

The following variant of from also works, because both names are introduced into the

output by the transformer.

(module M (x) (define x ’x-of-M))
(define-syntax x-from-M

(syntax-rules ()
[(_) (let () (import M) x)]))

(let ([x ’local-x]) (x-from-M)) ⇒ x-of-M

On the other hand, imports of introduced module names do not capture free references.

(let ([x ’local-x])
(define-syntax alpha
(syntax-rules ()

[(_ var) (let () (import M) (list x var))]))

(alpha x)) ⇒ (x-of-M local-x)

Similarly, imports from free module names do not capture references to introduced vari-

ables.
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(let ([x ’local-x])
(define-syntax beta
(syntax-rules ()

[(_ m var) (let () (import m) (list x var))]))

(beta M x)) ⇒ (local-x x-of-M)

This semantics extends to prefixed, renamed, and aliased bindings created by the extended
import specifiers prefix, rename, and alias.

The from abstraction works for variables but not for exported keywords, record names, or
module names, since the output is an expression and may thus appear only where expres-
sions may appear. A generalization of this technique is used in the following definition
of import*, which supports renaming of imported bindings and selective import of spe-
cific bindings—without the use of the built-in import subforms for selecting and renaming
identifiers

(define-syntax import*
(syntax-rules ()
[(_ m) (begin)]
[(_ m (new old))
(module (new)
(module (tmp)
(import m)
(alias tmp old))

(alias new tmp))]
[(_ m id) (module (id) (import m))]
[(_ m spec0 spec1 ...)
(begin (import* m spec0) (import* m spec1 ...))]))

To selectively import an identifier from module or library m, the import* form expands into
an anonymous module that first imports all exports of m then re-exports only the selected
identifier. To rename on import the macro expands into an anonymous module that instead
exports an alias (Section 11.10) bound to the new name.

If the output placed the definition of new in the same scope as the import of m, a naming
conflict would arise whenever new is also present in the interface of m. To prevent this, the
output instead places the import within a nested anonymous module and links old and
new by means of an alias for the introduced identifier tmp.

The macro expands recursively to handle multiple import specifications. Each of the fol-
lowing examples imports cons as + and + as cons, which is probably not a very good
idea.

(let ()
(import* scheme (+ cons) (cons +))
(+ (cons 1 2) (cons 3 4))) ⇒ (3 . 7)

(let ()
(import* (rnrs) (+ cons) (cons +))
(+ (cons 1 2) (cons 3 4))) ⇒ (3 . 7)
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(export export-spec ...) syntax

returns: unspecified
libraries: (chezscheme)

An export form is a definition and can appear with other definitions at the front of a

library or module. It is a syntax error for an export form to appear in other contexts,

including at top level or among the definitions of a top-level program or lambda body.

Each export-spec must take one of the following forms.

identifier
(rename (internal-name export-name) ...)
(import import-spec ...)

where each internal-name and export-name is an identifier. The first two are syntactically

identical to library export-specs, while the third is syntactically identical to a Chez Scheme

import form, which is an extension of the R6RS library import subform. The first form

names a single export, identifier , whose export name is the same as its internal name. The

second names a set of exports, each of whose export name is given explicitly and may differ

from its internal name.

For the third, the identifiers identified by the import form become exports, with aliasing,

renaming, prefixing, etc., as specified by the import-specs. The module or library whose

bindings are exported by an import form appearing within an export form can be defined

within or outside the exporting module or library and need not be imported elsewhere

within the exporting module or library.

The following library exports a two-armed-only variant of if along with all remaining

bindings of the (rnrs) library.

(library (rnrs-no-one-armed-if) (export) (import (except (chezscheme) if))
(export if (import (except (rnrs) if)))
(define-syntax if
(let ()

(import (only (rnrs) if))
(syntax-rules ()
[(_ tst thn els) (if tst thn els)]))))

(import (rnrs-no-one-armed-if))
(if #t 3 4) ⇒ 3
(if #t 3) ⇒ exception: invalid syntax

Another way to define the same library would be to define the two-armed-only if with a

different internal name and use rename to export it under the name if:

(library (rnrs-no-one-armed-if) (export) (import (chezscheme))
(export (rename (two-armed-if if)) (import (except (rnrs) if)))
(define-syntax two-armed-if
(syntax-rules ()

[(_ tst thn els) (if tst thn els)])))
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(import (rnrs-no-one-armed-if))
(if #t 3 4) ⇒ 3
(if #t 3) ⇒ exception: invalid syntax

The placement of the export form in the library body is irrelevant, e.g., the export form

can appear after the definition in the examples above.

(indirect-export id indirect-id ...) syntax

returns: unspecified
libraries: (chezscheme)

This form is a definition and can appear wherever any other definition can appear.

An indirect-export form declares that the named indirect-ids are indirectly exported to

top level if id is exported to top level.

In general, if an identifier is not directly exported by a library or module, it can be refer-

enced outside of the library or module only in the expansion of a macro defined within and

exported from the library or module. Even this cannot occur for libraries or modules de-

fined at top level (or nested within other libraries or modules), unless either (1) the library

or module has been set up to implicitly export all identifiers as indirect exports, or (2)

each indirectly exported identifier is explicitly declared as an indirect export of some other

identifier that is exported, either directly or indirectly, from the library or module, via an

indirect-export or the built-in indirect export feature of a module export subform. By

default, (1) is true for a library and false for a module, but the default can be overridden

via the implicit-exports form, which is described below.

This form is meaningful only within a top-level library, top-level module, or module enclosed

within a library or top-level module, although it has no effect if the library or module

already implicitly exports all bindings. It is allowed anywhere else definitions can appear,

however, so macros that expand into indirect export forms can be used in any definition

context.

Indirect exports are listed so the compiler can determine the exact set of bindings (direct

and indirect) that must be inserted into the top-level environment, and conversely, the set

of bindings that may be treated more efficiently as local bindings (and perhaps discarded,

if they are not used).

In the example below, indirect-export is used to indirectly export count to top level when

current-count is exported to top level.

(module M (bump-count current-count)
(define-syntax current-count (identifier-syntax count))
(indirect-export current-count count)
(define count 0)
(define bump-count
(lambda ()

(set! count (+ count 1)))))
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(import M)
(bump-count)
current-count ⇒ 1
count ⇒ exception: unbound identifier count

An indirect-export form is not required to make count visible for bump-count, since it is
a procedure whose code is contained within the module rather than a macro that might
expand into a reference to count somewhere outside the module.

It is often useful to use indirect-export in the output of a macro that expands into
another macro named a if a expands into references to identifiers that might not be directly
exported, as illustrated by the alternative definition of module M above.

(define-syntax define-counter
(syntax-rules ()
[(_ getter bumper init incr)
(begin
(define count init)
(define-syntax getter (identifier-syntax count))
(indirect-export getter count)
(define bumper
(lambda ()

(set! count (incr count)))))]))

(module M (bump-count current-count)
(define-counter current-count bump-count 0 add1))

(implicit-exports #t) syntax

(implicit-exports #f) syntax

returns: unspecified
libraries: (chezscheme)

An implicit-exports form is a definition and can appear with other definitions at the
front of a library or module. It is a syntax error for an implicit-exports form to appear
in other contexts, including at top level or among the definitions of a top-level program or
lambda body.

The implicit-exports form determines whether identifiers not directly exported from a
module or library are automatically indirectly exported to the top level if any meta-binding
(keyword, meta definition, or property definition) is directly exported to top level from the
library or module. The default for libraries is #t, to match the behavior required by
the Revised6 Report, while the default for modules is #f. The implicit-exports form is
meaningful only within a library, top-level module, or module enclosed within a library or
top-level module. It is allowed in a module enclosed within a lambda, let, or similar body,
but ignored there because none of that module’s bindings can be exported to top level.

The advantage of (implicit-exports #t) is that indirect exports need not be listed ex-
plicitly, which is convenient. A disadvantage is that it often results in more bindings than
necessary being elevated to top level where they cannot be discarded as useless by the op-
timizer. For modules, another disadvantage is such bindings cannot be proven immutable,
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which inhibits important optimizations such as procedure inlining. This can result in sig-

nificantly lower run-time performance.

10.5. Library Parameters

The parameters described below control where import looks when attempting to load a

library, whether it compiles the libraries it loads, and whether it displays tracking messages

as it performs its search.

library-directories thread parameter

library-extensions thread parameter

libraries: (chezscheme)

The parameter library-directories determines where the files containing library source

and object code are located in the file system, and the parameter library-extensions

determines the filename extensions for the files holding the code, as described in sec-

tion 2.5. The values of both parameters are lists of pairs of strings. The first string

in each library-directories pair identifies a source-file root directory, and the sec-

ond identifies the corresponding object-file root directory. Similarly, the first string in

each library-extensions pair identifies a source-file extension, and the second identi-

fies the corresponding object-file extension. The full path of a library source or ob-

ject file consists of the source or object root followed by the components of the library

name prefixed by slashes, with the library extension added on the end. For example,

for root /usr/lib/scheme, library name (app lib1), and extension .sls, the full path is

/usr/lib/scheme/app/lib1.sls. If the library name portion forms an absolute pathname,

e.g., ~/.myappinit, the library-directories parameter is ignored and no prefix is added.

The initial values of these parameters are shown below.

(library-directories) ⇒ (("." . "."))

(library-extensions) ⇒ ((".chezscheme.sls" . ".chezscheme.so")
(".ss" . ".so")
(".sls" . ".so")
(".scm" . ".so")
(".sch" . ".so"))

As a convenience, when either of these parameters is set, any element of the list can be spec-

ified as a single source string, in which case the object string is determined automatically.

For library-directories, the object string is the same as the source string, effectively

naming the same directory as a source- and object-code root. For library-extensions,

the object string is the result of removing the last (or only) extension from the string and

appending ".so". The library-directories and library-extensions parameters also ac-

cept as input strings in the format described in Section 2.5 for the --libdirs and --libexts

command-line options.
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compile-imported-libraries thread parameter

libraries: (chezscheme)

When the value of this parameter is #t, import automatically calls the value of the
compile-library-handler parameter (which defaults to a procedure that simply calls
compile-library) on any imported library if the object file is missing, older than the
corresponding source file, older than any source files included (via include) when the ob-
ject file was created, or itself requires a library that has or must be recompiled, as described
in Section 2.5. The default initial value of this parameter is #f. It can be set to #t via the
command-line option --compile-imported-libraries.

When import compiles a library via this mechanism, it does not also load the compiled
library, because this would cause portions of library to be reevaluated. Because of this,
run-time expressions in the file outside of a library form will not be evaluated. If such
expressions are present and should be evaluated, the library should be loaded explicitly.

import-notify thread parameter

libraries: (chezscheme)

When the new parameter import-notify is set to a true value, import displays messages to
the console-output port as it searches for the file containing each library it needs to load.
The default value of this parameter is #f.

10.6. Library Inspection

(library-list) procedure

returns: a list of the libraries currently defined
libraries: (chezscheme)

The set of libraries initially defined includes those listed in Section 10.1 above.
(library-version libref ) procedure

returns: the version of the specified library
(library-exports libref ) procedure

returns: a list of the exports of the specified library
(library-requirements libref ) procedure

returns: a list of libraries required by the specified library
(library-requirements libref options) procedure

returns: a list of libraries required by the specified library, filtered by options
(library-object-filename libref ) procedure

returns: the name of the object file holding the specified library, if any
libraries: (chezscheme)

Information can be obtained only for built-in libraries or libraries previously loaded into
the system. libref must be an s-expression in the form of a library reference. The syntax
for library references is given in Chapter 10 of The Scheme Programming Language, 4th
Edition and in the Revised6 Report.
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The library-version return value is a list of numbers (possibly empty) representing the

library’s version.

The list of exports returned by library-exports is a list of symbols, each identifying one

of the library’s exports. The order in which the elements appear is unspecified.

When the optional options argument is supplied, it must be an enumeration set

over the symbols constituting valid library-requirements options, as described in the

library-requirements-options entry below. It defaults to a set containing all of the

options. Each element of the list of libraries returned by library-requirements is an s-

expression form of a library reference. The library reference includes the actual version of

the library that is present in the system (if nonempty), even if a version was not specified

when it was imported. The order in which the libraries appear in the list returned by

library-requirements is unspecified.

library-object-filename returns a string naming the object file if the specified library

was loaded from or compiled to an object file. Otherwise, it returns #f.

(with-output-to-file "A.ss"
(lambda ()
(pretty-print

’(library (A (1 2)) (export x z)
(import (rnrs))
(define x ’ex)
(define y 23)
(define-syntax z
(syntax-rules ()

[(_ e) (+ y e)])))))
’replace)

(with-output-to-file "B.ss"
(lambda ()
(pretty-print

’(library (B) (export x w)
(import (rnrs) (A))
(define w (cons (z 12) x)))))

’replace)
(compile-imported-libraries #t)
(import (B))
(library-exports ’(A)) ⇒ (x z) ; or (z x)
(library-exports ’(A (1 2))) ⇒ (x z) ; or (z x)
(library-exports ’(B)) ⇒ (x w) ; or (w x)
(library-version ’(A)) ⇒ (1 2)
(library-version ’(B)) ⇒ ()
(library-requirements ’(A)) ⇒ ((rnrs (6)))
(library-requirements ’(B)) ⇒ ((rnrs (6)) (A (1 2)))
(library-object-filename ’(A)) ⇒ "A.so"
(library-object-filename ’(B)) ⇒ "B.so"
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(library-requirements-options symbol ...) syntax

returns: a library-requirements-options enumeration set
libraries: (chezscheme)

Library-requirements-options enumeration sets are passed to library-requirements to de-
termine the library requirements to be listed. The available options are described below.

import: Include the libraries that must be imported when the specified library is imported.

visit@visit: Includes the libraries that must be visited when the specified library is vis-
ited.

invoke@visit: Include the libraries that must be invoked when the specified library is
visited.

invoke: Includes the libraries that must be invoked when the specified library is invoked.



11. Syntactic Extension and Modules

This chapter describes the Chez Scheme extensions to the syntax-case syntactic abstraction

mechanism now standardized in the Revised6 Report. These extensions include the module

system (Section 11.5), meta definitions (Section 11.8), conditional expansion (Section 11.9)

syntax-rules fenders, fluid-let-syntax, and include.

11.1. Fluid Keyword Bindings

Keyword bindings established via the Revised6 Report define-syntax, let-syntax, or

letrec-syntax forms may be rebound temporarily with fluid-let-syntax.

(fluid-let-syntax ((keyword expr) ...) form1 form2 ...) syntax

returns: see explanation
libraries: (chezscheme)

Each expr must evaluate to a transformer. fluid-let-syntax is similar to the standard

let-syntax, except that instead of introducing new bindings for the keywords keyword ...,

fluid-let-syntax temporarily alters the existing bindings for the keywords during the

expansion of its body. That is, during the expansion of form1 form2 ..., the visible

lexical (or top-level) binding for each keyword is temporarily replaced by a new association

between the keyword and the corresponding transformer. This affects any references to the

keyword that resolve to the same lexical (or top-level) binding whether the references occur

in the text of the body or are introduced during its expansion. In contrast, let-syntax

captures only those references that occur within the text of its body.

The following example shows how fluid-let-syntax differs from let-syntax.

(let ([f (lambda (x) (+ x 1))])
(let-syntax ([g (syntax-rules ()

[(_ x) (f x)])])
(let-syntax ([f (syntax-rules ()

[(_ x) x])])
(g 1)))) ⇒ 2



288 11. Syntactic Extension and Modules

(let ([f (lambda (x) (+ x 1))])
(let-syntax ([g (syntax-rules ()

[(_ x) (f x)])])
(fluid-let-syntax ([f (syntax-rules ()

[(_ x) x])])
(g 1)))) ⇒ 1

The two expressions are identical except that the inner let-syntax form in the first ex-
pression is a fluid-let-syntax form in the second. In the first expression, the f occurring
in the expansion of (g 1) refers to the let-bound variable f, whereas in the second it refers
to the keyword f by virtue of the fluid syntax binding for f.

The following code employs fluid-let-syntax in the definition of a define-integrable

form that is similar to define for procedure definitions except that it causes the code for
the procedure to be integrated, or inserted, wherever a direct call to the procedure is found.
No semantic difference is visible between procedures defined with define-integrable and
those defined with define, except that a top-level define-integrable form must appear
before the first reference to the defined identifier. Lexical scoping is preserved, the actual
parameters in an integrated call are evaluated once and at the proper time, integrable pro-
cedures may be used as first-class values, and recursive procedures do not cause indefinite
recursive expansion.

(define-syntax define-integrable
(syntax-rules (lambda)
[(_ name (lambda formals form1 form2 ...))
(begin
(define xname
(fluid-let-syntax ([name (identifier-syntax xname)])

(lambda formals form1 form2 ...)))
(define-syntax name
(lambda (x)

(syntax-case x ()
[_ (identifier? x) #’xname]
[(_ arg (... ...))
#’((fluid-let-syntax ([name (identifier-syntax xname)])

(lambda formals form1 form2 ...))
arg
(... ...))]))))]))

A define-integrable has the following form.

(define-integrable name lambda-expression)

A define-integrable form expands into a pair of definitions: a syntax definition of name
and a variable definition of xname. The transformer for name converts apparent calls to
name into direct calls to lambda-expression. Since the resulting forms are merely direct
lambda applications (the equivalent of let expressions), the actual parameters are evaluated
exactly once and before evaluation of the procedure’s body, as required. All other references
to name are replaced with references to xname. The definition of xname binds it to the value
of lambda-expression. This allows the procedure to be used as a first-class value. Because
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xname is introduced by the transformer, the binding for xname is not visible anywhere except
where references to it are introduced by the transformer for name.

Within lambda-expression, wherever it appears, name is rebound to a transformer that
expands all references into references to xname. The use of fluid-let-syntax for this
purpose prevents indefinite expansion from indirect recursion among integrable procedures.
This allows the procedure to be recursive without causing indefinite expansion. Nothing
special is done by define-integrable to maintain lexical scoping, since lexical scoping is
maintained automatically by the expander.

Chez Scheme integrate locally defined procedures automatically when it is appropriate
to do so. It cannot integrate procedures defined at top-level, however, since code that
assigns top-level variables can be introduced into the system (via eval or load) at any
time. define-integrable can be used to force the integration of procedures bound at top-
level, even if the integration of locally bound procedures is left to the compiler. It can also
be used to force the integration of large procedures that the compiler would not normally
integrate. (The expand/optimize procedure is useful for determining when integration does
or does not take place.)

11.2. Syntax-Rules Transformers

Chez Scheme extends syntax-rules to permit clause to include fenders just like those
allowed within syntax-case clauses.

(syntax-rules (literal ...) clause ...) syntax

returns: a transformer
libraries: (chezscheme)

Each literal must be an identifier other than an underscore ( _ ) or ellipsis ( ... ). Each
clause must take the form below.

(pattern template)
(pattern fender template)

The first form is the only form supported by the Revised6 Report.

11.3. Syntax-Case Transformers

Chez Scheme provides several procedures and syntactic forms that may be used to simplify
the coding of certain syntactic abstractions.

(syntax->list syntax-object) procedure

returns: a list of syntax objects
libraries: (chezscheme)

This procedure takes a syntax object representing a list-structured form and returns a list
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of syntax objects, each representing the corresponding subform of the input form.

syntax->list may be defined as follows.

(define syntax->list
(lambda (ls)
(syntax-case ls ()

[() ’()]
[(x . r) (cons #’x (syntax->list #’r))])))

#’(a b c) ⇒ #<syntax (a b c)>
(syntax->list #’(a b c)) ⇒ (#<syntax a> #<syntax b> #<syntax c>)

syntax->list is not required for list structures constructed from individual pattern variable
values or sequences of pattern-variable values, since such structures are already lists. For
example:

(list? (with-syntax ([x #’a] [y #’b] [z #’c]) #’(x y z)))) ⇒ #t
(list? (with-syntax ([(x ...) #’(a b c)]) #’(x ...))) ⇒ #t

(syntax->vector syntax-object) procedure

returns: a list of syntax objects
libraries: (chezscheme)

This procedure takes a syntax object representing a vector-structured form and returns a
list of syntax objects, each representing the corresponding subform of the input form.

syntax->vector may be defined as follows.

(define syntax->vector
(lambda (v)
(syntax-case v ()

[#(x ...) (apply vector (syntax->list #’(x ...)))])))

#’#(a b c) ⇒ #<syntax #(a b c)>
(syntax->vector #’#(a b c)) ⇒ #(#<syntax a> #<syntax b> #<syntax c>)

syntax->vector is not required for vector structures constructed from individual pattern
variable values or sequences of pattern-variable values, since such structures are already
vectors. For example:

(vector? (with-syntax ([x #’a] [y #’b] [z #’c]) #’#(x y z)))) ⇒ #t
(vector? (with-syntax ([(x ...) #’(a b c)]) #’#(x ...))) ⇒ #t

(syntax-object->datum obj) procedure

returns: obj stripped of syntactic information
libraries: (chezscheme)

syntax-object->datum is identical to the Revised6 Report syntax->datum.
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(datum template) syntax

returns: see below
libraries: (chezscheme)

(datum template) is a convenient shorthand syntax for

(syntax->datum (syntax template))

datum may be defined simply as follows.

(define-syntax datum
(syntax-rules ()
[(_ t) (syntax->datum #’t)]))

(with-syntax ((a #’(a b c))) (datum a)) ⇒ (a b c)

(datum->syntax-object template-identifier obj) procedure

returns: a syntax object
libraries: (chezscheme)

datum->syntax-object is identical to the Revised6 Report datum->syntax.

(with-implicit (id0 id1 ...) body1 body2 ...) syntax

returns: see below
libraries: (chezscheme)

This form abstracts over the common usage of datum->syntax for creating implicit identi-

fiers (see above). The form

(with-implicit (id0 id1 ...)
body1 body2 ...)

is equivalent to

(with-syntax ([id1 (datum->syntax #’id0 ’id1)] ...)
body1 body2 ...)

with-implicit can be defined simply as follows.

(define-syntax with-implicit
(syntax-rules ()
[(_ (tid id ...) b1 b2 ...)
(with-syntax ([id (datum->syntax #’tid ’id)] ...)
b1 b2 ...)]))

We can use with-implicit to simplify the (correct version of) loop above.
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(define-syntax loop
(lambda (x)
(syntax-case x ()

[(k e ...)
(with-implicit (k break)
#’(call-with-current-continuation

(lambda (break)
(let f () e ... (f)))))])))

(include path) syntax

returns: unspecified
libraries: (chezscheme)

path must be a string. include expands into a begin expression containing the
forms found in the file named by path. For example, if the file f-def.ss contains
(define f (lambda () x)), the expression

(let ([x "okay"])
(include "f-def.ss")
(f))

evaluates to "okay". An include form is treated as a definition if it appears within a
sequence of definitions and the forms on the file named by path are all definitions, as in
the above example. If the file contains expressions instead, the include form is treated as
an expression.

include may be defined portably as follows, although Chez Scheme uses an implementation-
dependent definition that allows it to capture and maintain source information for included
code.

(define-syntax include
(lambda (x)
(define read-file

(lambda (fn k)
(let ([p (open-input-file fn)])

(let f ([x (read p)])
(if (eof-object? x)

(begin (close-input-port p) ’())
(cons (datum->syntax k x)

(f (read p))))))))
(syntax-case x ()
[(k filename)
(let ([fn (datum filename)])
(with-syntax ([(exp ...) (read-file fn #’k)])

#’(begin exp ...)))])))

The definition of include uses datum->syntax to convert the objects read from the file into
syntax objects in the proper lexical context, so that identifier references and definitions
within those expressions are scoped where the include form appears.
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In Chez Scheme’s implementation of include, the parameter source-directories (Sec-

tion 12.5) determines the set of directories searched for source files not identified by absolute

path names.

(syntax-error obj string ...) procedure

returns: does not return
libraries: (chezscheme)

Syntax errors may be reported with syntax-error, which produces a message by concate-

nating string ... and a printed representation of obj . If no string arguments are provided,

the string "invalid syntax" is used instead. When obj is a syntax object, the syntax-

object wrapper is stripped (as with syntax->datum) before the printed representation is

created. If source file information is present in the syntax-object wrapper, syntax-error

incorporates this information into the error message.

syntax-case and syntax-rules call syntax-error automatically if the input fails to match

one of the clauses.

We can use syntax-error to precisely report the cause of the errors detected in the following

definition of (unnamed) let.

(define-syntax let
(lambda (x)
(define check-ids!

(lambda (ls)
(unless (null? ls)

(unless (identifier? (car ls))
(syntax-error (car ls) "let cannot bind non-identifier"))

(check-ids! (cdr ls)))))
(define check-unique!

(lambda (ls)
(unless (null? ls)

(let ([x (car ls)])
(when (let mem? ([ls (cdr ls)])

(and (not (null? ls))
(or (bound-identifier=? x (car ls))

(mem? (cdr ls)))))
(syntax-error x "let cannot bind two occurrences of")))

(check-unique! (cdr ls)))))
(syntax-case x ()

[(_ ((i e) ...) b1 b2 ...)
(begin
(check-ids! #’(i ...))
(check-unique! #’(i ...))
#’((lambda (i ...) b1 b2 ...) e ...))])))

With this change, the expression

(let ([a 3] [a 4]) (+ a a))
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produces the error message “let cannot bind two occurrences of a.”

(literal-identifier=? identifier1 identifier2) procedure

returns: see below
libraries: (chezscheme)

This procedure is identical to the Revised6 Report free-identifier=?, and is provided for
backward compatibility only.

11.4. Compile-time Values and Properties

When defining sets of dependent macros, it is often convenient to attach information to
identifiers in the same compile time environment that the expander uses to record informa-
tion about variables, keywords, module names, etc. For example, a record-type definition
macro, like define-record-type, might need to attach information to the record-type name
in the compile-time environment for use in handling child record-type definitions.

Chez Scheme provides two mechanisms for attaching information to identifiers in the
compile-time environment: compile-time values and compile-time properties. A compile-
time value is a kind of transformer that can be associated with an identifier via
define-syntax, let-syntax, letrec-syntax, and fluid-let-syntax. When an identifier
is associated with a compile-time value, it cannot also have any other meaning, and an
attempt to reference it as an ordinary identifier results in a syntax error. A compile-time
property, on the other hand, is maintained alongside an existing binding, providing addi-
tional information about the binding. Properties are ignored when ordinary references to
an identifier occur.

The mechanisms used by a macro to obtain compile-time values and properties are similar.
In both cases, the macro’s transformer returns a procedure p rather than a syntax object.
The expander invokes p with one argument, an environment-lookup procedure lookup,
which p can then use to obtain compile-time values and properties for one or more identifiers
before it constructs the macro’s final output. lookup accepts one or two identifier arguments.
With one argument, id , lookup returns the compile-time value of id , or #f if id has no
compile-time value. With two arguments, id and key , lookup returns the value of id ’s key
property, or #f if id has no key property.

(make-compile-time-value obj) procedure

returns: a compile-time value
libraries: (chezscheme)

A compile time value is a kind of transformer with which a keyword may be associated by
any of the keyword binding constructs, e.g., define-syntax or let-syntax. The transformer
encapsulates the supplied obj . The encapsulated object may be retrieved as described
above.
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The following example illustrates how this feature might be used to define a simple syntactic

record-definition mechanism where the record type descriptor is generated at expansion

time.

(define-syntax drt
(lambda (x)
(define construct-name

(lambda (template-identifier . args)
(datum->syntax template-identifier

(string->symbol
(apply string-append
(map (lambda (x)

(if (string? x)
x
(symbol->string (syntax->datum x))))

args))))))
(define do-drt

(lambda (rname fname* prtd)
(with-syntax ([rname rname]

[rtd (make-record-type-descriptor
(syntax->datum rname) prtd #f #f #f
(list->vector

(map (lambda (fname)
‘(immutable ,(syntax->datum fname)))

fname*)))]
[make-rname (construct-name rname "make-" rname)]
[rname? (construct-name rname rname "?")]
[(rname-fname ...)
(map (lambda (fname)

(construct-name fname rname "-" fname))
fname*)]

[(i ...) (enumerate fname*)])
#’(begin

(define-syntax rname (make-compile-time-value ’rtd))
(define rcd (make-record-constructor-descriptor ’rtd #f #f))
(define make-rname (record-constructor rcd))
(define rname? (record-predicate ’rtd))
(define rname-fname (record-accessor ’rtd i))
...))))

(syntax-case x (parent)
[(_ rname (fname ...))
(for-all identifier? #’(rname fname ...))
(do-drt #’rname #’(fname ...) #f)]

[(_ rname pname (fname ...))
(for-all identifier? #’(rname pname fname ...))
(lambda (lookup)
(let ([prtd (lookup #’pname)])

(unless (record-type-descriptor? prtd)
(syntax-error #’pname "unrecognized parent record type"))

(do-drt #’rname #’(fname ...) prtd)))])))
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(drt prec (x y))
(drt crec prec (z))
(define r (make-crec 1 2 3))
(prec? r) ⇒ #t
(prec-x r) ⇒ 1
(crec-z r) ⇒ 3
prec ⇒ exception: invalid syntax prec

(define-property id key expr) syntax

returns: unspecified
libraries: (chezscheme)

A define-property form attaches a property to an existing identifier binding without
disturbing the existing meaning of the identifier in the scope of that binding. It is typically
used by one macro to record information about a binding for use by another macro. Both
id and key must be identifiers. The expression expr is evaluated when the define-property

form is expanded, and a new property associating key with the value of expr is attached
to the existing binding of id , which must have a visible local or top-level binding.

define-property is a definition and can appear anywhere other definitions can appear.
The scope of a property introduced by define-property is the entire body in which the
define-property form appears or global if it appears at top level, except where it is replaced
by a property for the same id and key or where the binding to which it is attached is
shadowed. Any number of properties can be attached to the same binding with different
keys. Attaching a new property with the same name as an property already attached to a
binding shadows the existing property with the new property.

The following example defines a macro, get-info, that retrieves the info property of a
binding, defines the variable x, attaches an info property to the binding of x, retrieves the
property via get-info, references x to show that its normal binding is still intact, and uses
get-info again within the scope of a different binding of x to show that the properties are
shadowed as well as the outer binding of x.

(define info)
(define-syntax get-info

(lambda (x)
(lambda (lookup)

(syntax-case x ()
[(_ q)
(let ([info-value (lookup #’q #’info)])
#‘’#,(datum->syntax #’* info-value))]))))

(define x "x-value")
(define-property x info "x-info")
(get-info x) ⇒ "x-info"
x ⇒ "x-value"
(let ([x "inner-x-value"]) (get-info x)) ⇒ #f

For debugging, it is often useful to have a form that retrieves an arbitrary property, given
an identifier and a key. The get-property macro below does just that.
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(define-syntax get-property
(lambda (x)
(lambda (r)

(syntax-case x ()
[(_ id key)
#‘’#,(datum->syntax #’* (r #’id #’key))]))))

(get-property x info) ⇒ "x-info"

The bindings for both identifiers must be visible where get-property is used.

The version of drt defined below is like the one defined using make-compile-time-value

above, except that it defines the record name as a macro that raises an exception with a

more descriptive message, while attaching the record type descriptor to the binding as a

separate property. The variable drt-key defined along with drt is used only as the key for

the property that drt attaches to a record name. Both drt-key and drt are defined within

a module that exports only the latter, ensuring that the properties used by drt cannot be

accessed or forged.

(library (drt) (export drt) (import (chezscheme))
(define drt-key)
(define-syntax drt
(lambda (x)

(define construct-name
(lambda (template-identifier . args)

(datum->syntax template-identifier
(string->symbol
(apply string-append

(map (lambda (x)
(if (string? x)

x
(symbol->string (syntax->datum x))))

args))))))
(define do-drt
(lambda (rname fname* prtd)

(with-syntax ([rname rname]
[rtd (make-record-type-descriptor

(syntax->datum rname) prtd #f #f #f
(list->vector

(map (lambda (fname)
‘(immutable ,(syntax->datum fname)))

fname*)))]
[make-rname (construct-name rname "make-" rname)]
[rname? (construct-name rname rname "?")]
[(rname-fname ...)
(map (lambda (fname)

(construct-name fname rname "-" fname))
fname*)]

[(i ...) (enumerate fname*)])
#’(begin

(define-syntax rname
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(lambda (x)
(syntax-error x "invalid use of record name")))

(define rcd (make-record-constructor-descriptor ’rtd #f #f))
(define-property rname drt-key ’rtd)
(define make-rname (record-constructor rcd))
(define rname? (record-predicate ’rtd))
(define rname-fname (record-accessor ’rtd i))
...))))

(syntax-case x (parent)
[(_ rname (fname ...))
(for-all identifier? #’(rname fname ...))
(do-drt #’rname #’(fname ...) #f)]

[(_ rname pname (fname ...))
(for-all identifier? #’(rname pname fname ...))
(lambda (lookup)
(let ([prtd (lookup #’pname #’drt-key)])

(unless prtd
(syntax-error #’pname "unrecognized parent record type"))

(do-drt #’rname #’(fname ...) prtd)))]))))

(import (drt))
(drt prec (x y))
(drt crec prec (z))
(define r (make-crec 1 2 3))
(prec? r) ⇒ #t
(prec-x r) ⇒ 1
(crec-z r) ⇒ 3
prec ⇒ exception: invalid use of record name prec

11.5. Modules

Modules are used to help organize programs into separate parts that interact cleanly via
declared interfaces. Although modular programming is typically used to facilitate the
development of large programs possibly written by many individuals, it may also be used
in Chez Scheme at a “micro-modular” level, since Chez Scheme module and import forms
are definitions and may appear anywhere any other kind of definition may appear, including
within a lambda body or other local scope.

Modules control visibility of bindings and can be viewed as extending lexical scoping to
allow more precise control over where bindings are or are not visible. Modules export identi-
fier bindings, i.e., variable bindings, keyword bindings, or module name bindings. Modules
may be named or anonymous. Bindings exported from a named module may be made
visible via an import form wherever the module’s name is visible. Bindings exported from
an anonymous module are implicitly imported where the module form appears. Anony-
mous modules are useful for hiding some of a set of bindings while allowing the remaining
bindings in the set to be visible.

Some of the text and examples given in this section are adapted from the paper “Extending
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the scope of syntactic abstraction” [32], which describes modules and their implementation

in more detail.

(module name interface defn ... init ...) syntax

(module interface defn ... init ...) syntax

returns: unspecified
libraries: (chezscheme)

name is an identifier, defn ... are definitions, and init ... are expressions. interface is

a list of exports (export ...), where each export is either an identifier identifier or of the

form (identifier export ...).

The first syntax for module establishes a named scope that encapsulates a set of identifier

bindings. The exported bindings may be made visible via import or import-only (Sec-

tion 10.4) anywhere the module name is visible. The second syntax for module introduces

an anonymous module whose bindings are implicitly imported (as if by import of a hidden

module name) where the module form appears.

A module consists of a (possibly empty) set of definitions and a (possibly empty) sequence

of initialization expressions. The identifiers defined within a module are visible within the

body of the module and, if exported, within the scope of an import for the module. Each

identifier listed in a module’s interface must be defined within or imported into that mod-

ule. A module form is a definition and can appear anywhere other definitions can appear,

including at the top level of a program, nested within the bodies of lambda expressions,

nested within library and top-level program forms, and nested within other modules.

Also, because module names are scoped like other identifiers, modules and libraries may

export module names as well as variables and keywords.

When an interface contains an export of the form (identifier export ...), only identifier

is visible in the importing context. The identifiers within export ... are indirect imports,

as if declared via an indirect-export form (Section 10.4).

Module names occupy the same namespace as other identifiers and follow the same scoping

rules. Unless exported, identifiers defined within a module are visible only within that

module.

Expressions within a module can reference identifiers bound outside of the module.

(let ([x 3])
(module m (plusx)
(define plusx (lambda (y) (+ x y))))

(import m)
(let ([x 4])
(plusx 5))) ⇒ 8

Similarly, import does not prevent access to identifiers that are visible where the import

form appears, except for those variables shadowed by the imported identifiers.
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(module m (y) (define y ’m-y))
(let ([x ’local-x] [y ’local-y])

(import m)
(list x y)) ⇒ (local-x m-y)

On the other hand, use of import-only within a module establishes an isolated scope in
which the only visible identifiers are those exported by the imported module.

(module m (y) (define y ’m-y))
(let ([x ’local-x] [y ’local-y])

(import-only m)
x) ⇒ Error: x is not visible

This is sometimes desirable for static verification that no identifiers are used except those
explicitly imported into a module or local scope.

Unless a module imported via import-only exports import or import-only and the name
of at least one module, subsequent imports within the scope of the import-only form are
not possible. To create an isolated scope containing the exports of more than one module
without making import or import-only visible, all of the modules to be imported must be
listed in the same import-only form.

Another solution is to create a single module that contains the exports of each of the other
modules.

(module m2 (y) (define y ’y))
(module m1 (x) (define x ’x))
(module mega-module (cons x y)

(import m1)
(import m2)
(import scheme))

(let ([y 3])
(import-only mega-module)
(cons x y)) ⇒ (x . y)

Before it is compiled, a source program is translated into a core language program contain-
ing no syntactic abstractions, syntactic definitions, library definitions, module definitions,
or import forms. Translation is performed by a syntax expander that processes the forms
in the source program via recursive descent.

A define-syntax form associates a keyword with a transformer in a translation-time envi-
ronment. When the expander encounters a keyword, it invokes the associated transformer
and reprocesses the resulting form. A module form associates a module name with an
interface. When the expander encounters an import form, it extracts the corresponding
module interface from the translation-time environment and makes the exported bindings
visible in the scope where the import form appears.

Internal definitions and definitions within a module body are processed from left to right so
that a module’s definition and import may appear within the same sequence of definitions.
Expressions appearing within a body and the right-hand sides of variable definitions, how-
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ever, are translated only after the entire set of definitions has been processed, allowing full
mutual recursion among variable and syntactic definitions.

Module and import forms affect only the visibility of identifiers in the source program, not
their meanings. In particular, variables are bound to locations whether defined within or
outside of a module, and import does not introduce new locations. Local variables are
renamed as necessary to preserve the scoping relationships established by both modules
and syntactic abstractions. Thus, the expression:

(let ([x 1])
(module m (x setter)
(define-syntax x (identifier-syntax z))
(define setter (lambda (x) (set! z x)))
(define z 5))

(let ([y x] [z 0])
(import m)
(setter 3)
(+ x y z))) ⇒ 4

is equivalent to the following program in which identifiers have been consistently renamed
as indicated by subscripts.

(let ([x0 1])
(define-syntax x1 (identifier-syntax z1))
(define setter1 (lambda (x2) (set! z1 x2)))
(define z1 5)
(let ([y3 x0] [z3 0])
(setter1 3)
(+ x1 y3 z3)))

Definitions within a top-level begin, lambda, top-level program, library, or module body
are processed from left to right by the expander at expand time, and the variable definitions
are evaluated from left-to-right at run time. Initialization expressions appearing within a
module body are evaluated in sequence after the evaluation of the variable definitions.

Mutually recursive modules can be defined in several ways. In the following program, a

and b are mutually recursive modules exported by an anonymous module whose local scope
is used to statically link the two. For example, the free variable y within module a refers
to the binding for y, provided by importing b, in the enclosing module.

(module (a b)
(module a (x) (define x (lambda () y)))
(module b (y) (define y (lambda () x)))
(import a)
(import b))

The following syntactic abstraction generalizes this pattern to permit the definition of
multiple mutually recursive modules.

(define-syntax rec-modules
(syntax-rules (module)
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[(_ (module m (id ...) form ...) ...)
(module (m ...)
(module m (id ...) form ...) ...
(import m) ...)]))

Because a module can re-export imported bindings, it is quite easy to provide multiple
views on a single module, as s and t provide for r below, or to combine several modules
into a compound, as r does.

(module p (x y)
(define x 1) (define y 2))

(module q (y z)
(define y 3) (define z 4))

(module r (a b c d)
(import* p (a x) (b y))
(import* q (c y) (d z)))

(module s (a c) (import r))
(module t (b d) (import r))

To allow interfaces to be separated from implementations, the following syntactic abstrac-
tions support the definition and use of named interfaces.

(define-syntax define-interface
(syntax-rules ()
[(_ name (export ...))
(define-syntax name
(lambda (x)
(syntax-case x ()

[(_ n defs)
(with-implicit (n export ...)
#’(module n (export ...) .

defs))])))]))

(define-syntax define-module
(syntax-rules ()
[(_ name interface defn ...)
(interface name (defn ...))]))

define-interface creates an interface macro that, given a module name and a list of
definitions, expands into a module definition with a concrete interface.

with-implicit is used to ensure that the introduced export identifiers are visible in the
same scope as the name of the module in the define-module form.

define-interface and define-module can be used as follows.

(define-interface simple (a b))
(define-module m simple

(define-syntax a (identifier-syntax 1))
(define b (lambda () c))
(define c 2))

(let () (import m) (+ a (b))) ⇒ 3
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The abstract module facility defined below allows a module interface to be satisfied in-
crementally when module forms are evaluated. This permits flexibility in the separation
between the interface and implementation, supports separate compilation of mutually re-
cursive modules, and permits redefinition of module implementations.

(define-syntax abstract-module
(syntax-rules ()
[(_ name (ex ...) (kwd ...) defn ...)
(module name (ex ... kwd ...)
(declare ex) ...
defn ...)]))

(define-syntax implement
(syntax-rules ()
[(_ name form ...)
(module () (import name) form ...)]))

Within an abstract-module form, each of the exports in the list ex ... must be variables.
The values of these variables are supplied by one or more separate implement forms. Since
keyword bindings must be present at compile time, they cannot be satisfied incrementally
and are instead listed as separate exports and defined within the abstract module.

Within an implement form, the sequence of forms form ... is a sequence of zero or more
definitions followed by a sequence of zero or more expressions. Since the module used in
the expansion of implement does not export anything, the definitions are all local to the
implement form. The expressions may be arbitrary expressions, but should include one
satisfy form for each variable whose definition is supplied by the implement form. A
satisfy form has the syntax

(satisfy variable expr)

declare and satisfy may simply be the equivalents of define and set!.

(define-syntax declare (identifier-syntax define))
(define-syntax satisfy (identifier-syntax set!))

Alternatively, declare can initialize the declared variable to the value of a flag known only
to declare and satisfy, and satisfy can verify that this flag is still present to insure that
only one attempt to satisfy the value of a given identifier is made.

(module ((declare cookie) (satisfy cookie))
(define cookie "chocolate chip")
(define-syntax declare
(syntax-rules () [(_ var) (define var cookie)]))

(define-syntax satisfy
(syntax-rules ()

[(_ var exp)
(if (eq? var cookie)

(set! var exp)
(assertion-violationf ’satisfy
"value of variable ~s has already been satisfied"
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’var))])))

Using abstract-module and implement, we can define mutually recursive and separately
compilable modules as follows.

(abstract-module e (even?) (pred)
(define-syntax pred
(syntax-rules () [(_ exp) (- exp 1)])))

(abstract-module o (odd?) ())

(implement e
(import o)
(satisfy even?
(lambda (x)

(or (zero? x) (odd? (pred x))))))

(implement o
(import e)
(satisfy odd?
(lambda (x) (not (even? x)))))

(let () (import-only e) (even? 38)) ⇒ #t

only syntax

except syntax

add-prefix syntax

drop-prefix syntax

rename syntax

alias syntax

libraries: (chezscheme)

These identifiers are auxiliary keywords for import and import-only. It is a syntax violation
to reference these identifiers except in contexts where they are recognized as auxiliary
keywords.

11.6. Standalone import and export forms

The local import and export forms described in Section 10.4 can be used equally well for
and within modules.

11.7. Built-in Modules

Five modules are built-in to Chez Scheme: scheme, r5rs, r5rs-syntax, ieee, and $system.
Each module is immutable, i.e., the exported bindings cannot be altered.
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scheme module

libraries: (chezscheme)

scheme contains all user-visible top-level bindings (variables, keywords, and module names)
built into Chez Scheme.

r5rs module

libraries: (chezscheme)

r5rs contains all top-level bindings (variables and keywords) defined in the Revised5 Re-
port on Scheme. The bindings exported from r5rs are precisely those that are avail-
able within an expression evaluated via eval with the environment specifier returned by
scheme-report-environment.

r5rs-syntax module

libraries: (chezscheme)

r5rs-syntax contains all top-level keyword bindings defined in the Revised5 Report on
Scheme. The bindings exported from r5rs-syntax are precisely those that are avail-
able within an expression evaluated via eval with the environment specifier returned by
null-environment.

ieee module

libraries: (chezscheme)

ieee contains all top-level bindings (variables and keywords) defined in the ANSI/IEEE
standard for Scheme. The bindings exported from ieee are precisely those that are avail-
able within an expression evaluated via eval with the environment specifier returned by
ieee-environment.

$system module

libraries: (chezscheme)

$system contains all user-visible top-level bindings built into Chez Scheme along with
various undocumented system bindings.

11.8. Meta Definitions

(meta . definition) syntax

returns: unspecified
libraries: (chezscheme)

The meta keyword is actually a prefix that can be placed in front of any definition keyword,
e.g.,

(meta define x 3)
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It tells the expander that any variable definition resulting from the definition is to be an
expand-time definition available only to the right-hand sides of other meta definitions and,
most importantly, transformer expressions. It is used to define expand-time helpers and
other information for use by one or more syntax-case transformers.

(module M (helper1 a b)
(meta define helper1
(lambda (---)

---))
(meta define helper2
(lambda (---)

--- (helper2 ---) ---))
(define-syntax a
(lambda (x)

--- (helper1 ---) ---))
(define-syntax b
(lambda (x)

--- (helper1 ---) ---
--- (helper2 ---) ---)))

The right-hand-side expressions of a syntax definition or meta definition can refer only to
identifiers whose values are already available in the compile-time environment. Because
of the left-to-right expansion order for library, module, lambda, and similar bodies, this
implies a semantics similar to let* for a sequence of meta definitions, in which each right-
hand side can refer only to the variables defined earlier in the sequence. An exception
is that the right-hand side of a meta definition can refer to its own name as long as the
reference is not evaluated until after the value of the expression has been computed. This
permits meta definitions to be self-recursive but not mutually recursive. The right-hand
side of a meta definition can, however, build syntax objects containing occurrences of any
identifiers defined in the body in which the meta definition appears.

Meta definitions propagate through macro expansion, so one can write, for example:

(module (a)
(meta define-record foo (x))
(define-syntax a
(let ([q (make-foo #’’q)])

(lambda (x) (foo-x q)))))
a ⇒ q

where define-record is a macro that expands into a set of defines.

It is also sometimes convenient to write

(meta begin defn ...)

or

(meta module {exports} defn ...)

or
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(meta include "path")

to create groups of meta bindings.

11.9. Conditional expansion

Expansion-time decisions can be made via meta-cond, which is similar to cond but evaluates

the test expressions at expansion time and can be used in contexts where definitions are

expected as well as in expression contexts.

(meta-cond clause1 clause2 ...) syntax

returns: see below
libraries: (chezscheme)

Each clause but the last must take the form:

(test expr1 expr2 ...)

The last may take the same form or be an else clause of the form:

(else expr1 expr2 ...)

During expansion, the test expressions are evaluated in order until one evaluates to a true

value or until all of the tests have been evaluated. If a test evaluates to a true value,

the meta-cond form expands to a begin form containing the corresponding expressions

expr1 expr2 .... If no test evaluates to a true value and an else clause is present, the

meta-cond form expands to a begin form containing the expressions expr1 expr2 ... from

the else clause. Otherwise the meta-cond expression expands into a call to the void

procedure.

meta-cond might be defined as follows.

(define-syntax meta-cond
(syntax-rules ()
[(_ [a0 a1 a2 ...] [b0 b1 b2 ...] ...)
(let-syntax ([expr (cond

[a0 (identifier-syntax (begin a1 a2 ...))]
[b0 (identifier-syntax (begin b1 b2 ...))]
...)])

expr)]))

meta-cond is used to choose, at expansion time, from among a set of possible forms. For

example, one might have safe (error-checking) and unsafe (non-error-checking) versions of a

procedure and decide which to call based on the compile-time optimization level, as shown

below.
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(meta-cond
[(= (optimize-level) 3) (unsafe-frob x)]
[else (safe-frob x)])

11.10. Aliases

(alias id1 id2) syntax

returns: unspecified
libraries: (chezscheme)

alias is a definition and can appear anywhere other definitions can appear. It is used to

transfer the binding from one identifier to another.

(let ([x 3]) (alias y x) (set! y 4) (list x y)) ⇒ (4 4)

(module lisp (if)
(module (scheme:if)
(import scheme)
(alias scheme:if if))

(define-syntax if
(syntax-rules ()

[(_ e_1 e_2 e_3)
(scheme:if (not (memq e_1 ’(#f ()))) e_2 e_3)])))

(define (length ls)
(import lisp)
(if ls (+ (length (cdr ls)) 1) 0))

(length ’(a b c)) ⇒ 3

Because of left-to-right expansion order, aliases should appear after the definition of the

right-hand-side identifier, e.g.:

(let ()
(import-only (chezscheme))
(define y 3)
(alias x y)
x) ⇒ 3

rather than:

(let ()
(import-only (chezscheme))
(alias x y)
(define y 3)
x) ⇒ exception: unbound identifier
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11.11. Annotations

When source code is read from a file by load, compile-file, or variants of these, such as
load-library, the reader attaches annotations to each object read from the file. These
annotations identify the file and the position of the object within the file. Annotations are
tracked through the compilation process and associated with compiled code at run time.
The expander and compiler use the annotations to produce syntax errors and compiler
warnings that identify the location of the offending form, and the inspector uses them to
identify the locations of calls and procedure definitions. The compiler and run time also
use annotations to associate source positions with profile counts.

While these annotations are usually maintained “behind the scenes,” the programmer can
manipulate them directly via a set of routines for creating and accessing annotations.

Annotations are values of a type distinct from other types and have four components:
an expression, possibly with annotated subexpressions, a source object, a stripped version
of the expression, and usage options. Annotations can be created via make-annotation,
which has three required arguments corresponding to the first three components and an
optional fourth argument corresponding to the fourth component. The second argument
must be a source object, and the third argument should be a stripped version of the
first argument, i.e., equivalent to the first argument with each annotation replaced by its
expression component. An annotation is essentially equivalent to its stripped component as
a representation of source code, with the source information attached and available to the
expander or evaluator. The optional fourth argument, if present, must be an enumeration
set over the symbols debug and profile and defaults to an enumeration set containing
both debug and profile.

Annotations marked debug are used for compile-time error reporting and run-time error
reporting and inspection; annotations marked profile are used for profiling. Annotations
created by the Scheme reader are always marked both debug and profile, but other read-
ers and parsers might choose to mark some annotations only debug or only profile. In
particular, it might be useful to annotate multiple expressions in the output of a parser
with the same source object for debugging purposes and mark only one of them profile to
avoid duplicate counts. It might also be useful to mark no expressions profile and instead
introduce explicit profile forms (Section 12.7) to identify the set of source locations to be
profiled.

Source objects are also values of a type distinct from other types and also have three or
five components: a source-file descriptor (sfd), a beginning file position (bfp), an ending
file position (efp), an optional beginning line, and an optional beginning column. The sfd
identifies the file from which an expression is read and the bfp and efp identify the range
of character positions occupied by the object in the file, with the bfp being inclusive and
the efp being exclusive. The line and column are either both numbers or both not present.
A source object can be created via make-source-object, which takes either three or five
arguments corresponding to these components. The first argument must be a source-file
descriptor, the second and third must be nonnegative exact integers, the second must not
be greater than the third, and the fourth and fifth (if provided) must be positive exact
integers.
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Source-file descriptors are also values of a type distinct from all other types and have
two components: the file’s path, represented by a string, and a checksum, represented by a
number. The path might or might not be an absolute path depending on how the file’s path
was specified when the source-file descriptor was created. The checksum is computed based
on the file’s length and contents when the file is created and checked by tools that look for
the source file to make sure that the proper file has been found and has not been modified.
Source-file descriptors can be created with make-source-file-descriptor, which accepts
two arguments: a string naming the path and a binary input port, along with an optional
third boolean argument, reset? , which defaults to false. make-source-file-descriptor

computes a checksum based on the contents of the port, starting at its current position. It
resets the port, using set-port-position!, after computing the checksum if reset? is true;
otherwise, it leaves the port at end-of-file.

The procedures that create, check for, and access annotations, source objects, and source-
file descriptors are summarized below and described in more detail later in this section.

(make-annotation obj source-object obj) → annotation
(annotation? obj) → boolean
(annotation-expression annotation) → obj
(annotation-source annotation) → source-object
(annotation-stripped annotation) → obj

(make-source-object sfd uint uint) → source-object
(make-source-object sfd uint uint uint uint) → source-object
(source-object? obj) → boolean
(source-object-sfd source-object) → sfd
(source-object-bfp source-object) → uint
(source-object-efp source-object) → uint
(source-object-line source-object) → uint or #f
(source-object-column source-object) → uint or #f

(make-source-file-descriptor string binary-input-port) → sfd
(make-source-file-descriptor string binary-input-port reset?) → sfd
(source-file-descriptor? obj) → boolean
(source-file-descriptor-checksum sfd) → obj
(source-file-descriptor-path sfd) → obj

A program might open a source file with open-file-input-port, create an sfd us-
ing make-source-file-descriptor, create a textual port from the binary port using
transcoded-port, and create source objects and annotations for each of the objects it reads
from the file. If a custom reader is not required, the Scheme reader can be used to read
annotations via the get-datum/annotations procedure:

(get-datum/annotations textual-input-port sfd uint) → obj, uint

get-datum/annotations is like get-datum but instead of returning a plain datum, it returns
an annotation encapsulating a datum (possibly with nested annotations), a source object,
and the plain (stripped) datum. It also returns a second value, the position of the first
character beyond the object in the file. Character positions are accepted and returned
by get-datum/annotations so that the textual port need not support port-position and
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need not report positions in characters if it does support port-position. (Positions are
usually reported in bytes.) The bfp and efp positions recorded in the annotations returned
by get-datum/annotations are correct only if the positions supplied to it are correct.

Once read, an annotation can be passed to the expander, interpreter, or compiler. The
procedures eval, expand, interpret, and compile all accept annotated or unannotated
input.

Two additional procedures complete the set of annotation-related primitives:

(open-source-file sfd) → #f or port
(syntax->annotation obj) → #f or annotation

open-source-file attempts to locate and open the source file identified by sfd . It returns
a textual input port, positioned at the beginning of the file, if successful, and #f otherwise.

syntax->annotation accepts a syntax object. If the syntax object’s expression is annotated,
it returns the annotation; otherwise, it returns #f. It can be used by a macro to extract
source information, when available, from an input form.

The procedure datum->syntax accepts either an annotated or unannotated input datum.

(make-annotation obj source-object stripped-obj) procedure

(make-annotation obj source-object stripped-obj options) procedure

returns: an annotation
libraries: (chezscheme)

The annotation is formed with obj as its expression component, source-object as its source-
object component, and stripped-obj as its stripped component. obj should represent an
expression, possibly with embedded annotations. stripped-obj should be a stripped version
of obj , i.e., equivalent to obj with each annotation replaced by its expression component.
options, if present must be an enumeration set over the symbols debug and profile, and
defaults to an enumeration set containing both debug and profile. Annotations marked
debug are used for compile-time error reporting and run-time error reporting and inspection;
annotations marked profile are used for profiling.

(annotation? obj) procedure

returns: #t if obj is an annotation, otherwise #f

libraries: (chezscheme)

(annotation-expression annotation) procedure

returns: the expression component of annotation
libraries: (chezscheme)

(annotation-source annotation) procedure

returns: the source-object component of annotation
libraries: (chezscheme)
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(annotation-stripped annotation) procedure

returns: the stripped component of annotation
libraries: (chezscheme)

(annotation-options annotation) procedure

returns: the options enumeration set of annotation
libraries: (chezscheme)

(make-source-object sfd bfp efp) procedure

(make-source-object sfd bfp efp line column) procedure

returns: a source-object
libraries: (chezscheme)

sfd must be a source-file descriptor. bfp and efp must be exact nonnegative integers, and
bfp should not be greater than efp. line and column must be exact positive integers.

(source-object? obj) procedure

returns: #t if obj is a source object, otherwise #f

libraries: (chezscheme)

(source-object-sfd source-object) procedure

returns: the sfd component of source-object
libraries: (chezscheme)

(source-object-bfp source-object) procedure

returns: the bfp component of source-object
libraries: (chezscheme)

(source-object-efp source-object) procedure

returns: the efp component of source-object
libraries: (chezscheme)

(source-object-line source-object) procedure

returns: the line component of source-object if present, otherwise #f

libraries: (chezscheme)

(source-object-column source-object) procedure

returns: the column component of source-object if present, otherwise #f

libraries: (chezscheme)
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current-make-source-object thread parameter

libraries: (chezscheme)

current-make-source-object is used by the reader to construct a source object for an
annotation. current-make-source-object is initially bound to make-source-object, and
the reader always calls the function bound to the paramater with three arguments.

Adjust this parameter to, for example, eagerly convert a position integer to a file-position
object, instead of delaying the conversion to locate-source.

(make-source-file-descriptor string binary-input-port) procedure

(make-source-file-descriptor string binary-input-port reset?) procedure

returns: a source-file descriptor
libraries: (chezscheme)

To compute the checksum encapsulated in the source-file descriptor, this procedure must
read all of the data from binary-input-port . If reset? is present and #t, the port is reset to
its original position, as if via port-position. Otherwise, it is left pointing at end-of-file.

(source-file-descriptor? obj) procedure

returns: #t if obj is a source-file descriptor, otherwise #f

libraries: (chezscheme)

(source-file-descriptor-checksum sfd) procedure

returns: the checksum component of sfd
libraries: (chezscheme)

(source-file-descriptor-path sfd) procedure

returns: the path component of sfd
libraries: (chezscheme)

sfd must be a source-file descriptor.

(source-file-descriptor path checksum) procedure

returns: a new source-file-descriptor
libraries: (chezscheme)

path must be a string, and checksum must be an exact nonnegative integer. This proce-
dure can be used to construct custom source-file descriptors or to reconstitute source-file
descriptors from the path and checksum components.

(annotation-option-set symbol ...) syntax

returns: an annotation-options enumeration set
libraries: (chezscheme)

Annotation-options enumeration sets may be passed to make-annotation to control whether
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the annotation is used for debugging, profiling, both, or neither. Accordingly, each symbol
must be either debug or profile.

(syntax->annotation obj) procedure

returns: an annotation or #f

libraries: (chezscheme)

If obj is an annotation or syntax-object encapsulating an annotation, the annotation is
returned.

(get-datum/annotations textual-input-port sfd bfp) procedure

returns: see below
libraries: (chezscheme)

sfd must be a source-file descriptor. bfd must be an exact nonnegative integer and should
be the character position of the next character to be read from textual-input-port .

This procedure returns two values: an annotated object and an ending file position. In
most cases, bfp should be 0 for the first call to get-datum/annotation at the start of a file,
and it should be the second return value of the preceding call to get-datum/annotation

for each subsequent call. This protocol is necessary to handle files containing multiple-byte
characters, since file positions do not necessarily correspond to character positions.

(open-source-file sfd) procedure

returns: a port or #f

libraries: (chezscheme)

sfd must be a source-file descriptor. This procedure attempts to locate and open the source
file identified by sfd . It returns a textual input port, positioned at the beginning of the file,
if successful, and #f otherwise. It can fail even if a file with the correct name exists in one
of the source directories when the file’s checksum does not match the checksum recorded
in sfd .

(locate-source sfd pos) procedure

(locate-source sfd pos use-cache?) procedure

returns: see below
libraries: (chezscheme)

sfd must be a source-file descriptor, and pos must be an exact nonnegative integer.

This procedure either uses cached information from a previous request for sfd (only when
use-cache? is provided as true) or attempts to locate and open the source file identified
by sfd . If successful, it returns three values: a string path, an exact nonnegative integer
line, and an exact nonnegative integer char representing the absolute pathname, line, and
character position within the line represented by the specified source-file descriptor and file
position. If unsuccessful, it returns zero values. It can fail even if a file with the correct
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name exists in one of the source directories when the file’s checksum does not match the
checksum recorded in sfd .

(locate-source-object-source source-object get-start? use-cache?) procedure

returns: see below
libraries: (chezscheme)

This procedure is similar to locate-source, but instead of taking an sfd and a position, it
takes a source object plus a request for either the start or end location.

If get-start? is true and source-object has a line and column, this procedure returns the
path in source-objects’s sfd, source-object ’s line, and source-objects’s column.

If source-object has no line and column, then this procedure calls locate-source

on source-object ’s sfd, either source-object ’s bfp or efp depending on get-start? , and
use-cache? .

current-locate-source-object-source thread parameter

libraries: (chezscheme)

current-locate-source-object-source determines the source-location lookup function
that is used by the system to report errors based on source objects. This parameter is
initially bound to locate-source-object-object.

Adjust this parameter to control the way that source locations are extracted from source
objects, possibly using recorded information, caches, and the filesystem in a way different
from locate-source-object-object.





12. System Operations

This chapter describes operations for handling exceptions, interrupts, environments, com-

pilation and evaluation, profiling, controlling the operation of the system, timing and statis-

tics, defining and setting parameters, and querying the operating system environment.

12.1. Exceptions

Chez Scheme provides some extensions to the Revised6 Report exception-handling mecha-

nism, including mechanisms for producing formatted error messages, displaying conditions,

and redefining the base exception handler. These extensions are described in this section.

(warning who msg irritant ...) procedure

returns: unspecified
libraries: (chezscheme)

warning raises a continuable exception with condition type &warning and should be used

to describe situations for which the &warning condition type is appropriate, typically a

situation that should not prevent the program from continuing but might result in a more

serious problem at some later point.

The continuation object with which the exception is raised also includes a &who condition

whose who field is who if who is not #f, a &message condition whose message field is msg ,

and an &irritants condition whose irritants field is (irritant ...).

who must be a string, a symbol, or #f identifying the procedure or syntactic form reporting

the warning upon whose behalf the warning is being reported. It is usually best to identify

a procedure the programmer has called rather than some other procedure the programmer

may not be aware is involved in carrying out the operation. msg must be a string and

should describe the exceptional situation. The irritants may be any Scheme objects and

should include values that may have caused or been materially involved in the exceptional

situation.
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(assertion-violationf who msg irritant ...) procedure

returns: does not return
(errorf who msg irritant ...) procedure

returns: does not return
(warningf who msg irritant ...) procedure

returns: unspecified
libraries: (chezscheme)

These procedures are like assertion-violation, error, and warning except that msg is
assumed to be a format string, as if in a call to format (Section 9.13), with irritant ...

treated as the additional arguments to format. This allows programs to control the ap-
pearance of the error message, at least when the default exception handler is in place.

For each of these procedures, the continuation object with which the exception is raised
includes a &format condition to signify that the string contained in the condition object’s
&message condition is a format string and the objects contained in the condition object’s
&irritants condition should be treated as the additional format arguments.

&format syntax

(make-format-condition) procedure

returns: a condition of type &format

(format-condition? obj) procedure

returns: #t if obj is a condition of type &format, #f otherwise
libraries: (chezscheme)

Presence of this condition type within a compound condition indicates that the string
provided by the &message condition, if present, is a format string and the list of objects
provided by the &irritants condition, if present, should be treated as additional format
arguments. This condition type might be defined as follows.

(define-condition-type &format &condition
make-format-condition format-condition?)

&source syntax

(make-source-condition form) procedure

returns: a condition of type &source

(source-condition? obj) procedure

returns: #t if obj is a condition of type &source, #f otherwise
(source-condition-form condition) procedure

returns: the contents of condition’s form field
libraries: (chezscheme)

This condition type can be included within a compound condition when a source expression
can be identified in situations in which a &syntax condition would be inappropriate, such
as when a run-time assertion violation is detected. The form argument should be an s-
expression or syntax object representing the source expression. This condition type might
be defined as follows.
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(define-condition-type &source &condition
make-source-condition source-condition?
(form source-condition-form))

&continuation syntax

(make-continuation-condition continuation) procedure

returns: a condition of type &continuation

(continuation-condition? obj) procedure

returns: #t if obj is a condition of type &continuation, #f otherwise
(condition-continuation condition) procedure

returns: the contents of condition’s continuation field
libraries: (chezscheme)

This condition type can be included within a compound condition to indicate the current
continuation at the point where the exception described by the condition occurred. The
continuation of a failed assert or a call to assertion-violation, assertion-violationf,
error, errorf, or syntax-error is now included via this condition type in the conditions
passed to raise. The continuation argument should be a continuation. This condition
type might be defined as follows.

(define-condition-type &continuation &condition
make-continuation-condition continuation-condition?
(continuation condition-continuation))

(display-condition obj) procedure

(display-condition obj textual-output-port) procedure

returns: unspecified
libraries: (chezscheme)

If textual-output-port is not supplied, it defaults to the current output port. This procedure
displays a message to the effect that an exception has occurred with value obj . If obj is a
condition (Chapter 11 of The Scheme Programming Language, 4th Edition), it displays in-
formation encapsulated within the condition, handling messages, who conditions, irritants,
source information, etc., as appropriate.

(default-exception-handler obj) procedure

returns: unspecified
libraries: (chezscheme)

This procedure is the default value of the base-exception-handler parameter called on
a condition when no other exception handler has been defined or when all dynamically
established exception handlers have chosen not to handle the condition. It first displays
obj , as if with display-condition, to the console error port. For non-serious warning
conditions, it returns immediately after displaying the condition.
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For serious or other non-warning conditions, it saves the condition in the parame-
ter debug-condition, where debug (Section 3.2) can retrieve it and allow it to be in-
spected. If the debug-on-exception parameter is set to #f (the default unless the
--debug-on-exception command-line option is provided), the handler prints a message
instructing the user to type (debug) to enter the debugger, then resets to the current café.
Otherwise, the handler invokes debug directly and resets if debug returns.

If an I/O exception occurs while attempting to display the condition, the default exception
handler resets (as if by calling reset). The intent is to avoid an infinite regression (ulti-
mately ending in exhaustion of memory) in which the process repeatedly recurs back to
the default exception handler trying to write to a console-error port (typically stderr) that
is no longer writable, e.g., due to the other end of a pipe or socket having been closed.

debug-on-exception global parameter

libraries: (chezscheme)

The value of this parameter determines whether the default exception handler immediately
enters the debugger immediately when it receives a serious or non-warning condition. If the
--debug-on-exception command-line option (Section 2.1) has been provided, the initial
value of this parameter is #t. Otherwise, the initial value is #f.

base-exception-handler thread parameter

libraries: (chezscheme)

The value of this parameter must be a procedure, and the procedure should ac-
cept one argument. The default value of base-exception-handler is the procedure
default-exception-handler.

The value of this parameter is invoked whenever no exception handler established by a
program has chosen to handle an exception.

debug-condition thread parameter

libraries: (chezscheme)

This parameter is used by the default exception handler to hold the last serious or non-
warning condition received by the handler, where it can be inspected via the debug proce-
dure (Section 3.2). It can also be invoked by user code to store or retrieve a condition.

current-exception-state thread parameter

libraries: (chezscheme)

current-exception-state may be used to get or set the current exception state. When
called without arguments, current-exception-state returns an exception state comprising
the current stack of handlers established by with-exception-handler and guard. When
called with a single argument, which must be an exception state, current-exception-state
sets the exception state.
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(create-exception-state) procedure

(create-exception-state procedure) procedure

libraries: (chezscheme)

create-exception-state creates an exception state whose stack of exception handlers is
empty except for, in effect, an infinite number of occurrences of handler at its base. handler
must be a procedure, and should accept one argument. If not provided, handler defaults
to a procedure equivalent to the value of the following expression.

(lambda (x) ((base-exception-handler) x))

12.2. Interrupts

Chez Scheme allows programs to control the action of the Scheme system when various
events occur, including an interrupt from the keyboard, the expiration of an internal timer
set by set-timer, a breakpoint caused by a call to break, or a request from the storage
manager to initiate a garbage collection. These mechanisms are described in this section,
except for the collect request mechanism, which is described in Section 13.1.

Timer, keyboard, and collect-request interrupts are supported via a counter that is decre-
mented approximately once for each call to a nonleaf procedure. (A leaf procedure is one
that does not itself make any calls.) When no timer is running, this counter is set to a
default value (1000 in Version 9) when a program starts or after an interrupt occurs. If a
timer is set (via set-timer), the counter is set to the minimum of the default value and
the number of ticks to which the timer is set. When the counter reaches zero, the system
looks to see if the timer is set and has expired or if a keyboard or collect request inter-
rupt has occurred. If so, the current procedure call is pended (“put on hold”) while the
appropriate interrupt handler is invoked to handle the interrupt. When (if) the interrupt
handler returns, the pended call takes place. Thus, timer, keyboard, and collect-request
interrupts effectively occur synchronously with respect to the procedure call mechanism,
and keyboard and collect request interrupts may be delayed by a number of calls equal to
the default timer value.

Calls to the break handler occur immediately whenever break is called.

(break who msg irritant ...) procedure

(break who) procedure

(break) procedure

returns: unspecified
libraries: (chezscheme)

The arguments to break follow the protocol described above for errorf. The default break
handler (see break-handler) displays a message and invokes the debugger. The format
string and objects may be omitted, in which case the message issued by the default break
handler identifies the break using the who argument but provides no more information
about the break. If the who argument is omitted as well, no message is generated. The
default break handler returns normally if the debugger exits normally.
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break-handler thread parameter

libraries: (chezscheme)

The value of this parameter must be a procedure. The current break handler is called by
break, which passes along its arguments. See break for a description of the default break
handler. The example below shows how to disable breaks.

(break-handler (lambda args (void)))

keyboard-interrupt-handler thread parameter

libraries: (chezscheme)

The value of this parameter must be a procedure. The keyboard-interrupt handler is called
(with no arguments) when a keyboard interrupt occurs. The default keyboard-interrupt
handler invokes the interactive debugger. If the debugger exits normally the interrupted
computation is resumed. The example below shows how to install a keyboard-interrupt
handler that resets without invoking the debugger.

(keyboard-interrupt-handler
(lambda ()
(newline (console-output-port))
(reset)))

(set-timer n) procedure

returns: previous current timer value
libraries: (chezscheme)

n must be a nonnegative integer. When n is nonzero, set-timer starts an internal timer
with an initial value of n. When n ticks elapse, a timer interrupt occurs, resulting in
invocation of the timer interrupt handler. Each tick corresponds roughly to one nonleaf
procedure call (see the introduction to this section); thus, ticks are not uniform time units
but instead depend heavily on how much work is done by each procedure call.

When n is zero, set-timer turns the timer off.

The value returned in either case is the value of the timer before the call to set-timer. A
return value of 0 should not be taken to imply that the timer was not on; the return value
may also be 0 if the timer was just about to fire when the call to set-timer occurred.

The engine mechanism (Section 6.4) is built on top of the timer interrupt so timer interrupts
should not be used with engines.

timer-interrupt-handler thread parameter

libraries: (chezscheme)

The value of this parameter must be a procedure. The timer interrupt handler is called by
the system when the internal timer (set by set-timer) expires. The default handler raises
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an exception with condition type &assertion to say that the handler has not been defined;
any program that uses the timer should redefine the handler before setting the timer.

(disable-interrupts) procedure

(enable-interrupts) procedure

returns: disable count
libraries: (chezscheme)

disable-interrupts disables the handling of interrupts, including timer, keyboard, and
collect request interrupts. enable-interrupts re-enables these interrupts. The sys-
tem maintains a disable count that starts at zero; when zero, interrupts are enabled.
Each call to disable-interrupts increments the count, effectively disabling interrupts.
Each call to enable-interrupts decrements the count, if not already zero, effectively en-
abling interrupts. For example, two calls to disable-interrupts followed by one call to
enable-interrupts leaves interrupts disabled. Calls to enable-interrupts when the count
is already zero (and interrupts are enabled) have no effect. The value returned by either
procedure is the number of calls to enable-interrupts required to enable interrupts.

Great care should be exercised when using these procedures, since disabling interrupts in-
hibits the normal processing of keyboard interrupts, timer interrupts, and, perhaps most
importantly, collect request interrupts. Since garbage collection does not happen automat-
ically when interrupts are disabled, it is possible for the storage allocator to run out of
space unnecessarily should interrupts be disabled for a long period of time.

The with-interrupts-disabled syntactic form should be used instead of these more primi-
tive procedures whenever possible, since with-interrupts-disabled ensures that interrupts
are re-enabled whenever a nonlocal exit occurs, such as when an exception is handled by
the default exception handler.

(with-interrupts-disabled body1 body2 ...) syntax

(critical-section body1 body2 ...) syntax

returns: the values of the body body1 body2 ...

libraries: (chezscheme)

with-interrupts-disabled evaluates the body body1 body2 ... with interrupts disabled.
That is, upon entry, interrupts are disabled, and upon exit, interrupts are re-enabled.
Thus, with-interrupts-disabled allows the implementation of indivisible operations in
nonthreaded versions of Chez Scheme or within a single thread in threaded versions of
Chez Scheme. critical-section is the same as with-interrupts-disabled and is provided
for backward compatibility.

with-interrupts-disabled can be defined as follows.

(define-syntax with-interrupts-disabled
(syntax-rules ()
[(_ b1 b2 ...)
(dynamic-wind
disable-interrupts
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(lambda () b1 b2 ...)
enable-interrupts)]))

The use of dynamic-wind ensures that interrupts are disabled whenever the body of the
with-interrupts-disabled expression is active and re-enabled whenever it is not. Since
calls to disable-interrupts are counted (see the discussion under disable-interrupts and
enable-interrupts above), with-interrupts-disabled expressions may be nested with the
desired effect.

(register-signal-handler sig procedure) procedure

returns: unspecified
libraries: (chezscheme)

register-signal-handler is used to establish a signal handler for a given low-level signal.
sig must be an exact integer identifying a valid signal, and procedure should accept one
argument. See your host system’s <signal.h> or documentation for a list of valid signals
and their numbers. After a signal handler for a given signal has been registered, receipt
of the specified signal results in a call to the handler. The handler is passed the signal
number, allowing the same handler to be used for different signals while differentiating
among them.

Signals handled in this fashion are treated like keyboard interrupts in that the handler
is not called immediately when the signal is delivered to the process, but rather at some
procedure call boundary after the signal is delivered. It is generally not a good idea,
therefore, to establish handlers for memory faults, illegal instructions, and the like, since
the code that causes the fault or illegal instruction will continue to execute (presumably
erroneously) for some time before the handler is invoked.

register-signal-handler is supported only on Unix-based systems.

12.3. Environments

Environments are first-class objects containing identifier bindings. They are similar to
modules but, unlike modules, may be manipulated at run time. Environments may be
provided as optional arguments to eval, expand, and the procedures that define, assign, or
reference top-level values.

There are several built-in environments, and new environments can be created by copying
existing environments or selected bindings from existing environments.

Environments can be mutable or immutable. A mutable environment can be extended with
new bindings, its existing bindings can be modified, and its variables can be assigned. An
immutable environment cannot be modified in any of these ways.

(environment? obj) procedure

returns: #t if obj is an environment, otherwise #f

libraries: (chezscheme)
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(environment? (interaction-environment)) ⇒ #t
(environment? ’interaction-environment) ⇒ #f
(environment? (copy-environment (scheme-environment))) ⇒ #t
(environment? (environment ’(prefix (rnrs) $rnrs-))) ⇒ #t

(environment-mutable? env) procedure

returns: #t if env is mutable, otherwise #f

libraries: (chezscheme)

(environment-mutable? (interaction-environment)) ⇒ #t
(environment-mutable? (scheme-environment)) ⇒ #f
(environment-mutable? (copy-environment (scheme-environment))) ⇒ #t
(environment-mutable? (environment ’(prefix (rnrs) $rnrs-))) ⇒ #f

(scheme-environment) procedure

returns: an environment
libraries: (chezscheme)

scheme-environment returns an environment containing the initial top-level bindings. This
environment corresponds to the scheme module.

The environment returned by this procedure is immutable.

(define cons 3)
(top-level-value ’cons (scheme-environment)) ⇒ #<procedure cons>
(set-top-level-value! ’cons 3 (scheme-environment)) ⇒ exception

(ieee-environment) procedure

returns: an IEEE/ANSI standard compatibility environment
libraries: (chezscheme)

ieee-environment returns an environment containing bindings for the keywords and vari-
ables whose meanings are defined by the IEEE/ANSI Standard for Scheme [26].

The bindings for each of the identifiers in the IEEE environment are those of the corre-
sponding Revised6 Report library, so this does not provide full backward compatibility.

The environment returned by this procedure is immutable.

(define cons 3)
(top-level-value ’cons (ieee-environment)) ⇒ #<procedure cons>
(set-top-level-value! ’cons 3 (ieee-environment)) ⇒ exception

interaction-environment thread parameter

libraries: (chezscheme)

The original value of interaction-environment is the default top-level environment. It is
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initially set to a mutable copy of (scheme-environment) and which may be extended or oth-
erwise altered by top-level definitions and assignments. It may be set to any environment,
mutable or not, to change the default top-level evaluation environment.

An expression’s top-level bindings resolve to the environment that is in effect when the
expression is expanded, and changing the value of this parameter has no effect on running
code. Changes affect only code that is subsequently expanded, e.g., as the result of a call
to eval, load, or compile-file.

(define cons 3)
cons ⇒ 3
(top-level-value ’cons (interaction-environment)) ⇒ 3

(interaction-environment (scheme-environment))
cons ⇒ #<procedure cons>
(set! cons 3) ⇒ exception: attempt to assign immutable variable
(define cons 3) ⇒ exception: invalid definition in immutable environment

(copy-environment env) procedure

(copy-environment env mutable?) procedure

(copy-environment env mutable? syms) procedure

returns: a new environment
libraries: (chezscheme)

copy-environment returns a copy of env , i.e., a new environment that contains the same
bindings as env .

The environment is mutable if mutable? is omitted or true; if mutable? is false, the envi-
ronment is immutable.

The set of bindings copied from env to the new environment is determined by syms, which
defaults to the value of (environment-symbols env). The binding, if any, for each element
of syms is copied to the new environment, and no other bindings are present in the new
environment.

In the current implementation, the storage space used by an environment is never collected,
so repeated use of copy-environment will eventually cause the system to run out of memory.

(define e (copy-environment (scheme-environment)))
(eval ’(define cons +) e)
(eval ’(cons 3 4) e) ⇒ 7
(eval ’(cons 3 4) (scheme-environment)) ⇒ (3 . 4)

(environment-symbols env) procedure

returns: a list of symbols
libraries: (chezscheme)

This procedure returns a list of symbols representing the identifiers bound in environment
env . It is primarily useful in building the list of symbols to be copied from one environment
to another.
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(define listless-environment
(copy-environment
(scheme-environment)
#t
(remq ’list (environment-symbols (scheme-environment)))))

(eval ’(let ([x (cons 3 4)]) x) listless-environment) ⇒ (3 . 4)
(eval ’(list 3 4) listless-environment) ⇒ exception

(apropos-list s) procedure

(apropos-list s env) procedure

returns: see below
libraries: (chezscheme)

This procedure returns a selected list of symbols and pairs. Each symbol in the list rep-
resents an identifier bound in env . Each pair represents a set of identifiers exported by a
predefined library or a library previously defined or loaded into the system. The car of the
pair is the library name, and the cdr is a list of symbols. If s is a string, only entries whose
names have s as a substring are included, and if s is a symbol, only those whose names
have the name of s as a substring are selected. If no environment is provided, it defaults
to the value of interaction-environment.

(library (a) (export a-vector-sortof) (import (rnrs))
(define a-vector-sortof ’(vector 1 2 3)))

(apropos-list ’vector-sort) ⇒
(vector-sort vector-sort!
((a) a-vector-sortof)
((chezscheme) vector-sort vector-sort!)
((rnrs) vector-sort vector-sort!)
((rnrs sorting) vector-sort vector-sort!)
((scheme) vector-sort vector-sort!))

(apropos s) procedure

(apropos s env) procedure

returns: unspecified
libraries: (chezscheme)

apropos is like apropos-list except the information is displayed to the current output
port, as shown in the following transcript.

> (library (a) (export a-vector-sortof) (import (rnrs))
(define a-vector-sortof ’(vector 1 2 3)))

> (apropos ’vector-sort)
interaction environment:

vector-sort, vector-sort!
(a):

a-vector-sortof
(chezscheme):

vector-sort, vector-sort!
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(rnrs):
vector-sort, vector-sort!

(rnrs sorting):
vector-sort, vector-sort!

(scheme):
vector-sort, vector-sort!

12.4. Compilation, Evaluation, and Loading

(eval obj) procedure

(eval obj env) procedure

returns: value of the Scheme form represented by obj
libraries: (chezscheme)

eval treats obj as the representation of an expression. It evaluates the expression in

environment env and returns its value. If no environment is provided, it defaults to the

environment returned by interaction-environment.

Single-argument eval is a Chez Scheme extension. Chez Scheme also permits obj to be

the representation of a nonexpression form, i.e., a definition, whenever the environment is

mutable. Chez Scheme further allows obj to be an annotation (Section 11.11), and the

default evaluators make use of annotations to incorporate source-file information in error

messages and associate source-file information with compiled code.

In Chez Scheme, eval is actually a wrapper that simply passes its arguments to the current

evaluator. (See current-eval.) The default evaluator is compile, which expands the ex-

pression via the current expander (see current-expand), compiles it, executes the resulting

code, and returns its value. If the environment argument, env , is present, compile passes

it along to the current expander, which is sc-expand by default.

current-eval thread parameter

libraries: (chezscheme)

current-eval determines the evaluation procedure used by the procedures eval, load, and

new-cafe. current-eval is initially bound to the value of compile. (In Petite Chez Scheme,

it is initially bound to the value of interpret.) The evaluation procedureshould expect

one or two arguments: an object to evaluate and an optional environment. The second

argument might be an annotation (Section 11.11).

(current-eval interpret)
(+ 1 1) ⇒ 2

(current-eval (lambda (x . ignore) x))
(+ 1 1) ⇒ (+ 1 1)
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(compile obj) procedure

(compile obj env) procedure

returns: value of the Scheme form represented by obj
libraries: (chezscheme)

obj , which can be an annotation (Section 11.11) or unannotated value, is treated as a

Scheme expression, expanded with the current expander (the value of current-expand) in

the specified environment (or the interaction environment, if no environment is provided),

compiled to machine code, and executed. compile is the default value of the current-eval

parameter.

(interpret obj) procedure

(interpret obj env) procedure

returns: value of the Scheme form represented by obj
libraries: (chezscheme)

interpret is like compile, except that the expression is interpreted rather than compiled.

interpret may be used as a replacement for compile, with the following caveats:

• Interpreted code runs significantly slower.

• Inspector information is not generated for interpreted code, so the inspector is not

as useful for interpreted code as it is for compiled code.

• Foreign procedure expressions cannot be interpreted, so the interpreter invokes the

compiler for all foreign procedure expressions (this is done transparently).

interpret is sometimes faster than compile when the form to be evaluated is short running,

since it avoids some of the work done by compile prior to evaluation.

(load path) procedure

(load path eval-proc) procedure

returns: unspecified
libraries: (chezscheme)

path must be a string. load reads and evaluates the contents of the file specified by path.

The file may contain source or object code. By default, load employs eval to evaluate each

source expression found in a source file. If eval-proc is specified, load uses this procedure

instead. eval-proc must accept one argument, the expression to evaluate. The expression

passed to eval-proc might be an annotation (Section 11.11) or an unannotated value.

The eval-proc argument facilitates the implementation of embedded Scheme-like languages

and the use of alternate evaluation mechanisms to be used for Scheme programs. eval-proc

can be put to other uses as well. For example,
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(load "myfile.ss"
(lambda (x)
(pretty-print

(if (annotation? x)
(annotation-stripped x)
x))

(newline)
(eval x)))

pretty-prints each expression before evaluating it.

The parameter source-directories (Section 12.5) determines the set of directories
searched for source files not identified by absolute path names.

(load-library path) procedure

(load-library path eval-proc) procedure

returns: unspecified
libraries: (chezscheme)

load-library is identical to load except that it treats the input file as if it were prefixed
by an implicit #!r6rs. This effectively disables any non-R6RS lexical syntax except where
subsequently overridden by #!chezscheme.

(load-program path) procedure

(load-program path eval-proc) procedure

returns: unspecified
libraries: (chezscheme)

path must be a string. load-program reads and evaluates the contents of the file specified by
path. The file may contain source or object code. If it contains source code, load-program
wraps the code in a top-level-program form so that the file’s content is treated as an RNRS
top-level program (Section 10.3 of The Scheme Programming Language, 4th Edition). By
default, load-program employs eval to evaluate each source expression found in the file.
If eval-proc is specified, load-program uses this procedure instead. eval-proc must accept
one argument, the expression to evaluate. The expression passed to eval-proc might be an
annotation (Section 11.11) or an unannotated value.

The parameter source-directories (Section 12.5) determines the set of directories
searched for source files not identified by absolute path names.

(visit path) procedure

returns: unspecified
libraries: (chezscheme)

path must be a string. visit reads the named file, which must contain compiled object code
compatible with the current machine type and version, and it runs those portions of the
compiled object code that establish compile-time information or correspond to expressions
identified as “visit” time by eval-when forms contained in the original source file.
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For example, assume the file t1.ss contains the following forms:

(define-syntax a (identifier-syntax 3))
(module m (x) (define x 4))
(define y 5)

If t1.ss is compiled to t1.so, applying load to t1.so has the effect of defining all three
identifiers. Applying visit to t1.so, however, has the effect of installing the transformer
for a, installing the interface for m (for use by import), and recording y as a variable. visit

is useful when separately compiling one file that depends on bindings defined in another
without actually loading and evaluating the code in the supporting file.

The parameter source-directories (Section 12.5) determines the set of directories
searched for source files not identified by absolute path names.

(revisit path) procedure

returns: unspecified
libraries: (chezscheme)

path must be a string. revisit reads the named file, which must contain compiled object
code compatible with the current machine type and version, and it runs those portions
of the compiled object code that compute run-time values or correspond to expressions
identified as “revisit” time by eval-when forms contained in the original source file.

Continuing the example given for visit above, applying revisit to the object file, t1.so,
has the effect of establishing the values of the variable x exported from m and the top-level
variable y, without installing either the interface for m or the transformer for a.

revisit is useful for loading compiled application code without loading unnecessary
compile-time information. Care must be taken when using this feature if the applica-
tion calls eval or uses top-level-value, set-top-level-value!, or top-level-syntax to
access top-level bindings at run-time, since these procedures use compile-time information
to resolve top-level bindings.

The parameter source-directories (Section 12.5) determines the set of directories
searched for source files not identified by absolute path names.

(compile-file input-filename) procedure

(compile-file input-filename output-filename) procedure

returns: unspecified
libraries: (chezscheme)

input-filename and output-filename must be strings. input-filename must name an existing,
readable file. It must contain a sequence of zero or more source expressions; if this is not
the case, compile-file raises an exception with condition type &syntax.

The normal evaluation process proceeds in two steps: compilation and execution.
compile-file performs the compilation process for an entire source file, producing an
object file. When the object file is subsequently loaded (see load), the compilation process
is not necessary, and the file typically loads several times faster.
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If the optional output-filename argument is omitted, the actual input and output file-
names are determined as follows. If input-filename has no extension, the input filename is
input-filename followed by .ss and the output filename is input-filename followed by .so.
If input-filename has the extension .so, the input filename is input-filename and the output
filename is input-filename followed by .so. Otherwise, the input filename is input-filename
and the output filename is input-filename without its extension, followed by .so. For
example, (compile-file "myfile") produces an object file with the name "myfile.so"

from the source file named "myfile.ss", (compile-file "myfile.sls") produces an ob-
ject file with the name "myfile.so" from the source file named "myfile.sls", and
(compile-file "myfile1" "myfile2") produces an object file with the name "myfile2"

from the source file name "myfile1".

Before compiling a file, compile-file saves the values of the following parameters:

optimize-level
debug-level
run-cp0
cp0-effort-limit
cp0-score-limit
cp0-outer-unroll-limit
generate-inspector-information
compile-profile
generate-interrupt-trap
enable-cross-library-optimization

It restores the values after the file has been compiled. This allows the programmer to
control the values of these parameters on a per-file basis, e.g., via an eval-when with
situation compile embedded in the source file. For example, if

(eval-when (compile) (optimize-level 3))

appears at the top of a source file, the optimization level is set to 3 just while the remainder
of file is compiled.

(compile-script input-filename) procedure

(compile-script input-filename output-filename) procedure

returns: unspecified
libraries: (chezscheme)

input-filename and output-filename must be strings.

compile-script is like compile-file but differs in that it copies the leading #! line from
the source-file script into the object file. When the #! line is present it is uncompressed
in the output file even when the parameter compile-compressed is set to #t, causing the
remainder of the file to be compressed. This allows it to be interpreted properly by the
operating system.

compile-script permits compiled script files to be created from source script to reduce
script load time. As with source-code scripts, compiled scripts may be run with the
--script command-line option.
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(compile-library input-filename) procedure

(compile-library input-filename output-filename) procedure

returns: unspecified
libraries: (chezscheme)

input-filename and output-filename must be strings.

compile-library is identical to compile-file except that it treats the input file as if it
were prefixed by an implicit #!r6rs. This effectively disables any non-R6RS lexical syntax
except where subsequently overridden by #!chezscheme.

(compile-program input-filename) procedure

(compile-program input-filename output-filename) procedure

returns: a list of libraries invoked by the program
libraries: (chezscheme)

input-filename and output-filename must be strings.

compile-program is like compile-script but differs in that it implements the semantics of
RNRS top-level programs, while compile-script implements the semantics of the inter-
active top-level. The resulting compiled program will also run faster than if compiled via
compile-file or compile-script.

compile-program returns a list of libraries directly invoked by the compiled top-level
program, excluding built-in libraries like (rnrs) and (chezscheme). The procedure
library-requirements may be used to determine the indirect requirements, i.e., ad-
ditional libraries required by the directly invoked libraries. When combined with
library-object-filename, this information can be used to determine the set of files that
must be distributed with the compiled program file.

A program invokes a library only if it references one or more variables exported from the
library. The set of libraries invoked by a top-level program, and hence loaded when the
program is loaded, might be smaller than the set imported by the program, and it might
be larger than the set directly imported by the program.

As with source-code top-level programs, compiled top-level programs may be run with the
--program command-line option.

(maybe-compile-file input-filename) procedure

(maybe-compile-file input-filename output-filename) procedure

(maybe-compile-library input-filename) procedure

(maybe-compile-library input-filename output-filename) procedure

(maybe-compile-program input-filename) procedure

(maybe-compile-program input-filename output-filename) procedure

returns: see below
libraries: (chezscheme)

These procedures are like their non-maybe counterparts but compile the source file only
if the object file is out-of-date. An object file X is considered out-of-date if it does not
exist or if it is older than the source file or any files included (via include) when X was
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created. When the value of the parameter compile-imported-libraries is #t, X is also

considered out-of-date if the object file for any library imported when X was compiled is

out-of-date. If maybe-compile-file determines that compilation is necessary, it compiles

the source file by passing compile-file the input and output filenames. compile-library

does so by similarly invoking the value of the compile-library-handler parameter, and

compile-program does so by similarly invoking the value of the compile-program-handler

parameter.

When output-filename is not specified, the input and output filenames are determined in

the same manner as for compile-file.

compile-library-handler thread parameter

libraries: (chezscheme)

This parameter must be set to a procedure, and the procedure should accept two string

arguments naming a source file and an object file. The procedure should typically invoke

compile-library and pass it the two arguments, but it can also use one of the other file or

port compilation procedures. For example, it might read the source file using its own parser

and use compile-to-file to finish the compilation process. The procedure can perform

other actions as well, such as parameterizing compilation parameters, establishing guards,

or gathering statistics. The default value of this parameter simply invokes compile-library

on the two string arguments without taking any other action.

The value of this parameter is called by maybe-compile-library when the object file

is out-of-date. It is also called by the expander to compile an imported library when

compile-imported-libraries is #t and the expander determines the object file is out-of-

date.

compile-program-handler thread parameter

libraries: (chezscheme)

This parameter must be set to a procedure, and the procedure should accept two string

arguments naming a source file and an object file. The procedure should typically invoke

compile-program and pass it the two arguments, but it can also use one of the other file or

port compilation procedures. For example, it might read the source file using its own parser

and use compile-to-file to finish the compilation process. The procedure can perform

other actions as well, such as parameterizing compilation parameters, establishing guards,

or gathering statistics. The default value of this parameter simply invokes compile-program

on the two string arguments without taking any other action and returns the list of libraries

returned by compile-program.

The value of this parameter is called by maybe-compile-program when the object file is

out-of-date.
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(compile-whole-program input-filename output-filename) procedure

(compile-whole-program input-filename output-filename libs-visible?) procedure

returns: a list of libraries left to be loaded at run time
libraries: (chezscheme)

compile-whole-program accepts as input a filename naming a “whole program optimiza-

tion” (wpo) file for a top-level program and produces an object file incorporating the

program and each library upon which it depends, provided that a wpo file for the library

can be found.

If a wpo file for a required library cannot be found, but an object file for the library can, the

library is not incorporated in the resulting object file. Such libraries are left to be loaded

at run time. compile-whole-program returns a list of such libraries. If there are no such

libraries, the resulting object file is self-contained and compile-whole-program returns the

empty list.

The libraries incorporated into the resulting object file are visible (for use by environment

and eval) if the libs-visible? argument is supplied and non-false. Any library incorporated

into the resulting object file and required by an object file left to be loaded at run time is

also visible.

input-filename and output-filename must be strings. input-filename must identify a wpo

file, and a wpo or object file must also be present for each required library somewhere in

the directories specified by the library-directories parameter.

To the extent possible given the specified set of visible libraries and requirements of libraries

to be loaded at run time, compile-whole-program discards unused code and optimizes

across program and library boundaries, potentially reducing program load time, run time,

and memory requirements. Some optimization also occurs even across the boundaries of

libraries that are not incorporated into the output, though this optimization is limited in

nature.

The procedures compile-file, compile-program, compile-library, compile-script, and

compile-whole-library produce wpo files as well as ordinary object files when the

generate-wpo-files parameter is set to #t (the default is #f). compile-port and

compile-to-port do so when passed an optional wpo port.

(compile-whole-library input-filename output-filename) procedure

returns: a list of libraries left to be loaded at run time
libraries: (chezscheme)

compile-whole-library is like compile-whole-program, except input-filename must specify

a wpo file for a library, all libraries are automatically made visible, and a new wpo file

is produced (when generate-wpo-files is #t) as well as an object file for the resulting

combination of libraries.
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(compile-port input-port output-port) procedure

(compile-port input-port output-port sfd) procedure

(compile-port input-port output-port sfd wpo-port) procedure

returns: unspecified
libraries: (chezscheme)

input-port must be a textual input port. output-port and, if present, wpo-port must be

binary output ports. If present, sfd must be a source-file descriptor.

compile-port is like compile-file except that it takes input from an arbitrary textual

input port and sends output to an arbitrary binary output port. If sfd is present, it is

passed to the reader so that source information can be associated with the expressions

read from input-port . It is also used to associate block-profiling information with the

input file name encapsulated within sfd . If wpo-port is present, it sends whole-program

optimization information to wpo-port for use by compile-whole-program.

None of the ports is closed automatically after compilation; it is assumed that the program

that opens the ports and invokes compile-port will take care of closing the ports. The

output will be compressed only if binary-output-port is set up to do compression, e.g., if it

was opened with the compressed file option.

(compile-to-port obj-list output-port) procedure

(compile-to-port obj-list output-port sfd) procedure

(compile-to-port obj-list output-port sfd wpo-port) procedure

returns: see below
libraries: (chezscheme)

obj-list must be a list containing a sequence of objects that represent syntactically valid ex-

pressions, each possibly annotated (Section 11.11). If any of the objects does not represent

a syntactically valid expression, compile-to-port raises an exception with condition type

&syntax. output-port and, if present, wpo-port must be binary output ports. If present,

sfd must be a source-file descriptor.

compile-to-port is like compile-file except that it takes input from a list of objects and

sends output to an arbitrary binary output port. sfd is used to associate block-profiling

information with the input file name encapsulated within sfd . If wpo-port is present, it sends

whole-program optimization information to wpo-port for use by compile-whole-program.

The output port is not closed automatically after compilation; it is assumed that the

program that opens the port and invokes compile-to-port will take care of closing the

port.

The output will be compressed only if binary-output-port is set up to do compression, e.g.,

if it was opened with the compressed file option.

When obj-list contains a single list-structured element whose first-element is the symbol

top-level-program, compile-to-port returns a list of the libraries the top-level program

requires at run time, as with compile-program. Otherwise, the return value is unspecified.
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(compile-to-file obj-list output-file) procedure

(compile-to-file obj-list output-file sfd) procedure

returns: see below
libraries: (chezscheme)

obj-list must be a list containing a sequence of objects that represent syntactically valid
expressions, each possibly annotated (Section 11.11). If any of the objects does not repre-
sent a syntactically valid expression, compile-to-file raises an exception with condition
type &syntax. output-file must be a string. If present, sfd must be a source-file descriptor.

compile-to-file is like compile-file except that it takes input from a list of objects.
sfd is used to associate block-profiling information with the input file name encapsulated
within sfd .

When obj-list contains a single list-structured element whose first-element is the symbol
top-level-program, compile-to-file returns a list of the libraries the top-level program
requires at run time, as with compile-program. Otherwise, the return value is unspecified.

(make-boot-file output-filename base-boot-list input-filename ...) procedure

returns: unspecified
libraries: (chezscheme)

output-filename, input-filename, and the elements of base-boot-list must be strings.

make-boot-file writes a boot header to the file named by output-filename, followed by
the object code for each input-filename in turn. If an input file is not already compiled,
make-boot-file compiles the file as it proceeds.

The boot header identifies the elements of base-boot-list as alternative boot files upon which
the new boot file depends. If the list of strings naming base boot files is empty, the first
named input file should be a base boot file, i.e., petite.boot or some boot file derived from
petite.boot.

Boot files are loaded explicitly via the --boot or -b command-line options or implicitly
based on the name of the executable (Section 2.9).

See Section 2.8 for more information on boot files and the use of make-boot-file.

(make-boot-header output-filename base-boot1 base-boot2...) procedure

returns: unspecified
libraries: (chezscheme)

This procedure has been subsumed by make-boot-file and is provided for backward com-
patibility. The call

(make-boot-header output-filename base-boot1 base-boot2 ...)

is equivalent to

(make-boot-file output-filename ’(base-boot1 base-boot2 ...))
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(strip-fasl-file input-path output-path options) procedure

returns: unspecified
libraries: (chezscheme)

input-path and output-path must be strings. input-path must name an existing, readable

file containing object code produced by compile-file, one of the other file-compiling pro-

cedures, or an earlier run of strip-fasl-file. options must be an enumeration set over

the symbols constituting valid strip options, as described in the fasl-strip-options entry

below.

The new procedure strip-fasl-file allows the removal of source information of various

sorts from a compiled object (fasl) file produced by compile-file or one of the other

file compiling procedures. It also allows removal of library visit code from object files

containing compiled libraries. Visit code is the code for macro transformers and meta

definitions required to compile (but not run) dependent libraries.

On most platforms, the input and output paths can be the same, in which case the input

file is replaced with a new file containing the stripped object code. Using the same path

will likely fail on Windows file systems, which do not generally permit an open file to be

removed.

If options is empty, the output file is effectively equivalent to the input file, though it will

not necessarily be identical.

(fasl-strip-options symbol ...) syntax

returns: a fasl-strip-options enumeration set
libraries: (chezscheme)

Fasl-strip-options enumeration sets are passed to strip-fasl-file to determine what is

stripped. The available options are described below.

inspector-source: Strip inspector source information. This includes source expressions

that might otherwise be available for procedures and continuations with the “code”

and “call” commands and messages in the interactive and object inspectors. It also

includes filename and position information that might otherwise be available for the

same via the “file” command and “source” messages.

source-annotations: Strip source annotations, which typically appear only on syntax ob-

jects, e.g., identifiers, in the templates of macro transformers.

profile-source: Strip source file and character position information from profiled code

objects. This does not remove the profile counters or eliminate the overhead for

incrementing them at run time.

compile-time-information: This strips compile-time information from compiled libraries,

potentially reducing the size of the resulting file but making it impossible to use the

file to compile dependent code. This option is useful for creating smaller object files

to ship as part of a binary-only package.
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(machine-type) procedure

returns: the current machine type
libraries: (chezscheme)

Consult the release notes for the current version of Chez Scheme for a list of supported
machine types.

(expand obj) procedure

(expand obj env) procedure

returns: expansion of the Scheme form represented by obj
libraries: (chezscheme)

expand treats obj as the representation of an expression. It expands the expression in
environment env and returns an object representing the expanded form. If no environment
is provided, it defaults to the environment returned by interaction-environment.

obj can be an annotation (Section 11.11), and the default expander makes use of annota-
tions to incorporate source-file information in error messages.

expand actually passes its arguments to the current expander (see current-expand), initially
sc-expand.

See also expand-output (page 353) which can be used to request that the compiler or
interpreter show expander output.

current-expand thread parameter

libraries: (chezscheme)

current-expand determines the expansion procedure used by the compiler, interpreter, and
direct calls to expand to expand syntactic extensions. current-expand is initially bound to
the value of sc-expand.

It may be set another procedure, but since the format of expanded code expected by
the compiler and interpreter is not publicly documented, only sc-expand produces correct
output, so the other procedure must ultimately be defined in terms of sc-expand.

The first argument to the expansion procedure represents the input expression. It can
be an annotation (Section 11.11) or an unannotated value. the second argument is an
environment. Additional arguments might be passed to the expansion procedure by the
compiler, interpreter, and expand; their number and roles are unspecified.

(sc-expand obj) procedure

(sc-expand obj env) procedure

returns: the expanded form of obj
libraries: (chezscheme)

The procedure sc-expand is used to expand programs written using syntax-case macros.
sc-expand is the default expander, i.e., the initial value of current-expand. obj represents
the program to be expanded, and env must be an environment. obj can be an annotation
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(Section 11.11) or unannotated value. If not provided, env defaults to the environment

returned by interaction-environment.

(expand/optimize obj) procedure

(expand/optimize obj env) procedure

returns: result of expanding and optimizing form represented by obj
libraries: (chezscheme)

expand/optimize treats obj as the representation of an expression. obj can be an anno-

tation (Section 11.11) or unannotated value. expand/optimize expands the expression in

environment env and passes the expression through the source optimizer cp0 (unless cp0

is disabled via run-cp0). It also simplifies letrec and letrec* expressions within the ex-

pression and makes their undefined checks explicit. It returns an object representing the

expanded, simplified, and optimized form. If no environment is provided, it defaults to the

environment returned by interaction-environment.

expand/optimize is primarily useful for understanding what cp0 does and does not opti-

mize. Many optimizations are performed later in the compiler, so expand/optimize does

not give a complete picture of optimizations performed.

(expand/optimize
’(let ([y ’(3 . 4)])

(+ (car y) (cdr y)))) ⇒ 7

(print-gensym #f)
(expand/optimize

’(let ([y ’(3 . 4)])
(lambda (x)
(* (+ (car y) (cdr y)) x)))) ⇒ (lambda (x) (#2%* 7 x))

(expand/optimize
’(let ([n (expt 2 10)])

(define even?
(lambda (x) (or (zero? x) (not (odd? x)))))

(define odd?
(lambda (x) (not (even? (- x 1)))))

(define f
(lambda (x)
(lambda (y)

(lambda (z)
(if (= z 0) (omega) (+ x y z))))))

(define omega
(lambda ()
((lambda (x) (x x)) (lambda (x) (x x)))))

(let ([g (f 1)] [m (f n)])
(let ([h (if (> ((g 2) 3) 5)

(lambda (x) (+ x 1))
odd?)])

(h n))))) ⇒ 1025
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See also expand/optimize-output (page 353) which can be used to request that the compiler
or interpreter show source-optimizer output.

(eval-when situations form1 form2 ...) syntax

returns: see below
libraries: (chezscheme)

situations must be a list containing some combination of the symbols eval, compile, load,
visit, and revisit.

When source files are loaded (see load), the forms in the file are read, compiled, and
executed sequentially, so that each form in the file is fully evaluated before the next one is
read. When a source file is compiled (see compile-file), however, the forms are read and
compiled, but not executed, in sequence. This distinction matters only when the execution
of one form in the file affects the compilation of later forms, e.g., when the form results
in the definition of a module or syntactic form or sets a compilation parameter such as
optimize-level or case-sensitive.

For example, assume that a file contains the following two forms:

(define-syntax reverse-define
(syntax-rules ()
[(_ e x) (define x e)]))

(reverse-define 3 three)

Loading this from source has the effect of defining reverse-define as a syntactic form and
binding the identifier three to 3. The situation may be different if the file is compiled with
compile-file, however. Unless the system or programmer takes steps to assure that the
first form is fully executed before the second expression is compiled, the syntax expander
will not recognize reverse-define as a syntactic form and will generate code for a procedure
call to reverse-define instead of generating code to define three to be 3. When the object
file is subsequently loaded, the attempt to reference either reverse-define or three will
fail.

As it happens, when a define-syntax, module, import, or import-only form appears at top
level, as in the example above, the compiler does indeed arrange to evaluate it before going
on to compile the remainder of the file. If the compiler encounters a variable definition for
an identifier that was previously something else, it records that fact as well. The compiler
also generates the appropriate code so that the bindings will be present as well when the
object file is subsequently loaded. This solves most, but not all, problems of this nature,
since most are related to the use of define-syntax and modules. Some problems are not
so straightforwardly handled, however. For example, assume that the file contains the
following definitions for nodups? and mvlet.

(define nodups?
(lambda (ids)
(define bound-id-member?

(lambda (id ids)
(and (not (null? ids))
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(or (bound-identifier=? id (car ids))
(bound-id-member? id (cdr ids))))))

(or (null? ids)
(and (not (bound-id-member? (car ids) (cdr ids)))

(nodups? (cdr ids))))))

(define-syntax mvlet
(lambda (x)
(syntax-case x ()

[(_ ((x ...) expr) b1 b2 ...)
(and (andmap identifier? #’(x ...))

(nodups? #’(x ...)))
#’(call-with-values

(lambda () expr)
(lambda (x ...) b1 b2 ...))])))

(mvlet ((a b c) (values 1 2 3))
(list (* a a) (* b b) (* c c)))

When loaded directly, this results in the definition of nodups? as a procedure and mvlet as a
syntactic abstraction before evaluation of the mvlet expression. Because nodups? is defined
before the mvlet expression is expanded, the call to nodups? during the expansion of mvlet
causes no difficulty. If instead this file were compiled, using compile-file, the compiler
would arrange to define mvlet before continuing with the expansion and evaluation of the
mvlet expression, but it would not arrange to define nodups?. Thus the expansion of the
mvlet expression would fail.

In this case it does not help to evaluate the syntactic extension alone. A solution in this
case would be to move the definition of nodups? inside the definition for mvlet, just as
the definition for bound-id-member? is placed within nodups?, but this does not work for
help routines shared among several syntactic definitions. Another solution is to label the
nodups? definition a “meta” definition (see Section 11.8) but this does not work for helpers
that are used both by syntactic abstractions and by run-time code.

A somewhat simpler problem occurs when setting parameters that affect compilation, such
as optimize-level and case-sensitive?. If not set prior to compilation, their settings
usually will not have the desired effect.

eval-when offers a solution to these problems by allowing the programmer to explicitly
control what forms should or should not be evaluated during compilation. eval-when is a
syntactic form and is handled directly by the expander. The action of eval-when depends
upon the situations argument and whether or not the forms form1 form2 ... are being
compiled via compile-file or are being evaluated directly. Let’s consider each of the
possible situation specifiers eval, compile, load, visit, and revisit in turn.

eval: The eval specifier is relevant only when the eval-when form is being evaluated
directly, i.e., if it is typed at the keyboard or loaded from a source file. Its presence
causes form1 form2 ... to be expanded and this expansion to be included in the
expansion of the eval-when form. Thus, the forms will be evaluated directly as if not
contained within an eval-when form.
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compile: The compile specifier is relevant only when the eval-when form appears in a file

currently being compiled. (Its presence is simply ignored otherwise.) Its presence

forces form1 form2 ... to be expanded and evaluated immediately.

load: The load specifier is also relevant only when the eval-when form appears in a file

currently being compiled. Its presence causes form1 form2 ... to be expanded and

this expansion to be included in the expansion of the eval-when form. Any code

necessary to record binding information and evaluate syntax transformers for defini-

tions contained in the forms is marked for execution when the file is “visited,” and

any code necessary to compute the values of variable definitions and the expressions

contained within the forms is marked for execution when the file is “revisited.”

visit: The visit specifier is also relevant only when the eval-when form appears in a

file currently being compiled. Its presence causes form1 form2 ... to be expanded

and this expansion to be included in the expansion of the eval-when form, with an

annotation that the forms are to be executed when the file is “visited.”

revisit: The revisit specifier is also relevant only when the eval-when form appears in

a file currently being compiled. Its presence causes form1 form2 ... to be expanded

and this expansion to be included in the expansion of the eval-when form, with an

annotation that the forms are to be executed when the file is “revisited.”

A file is considered “visited” when it is brought in by either load or visit and “revisited”

when it is brought in by either load or revisit.

Top-level expressions are treated as if they are wrapped in an eval-when with situations

load and eval. This means that, by default, forms typed at the keyboard or loaded from

a source file are evaluated, and forms appearing in a file to be compiled are not evaluated

directly but are compiled for execution when the resulting object file is subsequently loaded.

The treatment of top-level definitions is slightly more involved. All definitions result in

changes to the compile-time environment. For example, an identifier defined by define

is recorded as a variable, and an identifier defined by define-syntax is recorded as a

keyword and associated with the value of its right-hand-side (transformer) expression.

These changes are made at eval, compile, and load time as if the definitions were wrapped

in an eval-when with situations eval, load, and compile. (This behavior can be altered

by changing the value of the parameter eval-syntax-expanders-when.) Some definitions

also result in changes to the run-time environment. For example, a variable is associated

with the value of its right-hand-side expression. These changes are made just at evaluation

and load time as if the definitions were wrapped in an eval-when with situations eval and

load.

The treatment of local expressions or definitions (those not at top level) that are wrapped

in an eval-when depends only upon whether the situation eval is present in the list of

situations. If the situation eval is present, the definitions and expressions are evaluated

as if they were not wrapped in an eval-when form, i.e., the eval-when form is treated as

a begin form. If the situation eval is not present, the forms are ignored; in a definition

context, the eval-when form is treated as an empty begin, and in an expression context,

the eval-when form is treated as a constant with an unspecified value.
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Since top-level syntax bindings are established, by default, at compile time as well as
eval and load time, top-level variable bindings needed by syntax transformers should be
wrapped in an eval-when form with situations compile, load, and eval. We can thus
nodups? problem above by enclosing the definition of nodups? in an eval-when as follows.

(eval-when (compile load eval)
(define nodups?
(lambda (ids)

(define bound-id-member?
(lambda (id ids)

(and (not (null? ids))
(or (bound-identifier=? id (car ids))

(bound-id-member? id (cdr ids))))))
(or (null? ids)

(and (not (bound-id-member? (car ids) (cdr ids)))
(nodups? (cdr ids)))))))

This forces it to be evaluated before it is needed during the expansion of the mvlet expres-
sion.

Just as it is useful to add compile to the default load and eval situations, omitting options
is also useful. Omitting one or more of compile, load, and eval has the effect of preventing
the evaluation at the given time. Omitting all of the options has the effect of inhibiting
evaluation altogether.

One common combination of situations is (compile eval), which by the inclusion of
compile causes the expression to be evaluated at compile time, and by the omission of
load inhibits the generation of code by the compiler for execution when the file is subse-
quently loaded. This is typically used for the definition of syntactic extensions used only
within the file in which they appear; in this case their presence in the object file is not
necessary. It is also used to set compilation parameters that are intended to be in effect
whether the file is loaded from source or compiled via compile-file

(eval-when (compile eval) (case-sensitive #t))

Another common situations list is (compile), which might be used to set compilation
options to be used only when the file is compiled via compile-file.

(eval-when (compile) (optimize-level 3))

Finally, one other common combination is (load eval), which might be useful for inhibiting
the double evaluation (during the compilation of a file and again when the resulting object
file is loaded) of syntax definitions when the syntactic extensions are not needed within the
file in which their definitions appear.

The behavior of eval-when is usually intuitive but can be understood precisely as follows.
The syntax-case expander, which handles eval-when forms, maintains two state sets, one
for compile-time forms and one for run-time forms. The set of possible states in each set
are “L” for load, “C” for compile, “V” for visit, “R” for revisit, and “E” for eval.

When compiling a file, the compile-time set initially contains “L” and “C” and the run-
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time set initially contains only “L.” When not compiling a file (as when a form is evaluated
by the read-eval-print loop or loaded from a source file), both sets initially contain only
“E.” The subforms of an eval-when form at top level are expanded with new compile- and
run-time sets determined by the current sets and the situations listed in the eval-when

form. Each element of the current set contributes zero or more elements to the new set
depending upon the given situations according to the following table.

load compile visit revisit eval

L L C V R —
C — — — — C
V V C V — —
R R C — R —
E — — — — E

For example, if the current compile-time state set is {L} and the situations are load and
compile, the new compile-time state set is {L, C}, since L/load contributes “L” and
L/compile contributes “C.”

The state sets determine how forms are treated by the expander. Compile-time forms such
as syntax definitions are evaluated at a time or times determined by the compile-time state
set, and run-time forms are evaluated at a time or times determined by the run-time state
set. A form is evaluated immediately if “C” is in the state set. Code is generated to
evaluate the form at visit or revisit time if “V” or “R” is present. If “L” is present in the
compile-time set, it is treated as “V;” likewise, if “L” is present in the run-time set, it is
treated as “R.” If more than one of states is present in the state set, the form is evaluated
at each specified time.

“E” can appear in the state set only when not compiling a file, i.e., when the expander
is invoked from an evaluator such as compile or interpret. When it does appear, the
expanded form is returned from the expander to be processed by the evaluator, e.g., compile
or interpret, that invoked the expander.

The value of the parameter eval-syntax-expanders-when actually determines the initial
compile-time state set. The parameter is bound to a list of situations, which defaults
to (compile load eval). When compiling a file, compile contributes “C” to the state
set, load contributes “L,” visit contributes “V,” revisit contributes “R,” and eval con-
tributes nothing. When not compiling a file, eval contributes “E” to the state set, and the
other situations contribute nothing. There is no corresponding parameter for controlling
the initial value of the run-time state set.

For RNRS top-level programs, eval-when is essentially ineffective. The entire program
is treated as a single expression, so eval-when becomes a local eval-when for which only
the eval situation has any relevance. As for any local eval-when form, the subforms are
ignored if the eval situation is not present; otherwise, they are treated as if the eval-when

wrapper were absent.

eval-syntax-expanders-when thread parameter

libraries: (chezscheme)

This parameter must be set to a list representing a set of eval-when situations, e.g., a
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list containing at most one occurrence of each of the symbols eval, compile, load, visit,
and revisit. It is used to determine the evaluation time of syntax definitions, module
forms, and import forms are expanded. (See the discussion of eval-when above.) The
default value is (compile load eval), which causes compile-time information in a file to
be established when the file is loaded from source, when it is compiled via compile-file,
and when a compiled version of the file is loaded via load or visit.

12.5. Source Directories and Files

source-directories global parameter

libraries: (chezscheme)

The value of source-directories must be a list of strings, each of which names a direc-
tory path. source-directories determines the set of directories searched for source or
object files when a file is loaded via load, load-library, load-program, include, visit,
or revisit, when a syntax error occurs, or when a source file is opened in the interactive
inspector.

The default value is the list ("."), which means source files will be found only in or relative
to the current directory, unless named with an absolute path.

This parameter is never altered by the system, with one exception. The expander tem-
porarily adds (via parameterize) the directory in which a library file resides to the front of
the source-directories list when it compiles (when compile-imported-libraries is true)
or loads the library from source, which it does only if the library is not already defined.

(with-source-path who name procedure) procedure

libraries: (chezscheme)

The procedure with-source-path searches through the current source-directories path, in
order, for a file with the specified name and invokes procedure on the result. If no such
file is found, an exception is raised with condition types &assertion and &who with who as
who value.

If name is an absolute pathname or one beginning with ./ (or .\ under Windows) or ../

(or ..\ under Windows), or if the list of source directories contains only ".", the default,
or "", which is equivalent to ".", no searching is performed and name is returned.

who must be a symbol, name must be a string, and procedure should accept one argument.

The following examples assumes that the file “pie” exists in the directory “../spam” but
not in “../ham” or the current directory.

(define find-file
(lambda (fn)
(with-source-path ’find-file fn values)))

(find-file "pie") ⇒ "pie"
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(source-directories ’("." "../ham"))
(find-file "pie") ⇒ exception in find-file: pie not found

(source-directories ’("." "../spam"))
(find-file "pie") ⇒ "../spam/pie"

(source-directories ’("." "../ham"))
(find-file "/pie") ⇒ "/pie"

(source-directories ’("." "../ham"))
(find-file "./pie") ⇒ "./pie"

(source-directories ’("." "../spam"))
(find-file "../pie") ⇒ "../ham/pie"

12.6. Compiler Controls

optimize-level thread parameter

libraries: (chezscheme)

This parameter can take on one of the four values 0, 1, 2, and 3.

In theory, this parameter controls the amount of optimization performed by the compiler.
In practice, it does so only indirectly, and the only difference is between optimize level 3, at
which the compiler generates “unsafe” code, and optimize levels 0–2, at which the compiler
generates “safe” code. Safe code performs full type and bounds checking so that, for
example, an attempt to apply a non-procedure, an attempt to take the car of a non-pair, or
an attempt to reference beyond the end of a vector each result in an exception being raised.
With unsafe code, the same situations may result in invalid memory references, corruption
of the Scheme heap (which may cause seemingly unrelated problems later), system crashes,
or other undesirable behaviors. Unsafe code is typically faster, but optimize-level 3 should
be used with caution and only on sections of well-tested code that must run as quickly as
possible.

While the compiler produces the same code for optimize levels 0–2, user-defined macro
transformers can differentiate among the different levels if desired.

One way to use optimize levels is on a per-file basis, using eval-when to force the use of a
particular optimize level at compile time. For example, placing:

(eval-when (compile) (optimize-level 3))

at the front of a file will cause all of the forms in the file to be compiled at optimize level 3
when the file is compiled (using compile-file) but does not affect the optimize level used
when the file is loaded from source. Since compile-file parameterizes optimize-level

(see parameterize), the above expression does not permanently alter the optimize level in
the system in which the compile-file is performed.

The optimize level can also be set via the --optimize-level command-line option (Sec-
tion 2.9). This option is particularly useful for running RNRS top-level programs at
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optimize-level 3 via the --program command-line option, since eval-when is ineffective
for RNRS top-level programs as described on page 345.

($primitive variable) syntax

#%variable syntax

($primitive 2 variable) syntax

#2%variable syntax

($primitive 3 variable) syntax

#3%variable syntax

returns: the primitive value for variable
libraries: (chezscheme)

variable must name a primitive procedure. The $primitive syntactic form allows control
over the optimize level at the granularity of individual primitive references, and it can be
used to access the original value of a primitive, regardless of the lexical context or the
current top-level binding for the variable originally bound to the primitive.

The expression ($primitive variable) may be abbreviated as #%variable. The reader ex-
pands #% followed by an object into a $primitive expression, much as it expands ’object
into a quote expression.

If a 2 or 3 appears in the form or between the # and % in the abbreviated form, the compiler
treats an application of the primitive as if it were compiled at the corresponding optimize
level (see the optimize-level parameter). If no number appears in the form, an application
of the primitive is treated as an optimize-level 3 application if the current optimize level is
3; otherwise, it is treated as an optimize-level 2 application.

(#%car ’(a b c)) ⇒ a
(let ([car cdr]) (car ’(a b c))) ⇒ (b c)
(let ([car cdr]) (#%car ’(a b c))) ⇒ a
(begin (set! car cdr) (#%car ’(a b c))) ⇒ a

debug-level thread parameter

libraries: (chezscheme)

This parameter can take on one of the four values 0, 1, 2, and 3. It is used to tell the
compiler how important the preservation of debugging information is, with 0 being least
important and 3 being most important. The default value is 1. As of Version 9.0, it is
used solely to determine whether an error-causing call encountered in nontail position is
treated as if it were in tail position (thus causing the caller’s frame not to appear in a stack
backtrace); this occurs at debug levels below 2.

generate-interrupt-trap thread parameter

libraries: (chezscheme)

To support interrupts, including keyboard, timer, and collect request interrupts, the com-
piler inserts a short sequence of instructions at the entry to each nonleaf procedure (Sec-
tion 12.2). This small overhead may be eliminated by setting generate-interrupt-trap

to #f. The default value of this parameter is #t.
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It is rarely a good idea to compile code without interrupt trap generation, since a tight loop
in the generated code may completely prevent interrupts from being serviced, including the
collect request interrupt that causes garbage collections to occur automatically. Disabling
trap generation may be useful, however, for routines that act simply as “wrappers” for other
routines for which code is presumably generated with interrupt trap generation enabled. It
may also be useful for short performance-critical routines with embedded loops or recursions
that are known to be short running and that make no other calls.

compile-interpret-simple thread parameter

libraries: (chezscheme)

At all optimize levels, when the value of compile-interpret-simple is set to a true value
(the default), compile interprets simple expressions. A simple expression is one that creates
no procedures. This can save a significant amount of time over the course of many calls to
compile or eval (with current-eval set to compile, its default value). When set to false,
compile compiles all expressions.

generate-inspector-information thread parameter

libraries: (chezscheme)

When this parameter is set to a true value (the default), information about the source and
contents of procedures and continuations is generated during compilation and retained in
tables associated with each code segment. This information allows the inspector to provide
more complete information, at the expense of using more memory and producing larger
object files (via compile-file). Although compilation and loading may be slower when
inspector information is generated, the speed of the compiled code is not affected. If this
parameter is changed during the compilation of a file, the original value will be restored.
For example, if:

(eval-when (compile) (generate-inspector-information #f))

is included in a file, generation of inspector information will be disabled only for the re-
mainder of that particular file.

enable-cross-library-optimization thread parameter

libraries: (chezscheme)

This parameter controls whether information is included with the object code for a compiled
library to enable propagation of constants and inlining of procedures defined in the library
into dependent libraries. When set to #t (the default), this information is included; when
set to #f, the information is not included. Setting the parameter to #f potentially reduces
the sizes of the resulting object files and the exposure of near-source information via the
object file.

generate-wpo-files thread parameter

libraries: (chezscheme)
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When this parameter is set to #t (the default is #f), compile-file, compile-library,

compile-program, and compile-script produce whole-program optimization (wpo) files

for use by compile-whole-program. The name of the wpo file is derived from the output-

file name by replacing the object-file extension (normally .so) with .wpo, or adding the

extension .wpo if the object filename has no extension or has the extension .wpo.

compile-compressed thread parameter

libraries: (chezscheme)

When this parameter is #t, the default, compile-file, compile-library, compile-script,

compile-program, compile-to-file, compile-whole-program, and strip-fasl-file com-

press the object files they create.

compile-file-message thread parameter

libraries: (chezscheme)

When this parameter is set to true, the default, compile-file, compile-library,

compile-program, and compile-script print a message of the form:

compiling input-path with output to output-path

When the parameter is set to #f, the message is not printed.

run-cp0 thread parameter

cp0-effort-limit thread parameter

cp0-score-limit thread parameter

cp0-outer-unroll-limit thread parameter

libraries: (chezscheme)

These parameters control the operation of cp0, a source optimization pass that runs after

macro expansion and prior to most other compiler passes. cp0 performs procedure inlining,

in which the code of one procedure is inlined at points where it is called by other procedures,

as well as copy propagation, constant folding, useless code elimination, and several related

optimizations. The algorithm used by the optimizer is described in detail in the paper

“Fast and effective procedure inlining” [31].

When cp0 is enabled, the programmer can count on the compiler to fold constants, elim-

inate unnecessary let bindings, and eliminate unnecessary and inaccessible code. This is

particularly useful when writing macros, since the programmer can usually handle only

the general case and let the compiler simplify the code when possible. For example, the

programmer can define case as follows:
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(define-syntax case
(syntax-rules ()
[(_ e [(k ...) a1 a2 ...] ... [else b1 b2 ...])
(let ([t e])
(cond
[(memv t ’(k ...)) a1 a2 ...]
...
[else b1 b2 ...]))]

[(_ e [(k ...) a1 a2 ...] ...)
(let ([t e])

(cond
[(memv t ’(k ...)) a1 a2 ...]
...))]))

and count on the introduce let expression to be eliminated if e turns out to be an unas-
signed variable, and count on the entire case expression to be folded if e turns out to be a
constant.

It is possible to see what cp0 does with an expression via the procedure expand/optimize,
which expands its argument and passes the result through cp0, as illustrated by the fol-
lowing transcript.

> (print-gensym #f)
> (expand/optimize

’(lambda (x)
(case x [(a) 1] [(b c) 2] [(d) 3] [else 4])))

(lambda (x)
(if (#2%memv x ’(a))

1
(if (#2%memv x ’(b c)) 2 (if (#2%memv x ’(d)) 3 4))))

> (expand/optimize
’(+ (let ([f (lambda (x)

(case x [(a) 1] [(b c) 2] [(d) 3] [else 4]))])
(f ’b))

15))
17

In the first example, the let expression produced by case is eliminated, and in the sec-
ond, the entire expression is optimized down to the constant 17. Although not shown by
expand/optimize, the memv calls in the output code for the first example will be replaced
by calls to the less expensive eq? by a later pass of the compiler. Additional examples are
given in the description of expand/optimize.

The value of run-cp0 must be a procedure. Whenever the compiler is invoked on a Scheme
form, the value p of this parameter is called to determine whether and how cp0 is run. p
receives two arguments: cp0 , the entry point into cp0, and x , the form being compiled.
The default value of run-cp0 simply invokes cp0 on x , then cp0 again on the result.
The second run is useful in some cases because the first run may not eliminate bindings for
certain variables that appear to be referenced but are not actually referenced after inlining.
The marginal benefit of the second run is usually minimal, but so is the cost.
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Interesting variants include

(run-cp0 (lambda (cp0 x) x))

which bypasses (disables) cp0, and

(run-cp0 (lambda (cp0 x) (cp0 x)))

which runs cp0 just once.

The value of cp0-effort-limit determines the maximum amount of effort spent on each

inlining attempt. The time spent optimizing a program is a linear function of this limit

and the number of calls in the program’s source, so small values for this parameter enforce

a tighter bound on compile time. When set to zero, inlining is disabled except when the

name of a procedure is referenced only once. The value of cp0-score-limit determines the

maximum amount of code produced per inlining attempt. Small values for this parameter

limit the amount of overall code expansion. These parameters must be set to nonnegative

fixnum values.

The parameter cp0-outer-unroll-limit controls the amount of inlining performed by the

optimizer for recursive procedures. With the parameter’s value set to the default value of

0, recursive procedures are not inlined. A nonzero value for the outer unroll limit allows

calls external to a recursive procedure to be inlined. For example, the expression

(letrec ([fact (lambda (x) (if (zero? x) 1 (* x (fact (- x 1)))))])
(fact 10))

would be left unchanged with the outer unroll limit set to zero, but would be converted

into

(letrec ([fact (lambda (x) (if (zero? x) 1 (* x (fact (- x 1)))))])
(* 10 (fact 9)))

with the outer unroll limit set to one.

Interesting effects can be had by varying several of these parameters at once. For example,

setting the effort and outer unroll limits to large values and the score limit to 1 has the

effect of inlining even complex recursive procedures whose values turn out to be constant

at compile time without risking any code expansion. For example,

(letrec ([fact (lambda (x) (if (zero? x) 1 (* x (fact (- x 1)))))])
(fact 10))

would be reduced to 3628800, but

(letrec ([fact (lambda (x) (if (zero? x) 1 (* x (fact (- x 1)))))])
(fact z))

would be left unchanged, although the optimizer may take a while to reach this decision if

the effort and outer unroll limits are large.



12.6. Compiler Controls 353

commonization-level thread parameter

libraries: (chezscheme)

After running the main source optimization pass (cp0) for the last time, the compiler op-
tionally runs a commonization pass. The pass commonizes the code for lambda expressions
that have identical structure by abstracting differences at certain leaves of the program,
namely constants, references to unassigned variables, and references to primitives. The
parameter commonization-level controls whether commonization is run and, if so, how
aggressive it is. Its value must be a nonnegative exact integer ranging from 0 through 9.
When the parameter is set to 0, the default, commonization is not run. Otherwise, higher
values result in more commonization.

Commonization can undo some of the effects of cp0’s inlining, can add run-time overhead,
and can complicate debugging, particularly at higher commonization levels, which is why
it is disabled by default. On the other hand, for macros or other meta programs that can
generate large, mostly similar lambda expressions, enabling commonization can result in
significant savings in object-code size and even reduce run-time overhead by making more
efficient use of instruction caches.

undefined-variable-warnings thread parameter

libraries: (chezscheme)

When undefined-variable-warnings is set to #t, the compiler issues a warning message
whenever it cannot determine that a variable bound by letrec, letrec*, or an internal
definition will not be referenced before it is defined. The default value is #f.

Regardless of the setting of this parameter, the compiler inserts code to check for the
error, except at optimize level 3. The check is fairly inexpensive and does not typically
inhibit inlining or other optimizations. In code that must be carefully tuned, however,
it is sometimes useful to reorder bindings or make other changes to eliminate the checks.
Enabling undefined-variable warnings can facilitate this process.

The checks are also visible in the output of expand/optimize.

expand-output thread parameter

expand/optimize-output thread parameter

libraries: (chezscheme)

The parameters expand-output and expand/optimize-output can be used to request that
the compiler and interpreter print expander and source-optimizer output produced during
the compilation or interpretation process. Each parameter must be set to either #f (the
default) or a textual output port.

When expand-output is set to a textual output port, the output of the expander is printed
to the port as a side effect of running compile, interpret, or any of the file compiling prim-
itives, e.g., compile-file or compile-library. Similarly, when expand/optimize-output

is set to a textual output port, the output of the source optimizer is printed.

See also expand (page 339) and expand-optimize (page 340), which can be used to run the
expander or the expander and source optimizer directly on an individual form.
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(pariah expr1 expr2 ...) syntax

returns: the values of the last subexpression
libraries: (chezscheme)

A pariah expression is just like a begin expression except that it informs the compiler that
the code is expected to be executed infrequently. The compiler uses this information to
optimize code layout, register assignments, and other aspects of the generated code. The
pariah form can be used in performance-critical code to mark the branches of a conditional
(e.g., if, cond, or case) that are less likely to be executed than the others.

12.7. Profiling

ChezScheme supports two forms of profiling: source profiling and block profiling. With
source profiling enabled, the compiler instruments the code it produces to count the number
of times each source-code expression is executed. This information can be displayed in
HTML format or packaged in a list for arbitrary user-defined processing. It can also
be dumped to a file to be loaded subsequently into the compiler’s database of profile
information for use in source-level optimizations, such as reordering the clauses of a case

or exclusive-cond form.

The association between source-code expressions and profile counts is usually established
via annotations produced by the reader and present in the input to the expander (Sec-
tion 11.11). It is also possible to explicitly identify source positions to be assigned profile
counts via profile expressions. A profile expression has one subform, a source object, and
returns an unspecified value. Its only effect is to cause the number of times the expression
is executed to be accounted to the source object.

In cases where source positions explicitly identified by profile forms are the only ones
whose execution counts should be tracked, the parameter generate-profile-forms can be
set to #f to inhibit the expander’s implicit generation of profile forms for all annotated
source expressions. It is also possible to obtain finer control over implicit generation of
profile forms by marking which annotations that should and should not be used for
profiling (Section 11.11).

With block profiling enabled, the compiler similarly instruments the code it produces to
count the number of times each “basic block” in the code it produces is executed. Ba-
sic blocks are the building blocks of the code produced by many compilers, including
Chez Scheme’s compiler, and are sequences of straight-line code entered only at the top
and exited only at the bottom. Counting the number of times each basic block is executed
is equivalent to counting the number of times each instruction is executed, but more ef-
ficient. Block-profile information cannot be viewed, but it can be dumped to a file to be
loaded subsequently into the compiler’s database of profile information for use in block-
and instruction-level optimizations. These optimizations include reordering blocks to push
less frequently used sequences of code out-of-line, so they will not occupy space in the in-
struction cache, and giving registers to variables that are used in more frequently executed
instructions.

Source profiling involves at least the following steps:
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• compile the code with source profiling enabled,

• run the compiled code to generate source-profile information, and

• dump the profile information.

Source profiling is enabled by setting the parameter compile-profile to the symbol source
or to the boolean value #t. The profile information can be dumped via:

profile-dump-html in HTML format to allow the programmer to visualize how often each
expression is executed using a color-coding system that makes it easy to spot “hot
spots,”

profile-dump-list in a form suitable for user-defined post-processing,

profile-dump in a form suitable for off-line processing by one of the methods above or by
some custom means, or

profile-dump-data in a form suitable for loading into the compiler’s database.

If the information is intended to be fed back into the compiler for optimization, the following
additional steps are required, either in the same or a different Scheme process:

• load the profile information into the compiler’s profile database, and

• recompile the code.

Profile information dumped by profile-dump-data is loaded into the compiler’s profile
database via profile-load-data. Profiling information is not available to the compiler
unless it is explicitly dumped via profile-dump-data and loaded via profile-load-data.

When block-profile information is to be used for optimization, the steps are similar:

• compile the code with block profiling enabled,

• run the code to generate block-profile information,

• dump the profile information,

• load the profile information, and

• recompile the code.

Block profiling is enabled by setting the parameter compile-profile to the symbol block or
to the boolean value #t. The profile information must be dumped via profile-dump-data

and loaded via profile-load-data. As with source profile information, block profile infor-
mation can be loaded in the same or in a different Scheme process as the one that dumped
the information.

For block optimization, the code to be recompiled must be identical. In general, this
means the files involved must not have been modified, and nothing else can change that
indirectly affects the code produced by the compiler, e.g., settings for compiler parameters
such as optimize-level or the contents of configuration files read by macros at compile
time. Otherwise, the set of blocks or the instructions within them might be different, in
which case the block profile information will not line up properly and the compiler will
raise an exception.
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For the same reason, when both source profiling and block profiling information is to be
used for optimization, the source information must be gathered first and loaded before both
the first and second compilation runs involved in block profiling. That is, the following
steps must be used:

1 compile the code with source profiling enabled,

2 run the code to generate source-profile information,

2 dump the source-profile information,

3 load the source-profile information,

3 recompile the code with block profiling enabled,

4 run the code to generate block-profile information,

4 dump the block-profile information,

5 load the source- and block-profile information, and

5 recompile the code.

The numbers labeling each step indicate both the order of the steps and those that must
be performed in the same Scheme process. (All of the steps can be performed in the same
Scheme process, if desired.)

Both source and block profiling are disabled when compile-profile is set to #f, its default
value.

The following example highlights the use of source profiling for identifying hot spots in the
code. Let’s assume that the file /tmp/fatfib/fatfib.ss contains the following source code.

(define fat+
(lambda (x y)
(if (zero? y)

x
(fat+ (1+ x) (1- y)))))

(define fatfib
(lambda (x)
(if (< x 2)

1
(fat+ (fatfib (1- x)) (fatfib (1- (1- x)))))))

We can load fatfib.ss with profiling enabled as follows.

(parameterize ([compile-profile ’source])
(load "/tmp/fatfib/fatfib.ss"))

We then run the application as usual.

(fatfib 20) ⇒ 10946

After the run (or multiple runs), we dump the profile information as a set of html files
using profile-dump-html.
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(profile-dump-html)

This creates a file named profile.html containing a summary of the profile information

gathered during the run. If we view this file in a browser, we should see something like the

following.

The most frequently executed code is highlighted in colors closer to red in the visible

spectrum, while the least frequently executed code is highlighted in colors closer to violet.

Each of the entries in the lists of files and hot spots are links into additional generated files,

one per source file (provided profile-dump-html was able to locate an unmodified copy of

the source file). In this case, there is only one, fatfib.ss.html. If we move to that file, we

should see something like this:
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As in the summary, the code is color-coded according to frequency of execution. Hovering

over a color-coded section of code should cause a pop-up box to appear with the starting

position and count of the source expression. If a portion of source code is not color-coded

or is identified via the starting position as having inherited its color from some enclosing

expression, it may have been recognized as dead code by the compiler or garbage collector

and discarded, or the expander might not have been able to track it through the macro-

expansion process.

profile-dump and profile-dump-list may be used to generate a list of profile entries,

which may then be analyzed manually or via a custom profile-viewing application.

compile-profile thread parameter

libraries: (chezscheme)

When this parameter is set to the symbol source or the boolean value #t, the compiler

instruments the code it generates with instructions that count the number of times each

section of source code is executed. When set to the symbol block, the compiler similarly

instruments the code it generates with instructions that count the number of times each

block of code is executed. When set to #f (the default), the compiler does not insert these

instructions.

The general description of profiling above describes how the source and block profile infor-

mation can be viewed or used for optimization.

The code generated when compile-profile is non-false is larger and less efficient, so this

parameter should be set only when profile information is needed.



12.7. Profiling 359

(profile source-object) syntax

returns: unspecified
libraries: (chezscheme)

A profile form has the effect of accounting to the source position identified by source-object

the number of times the profile form is executed. Profile forms are generated implicitly by

the expander for source expressions in annorated input, e.g., input read by the compiler or

interpreter from a Scheme source file, so this form is typically useful only when unannotated

source code is produced by the front end for some language that targets Scheme.

(generate-profile-forms) thread parameter

libraries: (chezscheme)

When this parameter is set to #t, the default, the expander implicitly introduces profile

forms for each annotated input expression, unless the annotation has not been marked

for use in profiling (Section 11.11). It can be set to #f to inhibit the expander’s implicit

generation of profile forms, typically when explicit profile forms are already present for

all source positions that should be profiled.

(profile-clear) procedure

returns: unspecified
libraries: (chezscheme)

Calling this procedure causes profile information to be cleared, i.e., the counts associated

with each section of code are set to zero.

(profile-dump) procedure

returns: a list of pairs of source-object and count
libraries: (chezscheme)

This procedure produces a dump of all profile information gathered since startup or the

last call to profile-clear. It returns a list of pairs, where the car of each pair is a source

object (Section 11.11) and the cdr is an exact nonnegative integer count.

The list might contain more than one entry per source object due to macro expansion and

procedure inlining, and it might contain more than one (non-eq) source object per file and

source position due to separate compilation. In such cases, the counts are not overlapping

and can be summed together to obtain the full count.

The advantage of profile-dump over profile-dump-list is that profile-dump performs

only minimal processing and preserves complete source objects, including their embedded

source-file descriptors. It might be used, for example, to dump profile information to a fasl

file on one machine for subsequent processing on another.



360 12. System Operations

(profile-dump-html) procedure

(profile-dump-html prefix) procedure

(profile-dump-html prefix dump) procedure

returns: unspecified
libraries: (chezscheme)

This procedure produces one or more HTML files, including profile.html, which contains
color-coded summary information, and one file source.html for each source file source con-
taining a color-coded copy of the source code, as described in the lead-in to this section.
If prefix is specified, it must be a string and is prepended to the names of the generated
HTML files. For example, if prefix is "/tmp/", the generated files are placed in the direc-
tory /tmp. The raw profile information is obtained from dump, which defaults to the value
returned by profile-dump.

(profile-palette) thread parameter

libraries: (chezscheme)

This value of this parameter must be a nonempty vector of at least three pairs. The car of
each pair is a background color and the cdr is a foreground (text) color. Each color must
be a string, and each string should contain an HTML cascading style sheet (CSS) color
specifier. The first pair is used for unprofiled code, and the second is used for unexecuted
profiled code. The third is used for code that is executed least frequently, the fourth for
code executed next-least frequently, and so on, with the last being used for code that is
executed most frequently. Programmers may wish to supply their own palette to enhance
visibility or to change the number of colors used.

By default, a black background is used for unprofiled code, and a gray background is
used for unexecuted profiled code. Background colors ranging from purple to red are used
for executed profiled code, depending on frequency of execution, with red for the most
frequently executed code.

(profile-palette) ⇒
#(("#111111" . "white") ("#607D8B" . "white")
("#9C27B0" . "black") ("#673AB7" . "white")
("#3F51B5" . "white") ("#2196F3" . "black")
("#00BCD4" . "black") ("#4CAF50" . "black")
("#CDDC39" . "black") ("#FFEB3B" . "black")
("#FFC107" . "black") ("#FF9800" . "black")
("#F44336" . "white"))

(profile-palette
; set palette with rainbow colors and black text
; for all but unprofiled or unexecuted code
’#(("#000000" . "white") ; black

("#666666" . "white") ; gray
("#8B00FF" . "black") ; violet
("#6600FF" . "black") ; indigo
("#0000FF" . "black") ; blue
("#00FF00" . "black") ; green
("#FFFF00" . "black") ; yellow
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("#FF7F00" . "black") ; orange
("#FF0000" . "black"))) ; red

(profile-line-number-color) thread parameter

libraries: (chezscheme)

This value of this parameter must be a string or #f. If it is a string, the string should
contain an HTML cascading style sheet (CSS) color specifier. If the parameter is set to
string, profile-dump-html includes line numbers in its html rendering of each source file,
using the specified color. If the parameter is set to #f, no line numbers are included.

(profile-dump-list) procedure

(profile-dump-list warn?) procedure

(profile-dump-list warn? dump) procedure

returns: a list of profile entries (see below)
libraries: (chezscheme)

This procedure produces a dump of all profile information present in dump, which defaults
to the value returned by profile-dump. It returns a list of entries, each of which is itself
a list containing the following elements identify one block of code and how many times it
has been executed.

• execution count

• pathname

• beginning file position in characters (inclusive)

• ending file position in characters (exclusive)

• line number of beginning file position

• character position of beginning file position

profile-dump-list may be unable to locate an unmodified copy of the file in the current
source directories or at the absolute address, if an absolute address was used when the
file was compiled or loaded. If this happens, the line number and character position of
the beginning file position are #f and the pathname is the pathname originally used. A
warning is also issued (an exception with condition type &warning is raised) unless the
warn? argument is provided and is false.

Otherwise, the pathname is the path to an unmodified copy of the source and the line and
character positions are set to exact nonnegative integers.

In either case, the execution count, beginning file position, and ending file position are all
exact nonnegative integers, and the pathname is a string.

For source positions in files that cannot be found, the list might contain more than one
entry per position due to macro expansion, procedure inlining, and separate compilation.
In such cases, the counts are not overlapping and can be summed together to obtain the
full count.
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The information returned by profile-dump-list can be used to implement a custom viewer
or used as input for offline analysis of profile information.

The advantage of profile-dump-list over profile-dump is that it attempts to determine
the line number and character position for each source point and, if successful, aggregates
multiple counts for the source point into a single entry.

(profile-dump-data path) procedure

(profile-dump-data path dump) procedure

returns: unspecified
libraries: (chezscheme)

path must be a string.

This procedure writes, in a machine-readable form consumable by profile-load-data,
profile counts represented by dump to the file named by path, replacing the file if it already
exists. dump defaults to the value returned by profile-dump.

(profile-load-data path ...) procedure

returns: unspecified
libraries: (chezscheme)

Each path must be a string.

This procedure reads profile information from the files named by path ... and stores it in
the compiler’s internal database of profile information. The contents of the files must have
been created originally by profile-dump-data using the same version of Chez Scheme.

The database stores a weight for each source expression or block rather than the actual
count. When a single file is loaded into the database, the weight is the proportion of the
actual count over the maximum count for all expressions or blocks represented in the file.
When more than one file is loaded, either by one or multiple calls to profile-load-data,
the weights are averaged.

(profile-query-weight obj) procedure

returns: obj ’s profile weight, or #f if obj is not in the database
libraries: (chezscheme)

The compiler’s profile database maps source objects (Section 11.11) to weights. If obj is
a source object, the profile-query-weight returns the weight associated with the source
object or #f if the database does not have a weight recorded for the source object. obj can
also be an annotation or syntax object, in which case profile-query-weight first extracts
the source object, if any, using syntax->annotation and annotation-source, returning #f

if no source-object is found.

A weight is a flonum in the range 0.0 to 1.0, inclusive, and denotes the ratio of the actual
count to the maximum count as described in the description of profile-load-data.

profile-query-weight can be used by a macro to determine the relative frequency with
which its subexpressions were executed in the run or runs that generated the information
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in the database. This information can be used to guide the generation of code that is likely

to be more efficient. For example, the case macro uses profile information, when available,

to order the clauses so that those whose keys matched more frequently are tested before

those whose keys matched less frequently.

(profile-clear-database) procedure

returns: unspecified
libraries: (chezscheme)

This procedure clears the compiler’s profile database. It has no impact on the counts

associated with individual sections of instrumented code; profile-clear can be used to

reset those counts.

12.8. Waiter Customization

(new-cafe) procedure

(new-cafe eval-proc) procedure

returns: see below
libraries: (chezscheme)

Chez Scheme interacts with the user through a waiter, or read-eval-print loop (REPL).

The waiter operates within a context called a café. When the system starts up, the user is

placed in a café and given a waiter. new-cafe opens a new Scheme café, stacked on top of

the old one. In addition to starting the waiter, new-cafe sets up the café’s reset and exit

handlers (see reset-handler and exit-handler). Exiting a café resumes the continuation

of the call to new-cafe that created the café. Exiting from the initial café leaves Scheme

altogether. A café may be exited from either by an explicit call to exit or by receipt of

end-of-file (“control-D” on Unix systems) in response to the waiter’s prompt. In the former

case, any values passed to exit are returned from new-cafe.

If the optional eval-proc argument is specified, eval-proc is used to evaluate forms entered

from the console. Otherwise, the value of the parameter current-eval is used. eval-proc

must accept one argument, the expression to evaluate.

Interesting values for eval-proc include expand, which causes the macro expanded value

of each expression entered to be printed and (lambda (x) x), which simply causes each

expression entered to be printed. An arbitrary procedure of one argument may be used to

facilitate testing of a program on a series of input values.

> (new-cafe (lambda (x) x))
>> 3
3
>> (a . (b . (c . ())))
(a b c)
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(define sum
(lambda (ls)
(if (null? ls)

0
(+ (car ls) (sum (cdr ls))))))

> (new-cafe sum)
>> (1 2 3)
6

The default waiter reader (see waiter-prompt-and-read) displays the current waiter
prompt (see waiter-prompt-string) to the current value of console-output-port and
reads from the current value of console-input-port. The default waiter printer (see
waiter-write) sends output to the current value of console-output-port. These parame-
ters, along with current-eval, can be modified to change the behavior of the waiter.

waiter-prompt-string thread parameter

libraries: (chezscheme)

The value of waiter-prompt-string must be a string. It is used by the default waiter
prompter (see the parameter waiter-prompt-and-read) to print a prompt. Nested cafés
are marked by repeating the prompt string once for each nesting level.

> (waiter-prompt-string)
">"
> (waiter-prompt-string "%")
% (waiter-prompt-string)
"%"
% (new-cafe)
%% (waiter-prompt-string)
"%"

waiter-prompt-and-read thread parameter

libraries: (chezscheme)

waiter-prompt-and-read must be set to a procedure. It is used by the waiter to print a
prompt and read an expression. The value of waiter-prompt-and-read is called by the
waiter with a positive integer that indicates the café nesting level. It should return an
expression to be evaluated by the current evaluator (see new-cafe and current-eval).

(default-prompt-and-read level) procedure

libraries: (chezscheme)

level must be a positive integer indicating the cafeé nesting level as described above.

This procedure is the default value of the waiter-prompt-and-read parameter whenever
the expression editor (Section 2.2, Chapter 14) is not enabled. It might be defined as
follows.
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(define default-prompt-and-read
(lambda (n)
(unless (and (integer? n) (>= n 0))

(assertion-violationf ’default-prompt-and-read
"~s is not a nonnegative integer"
n))

(let ([prompt (waiter-prompt-string)])
(unless (string=? prompt "")
(do ([n n (- n 1)])

((= n 0)
(write-char #\space (console-output-port))
(flush-output-port (console-output-port)))

(display prompt (console-output-port))))
(let ([x (read (console-input-port))])

(when (and (eof-object? x) (not (string=? prompt "")))
(newline (console-output-port))
(flush-output-port (console-output-port)))

x))))

waiter-write thread parameter

libraries: (chezscheme)

The value of waiter-write must be a procedure. The waiter uses the value of waiter-write

to print the results of each expression read and evaluated by the waiter. The following

example installs a procedure equivalent to the default waiter-write:

(waiter-write
(lambda (x)
(unless (eq? x (void))

(pretty-print x (console-output-port)))
(flush-output-port (console-output-port))))

(reset) procedure

returns: does not return
libraries: (chezscheme)

reset invokes the current reset handler (see reset-handler) without arguments.

reset-handler thread parameter

libraries: (chezscheme)

The value of this parameter must be a procedure and should accept zero arguments. The

current reset handler is called by reset. The default reset handler resets to the current

café.
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(exit obj ...) procedure

returns: does not return
libraries: (chezscheme)

exit invokes the current exit handler (see exit-handler), passing along its arguments, if
any.

exit-handler thread parameter

libraries: (chezscheme)

The value of this parameter must be a procedure and should accept any number of argu-
ments. The current exit handler is called by exit.

The default exit handler exits from the current café, returning its arguments as the values
of the call to new-cafe that created the current café. If the current café is the original café,
or if exit is called from a script, exit exits from Scheme. In this case, the exit code for
the Scheme process is 0 if no arguments were supplied or if the first argument is void, the
value of the first argument if it is a 32-bit exact integer, and -1 otherwise.

(abort) procedure

(abort obj) procedure

returns: does not return
libraries: (chezscheme)

abort invokes the current abort handler (see abort-handler), passing along its argument,
if any.

abort-handler thread parameter

libraries: (chezscheme)

The value of this parameter must be a procedure and should accept either zero arguments
or one argument. The current abort handler is called by abort.

The default abort handler exits the Scheme process. The exit code for the Scheme process
is -1 if no arguments were supplied, 0 if the first argument is void, the value of the first
argument if it is a 32-bit exact integer, and -1 otherwise.

scheme-start global parameter

libraries: (chezscheme)

The value of scheme-start is a procedure that determines the system’s action upon start-
up. The procedure receives zero or more arguments, which are strings representing the file
names (or command-line arguments not recognized by the Scheme executable) after given
on the command line. The default value first loads the files named by the arguments, then
starts up the initial café:
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(lambda fns
(for-each load fns)
(new-cafe))

scheme-start may be altered to start up an application or to perform customization prior
to normal system start-up.

To have any effect, this parameter must be set within a boot file. (See Chapter 2.)

scheme-script global parameter

libraries: (chezscheme)

The value of scheme-script is a procedure that determines the system’s action upon start-
up, when the --script option is used. The procedure receives one or more arguments.
The first is a string identifying the script filename and the remainder are strings represent-
ing the remaining file names (or command-line arguments not recognized by the Scheme
executable) given on the command line. The default value of this parameter is a proce-
dure that sets the command-line and command-line-arguments parameters, loads the script
using load, and returns void, which is translated into a 0 exit status for the script process.

(lambda (fn . fns)
(command-line (cons fn fns))
(command-line-arguments fns)
(load fn))

scheme-script may be altered to start up an application or to perform customization prior
to normal system start-up.

To have any effect, this parameter must be set within a boot file. (See Chapter 2.)

scheme-program global parameter

libraries: (chezscheme)

The value of scheme-program is a procedure that determines the system’s action upon start-
up when the --program (RNRS top-level program) option is used. The procedure receives
one or more arguments. The first is a string identifying the program filename and the
remainder are strings representing the remaining file names (or command-line arguments
not recognized by the Scheme executable) given on the command line. The default value
of this parameter is a procedure that sets the command-line and command-line-arguments

parameters, loads the program using load-program, and returns void, which is translated
into a 0 exit status for the script process.

(lambda (fn . fns)
(command-line (cons fn fns))
(command-line-arguments fns)
(load-program fn))

scheme-program may be altered to start up an application or to perform customization
prior to normal system start-up.
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To have any effect, this parameter must be set within a boot file. (See Chapter 2.)

command-line global parameter

libraries: (chezscheme)

This parameter is set by the default values of scheme-script and scheme-program to a
list representing the command line, with the script name followed by the command-line
arguments, when the --script or --program option is used on system startup.

command-line-arguments global parameter

libraries: (chezscheme)

This parameter is set by the default values of scheme-script and scheme-program to a list
of the command-line arguments when the --script or --program option is used on system
startup.

suppress-greeting global parameter

libraries: (chezscheme)

The value of suppress-greeting is a boolean value that determines whether Chez Scheme
prints an identifying banner and copyright notice. The parameter defaults to #f but may
be set to #t for use in batch processing applications where the banner would be disruptive.

To have any effect, this parameter must be set within a boot file. (See Chapter 2.)

12.9. Transcript Files

A transcript file is a record of an interactive session. It is also useful as a “quick-and-dirty”
alternative to opening an output file and using explicit output operations.

(transcript-on path) procedure

returns: unspecified
libraries: (chezscheme)

path must be a string.

transcript-on opens the file named by path for output, and it copies to this file all input
from the current input port and all output to the current output port. An exception is
raised with condition-type i/o-filename if the file cannot be opened for output.

(transcript-off) procedure

returns: unspecified
libraries: (chezscheme)

transcript-off ends transcription and closes the transcript file.
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(transcript-cafe path) procedure

libraries: (chezscheme)

path must be a string. transcript-cafe opens a transcript file as with transcript-on and
enters a new café; exiting from this café (see exit) also ends transcription and closes the
transcript file. Invoking transcript-off while in a transcript café ends transcription and
closes the transcript file but does not cause an exit from the café.

12.10. Times and Dates

This section documents procedures for handling times and dates. Most of the procedures
described here are proposed in SRFI 19: Time Data Types and Procedures, by Will Fitzger-
ald.

Times are represented by time objects. Time objects record the nanosecond and second of
a particular time or duration, along with a time type that identifies the nature of the time
object. The time type is one of the following symbols:

time-utc: The time elapsed since the “epoch:” 00:00:00 UTC, January 1, 1970, subject to
adjustment, e.g., to correct for leap seconds.

time-monotonic: The time elapsed since some arbitrary point in the past, ideally not sub-
ject to adjustment.

time-duration: The time elapsed between two times. When used as an argument to
current-time, it behaves like time-monotonic, but may also used to represent the
result of subtracting two time objects.

time-process: The amount of CPU time used by the current process.

time-thread: The amount of CPU time used by the current thread. It is the same as
time-process if not running threaded or if the system does not allow individual
thread times to be determined.

time-collector-cpu: The portion of the current process’s CPU time consumed by the
garbage collector.

time-collector-real: The portion of the current process’s real time consumed by the
garbage collector.

A time-object second is an exact integer (possibly negative), and a nanosecond is an exact
nonnegative integer less than 109. The second and nanosecond of a time object may be
converted to an aggregate nanosecond value by scaling the seconds by 109 and adding
the nanoseconds. Thus, if the second and nanosecond of a time object are 5 and 10,
the time object represents 5000000010 nanoseconds (5.000000010 seconds). If the second
and nanosecond are -5 and 10, the time object represents -4999999990 nanoseconds (-
4.999999990 seconds).

Dates are represented by date objects. A date object records the nanosecond, second,
minute, hour, day, month, and year of a particular date, along with an offset that identifies
the time zone.
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As for time objects, a nanosecond is an exact integer less than 109. A date-object second

is, however, an exact nonnegative integer less than 62. (The values 61 and 62 allow for

leap seconds.) A minute is an exact nonnegative integer less than 60, and an hour is an

exact nonnegative integer less than 24. A day is an exact nonnegative integer in ranging

from 1 representing the first day of the month to n, where n is the number of days in the

date’s month and year. A month is an exact nonnegative integer ranging from 1 through

12, where 1 represents January, 2 represents February, and so on. A year must be an

exact integer. Years less than 1970 or greater than 2038 may not be supported depending

on limitations of the underlying implementation. A time-zone offset represents the time-

zone offset, in seconds, from UTC. It is an exact integer in the range −86400 to +86400,

inclusive. For example, Eastern Standard Time (EST), which is 5 hours east, has offset

5 × 3600 = −18000. The offset for Eastern Daylight Time (EDT) is −14400. UTC is

represented by offset zero.

(current-time) procedure

(current-time time-type) procedure

returns: a time object representing the current time
libraries: (chezscheme)

time-type must be one of the time-type symbols listed above and defaults to time-utc.

(current-time) ⇒ #<time-utc 1198815722.473668000>
(current-time ’time-process) ⇒ #<time-process 0.120534264>

(make-time type nsec sec) procedure

returns: a time object
libraries: (chezscheme)

type must be one of the time-type symbols listed above. nsec represents nanoseconds and

must be an exact nonnegative integer less than 109. sec represents seconds and must be

an exact integer.

(make-time ’time-utc 787511000 1198783214)
(make-time ’time-duration 10 5)
(make-time ’time-duration 10 -5)

(time? obj) procedure

returns: #t if obj is a time object, #f otherwise
libraries: (chezscheme)

(time? (current-time)) ⇒ #t
(time? (make-time ’time-utc 0 0)) ⇒ #t
(time? "1400 hours") ⇒ #f
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(time-type time) procedure

returns: the time type of time
(time-nanosecond time) procedure

returns: the nanosecond of time
(time-second time) procedure

returns: the second of time
libraries: (chezscheme)

time must be a time object.

(time-type (current-time)) ⇒ time-utc
(time-type (current-time ’time-process)) ⇒ time-process
(time-type (make-time ’time-duration 0 50)) ⇒ time-duration
(time-second (current-time)) ⇒ 1198816497
(time-nanosecond (current-time)) ⇒ 2399000
(time-second (make-time ’time-duration 10 -5)) ⇒ -5
(time-nanosecond (make-time ’time-duration 10 -5)) ⇒ 10

(set-time-type! time type) procedure

returns: unspecified
(set-time-nanosecond! time nsec) procedure

returns: unspecified
(set-time-second! time sec) procedure

returns: unspecified
libraries: (chezscheme)

time must be a time object. type must be one of the time-type symbols listed above.

nsec represents nanoseconds and must be an exact nonnegative integer less than 109. sec

represents seconds and must be an exact integer.

Each of these procedures modifies the time object, changing one aspect while leaving the

others unaffected. For example, set-time-nanosecond! changes the nanosecond of time

without changing the second or type. In particular, no conversion of values is performed

when the type of a time object is changed.

(time=? time1 time2) procedure

(time<? time1 time2) procedure

(time<=? time1 time2) procedure

(time>=? time1 time2) procedure

(time>? time1 time2) procedure

returns: #t if the relation holds, #f otherwise
libraries: (chezscheme)

time1 and time2 must be time objects and must have the same type.
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(let ([t (current-time)])
(time=? t t)) ⇒ #t

(let ([t (current-time)])
(let loop ()
(when (time=? (current-time) t))

(loop))
(time>? (current-time) t)) ⇒ #t

(copy-time time) procedure

returns: a copy of time
libraries: (chezscheme)

(define t1 (current-time))
(define t2 (copy-time t1))
(eq? t2 t1) ⇒ #f
(eqv? (time-second t2) (time-second t1)) ⇒ #t
(eqv? (time-nanosecond t2) (time-nanosecond t1)) ⇒ #t

(time-difference time1 time2) procedure

returns: the result of subtracting time2 from time1
(time-difference! time1 time2) procedure

returns: the result of subtracting time2 from time1
(add-duration time timed) procedure

returns: the result of adding timed to time

(add-duration! time timed) procedure

returns: the result of adding timed to time

(subtract-duration time timed) procedure

returns: the result of subtracting timed from time

(subtract-duration! time timed) procedure

returns: the result of subtracting timed from time

libraries: (chezscheme)

For time-difference, time1 and time2 must have the same time type, and the result
is a time object with time type time-duration. For add-duration, add-duration!,
subtract-duration, and subtract-duration!, timed must have time type time-duration,
and the result is a time object with the same time type as time. time-difference!,
add-duration!, and subtract-duration! are potentially destructive, i.e., each might mod-
ify and return its first argument, or it might allocate a new time object.

(let ([delay (make-time ’time-duration 0 1)])
(let ([t1 (current-time ’time-monotonic)])
(sleep delay)
(let ([t2 (current-time ’time-monotonic)])

(let ([t3 (time-difference t2 t1)])
(and
(eq? (time-type t3) ’time-duration)
(time>=? t3 delay)
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(time=? (add-duration t1 t3) t2)
(time=? (subtract-duration t2 t3) t1)))))) ⇒ #t

(current-date) procedure

(current-date offset) procedure

returns: a date object representing the current date
libraries: (chezscheme)

offset represents the time-zone offset in seconds east of UTC, as described above. It must
be an exact integer in the range −86400 to +86400, inclusive and defaults to the local
time-zone offset. UTC may be obtained by passing an offset of zero.

If offset is not provided, then the current time zone’s offset is used, and date-dst?

and date-zone-name report information about the time zone. If offset is provided, then
date-dst? and date-zone-name on the resulting date object produce #f.

The following examples assume the local time zone is EST.

(current-date) ⇒ #<date Thu Dec 27 23:23:20 2007>
(current-date 0) ⇒ #<date Fri Dec 28 04:23:20 2007>

(date-zone-name (current-date)) ⇒ "EST" or other system-provided string
(date-zone-name (current-date 0)) ⇒ #f

(make-date nsec sec min hour day mon year) procedure

(make-date nsec sec min hour day mon year offset) procedure

returns: a date object
libraries: (chezscheme)

nsec represents nanoseconds and must be an exact nonnegative integer less than 109. sec
represents seconds and must be an exact nonnegative integer less than 62. min represents
minutes and must be an exact nonnegative integer less than 60. hour must be an exact
nonnegative integer less than 24. day must be an exact integer, 1 ≤ day ≤ 31. (The actual
upper limit may be less depending on the month and year.) mon represents the month
must be an exact integer, 1 ≤ mon ≤ 12. year must be an exact integer. It should be
at least 1970. offset represents the time-zone offset in seconds east of UTC, as described
above. It must be an exact integer in the range −86400 to +86400, inclusive. UTC may
be specified by passing an offset of zero.

If offset is not provided, then the current time zone’s offset is used, and date-dst?

and date-zone-name report information about the time zone. If offset is provided, then
date-dst? and date-zone-name on the resulting date object produce #f.

(make-date 0 0 0 0 1 1 1970 0) ⇒ #<date Thu Jan 1 00:00:00 1970>
(make-date 0 30 7 9 23 9 2007 -14400) ⇒ #<date Sun Sep 23 09:07:30 2007>

(date-zone-name (make-date 0 30 7 9 23 9 2007 -14400)) ⇒ #f
(string? (date-zone-name (make-date 0 30 7 9 23 9 2007))) ⇒ #t
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(date? obj) procedure

returns: #t if obj is a date object, #f otherwise
libraries: (chezscheme)

(date? (current-date))
(date? (make-date 0 30 7 9 23 9 2007 -14400))
(date? "Sun Sep 23 09:07:30 2007") ⇒ #f

(date-nanosecond date) procedure

returns: the nanosecond of date
(date-second date) procedure

returns: the second of date
(date-minute date) procedure

returns: the minute of date
(date-hour date) procedure

returns: the hour of date
(date-day date) procedure

returns: the day of date
(date-month date) procedure

returns: the month of date
(date-year date) procedure

returns: the year of date
(date-zone-offset date) procedure

returns: the time-zone offset of date
libraries: (chezscheme)

date must be a date object.

(define d (make-date 0 30 7 9 23 9 2007 -14400))
(date-nanosecond d) ⇒ 0
(date-second d) ⇒ 30
(date-minute d) ⇒ 7
(date-hour d) ⇒ 9
(date-day d) ⇒ 23
(date-month d) ⇒ 9
(date-year d) ⇒ 2007
(date-zone-offset d) ⇒ -14400

(date-week-day date) procedure

returns: the week-day of date
(date-year-day date) procedure

returns: the year-day of date
libraries: (chezscheme)

These procedures allow the day-of-week or day-of-year to be determined for the date repre-
sented by date. A week-day is an exact nonnegative integer less than 7, where 0 represents
Sunday, 1 represents Monday, and so on. A year-day is an exact nonnegative integer less
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than 367, where 0 represents the first day of the year (January 1), 1 the second day, 2 the
third, and so on.

(define d1 (make-date 0 0 0 0 1 1 1970 -18000))
d1 ⇒ #<date Thu Jan 1 00:00:00 1970>
(date-week-day d1) ⇒ 4
(date-year-day d1) ⇒ 0

(define d2 (make-date 0 30 7 9 23 9 2007 -14400))
d2 ⇒ #<date Sun Sep 23 09:07:30 2007>
(date-week-day d2) ⇒ 0
(date-year-day d2) ⇒ 265

(date-dst? date) procedure

returns: whether date is in Daylight Saving Time
(date-zone-name date) procedure

returns: #f or a string naming the time zone of date
libraries: (chezscheme)

These procedures report time-zone information for the date represented by date for a date
object that is constructed without an explicit time-zone offset. When a date object is
created instead with explicit time-zone offset, these procedures produce #f.

Daylight Saving Time status for the current time zone and a name string for the time zone
are computed using platform-specific routines. In particular, the format of the zone name
is platform-specific.

(define d (make-date 0 30 7 9 23 9 2007))
(date-zone-offset d) ⇒ -14400 assuming Eastern U.S. time zone
(date-dst? d) ⇒ #t
(date-zone-name d) ⇒ "EDT" or some system-provided string

(time-utc->date time) procedure

(time-utc->date time offset) procedure

returns: a date object corresponding to time
(date->time-utc date) procedure

returns: a time object corresponding to date
libraries: (chezscheme)

These procedures are used to convert between time and date objects. The time argument
to time-utc->date must have time-type utc, and date->time-utc always returns a time
object with time-type utc.

For time-utc->date, offset represents the time-zone offset in seconds east of UTC, as
described at the beginning of this section. It must be an exact integer in the range −86400
to +86400, inclusive and defaults to the local time-zone offset. UTC may be obtained by
passing an offset of zero.
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If offset is not provided to time-utc->date, then the current time zone’s offset is used,
and date-dst? and date-zone-name report information about the time zone. If offset is
provided, then date-dst? and date-zone-name on the resulting date object produce #f.

(define d (make-date 0 30 7 9 23 9 2007 -14400))
(date->time-utc d) ⇒ #<time-utc 1190552850.000000000>
(define t (make-time ’time-utc 0 1190552850))
(time-utc->date t) ⇒ #<date Sun Sep 23 09:07:30 2007>
(time-utc->date t 0) ⇒ #<date Sun Sep 23 13:07:30 2007>

(date-and-time) procedure

(date-and-time date) procedure

returns: a string giving the current date and time
libraries: (chezscheme)

The string is always in the format illustrated by the examples below and always has length
24.

(date-and-time) ⇒ "Fri Jul 13 13:13:13 2001"
(define d (make-date 0 0 0 0 1 1 2007 0))
(date-and-time d) ⇒ "Mon Jan 01 00:00:00 2007"

(sleep time) procedure

returns: unspecified
libraries: (chezscheme)

time must be a time object with type time-duration. sleep causes the invoking thread
to suspend operation for approximately the amount of time indicated by the time object,
unless the process receives a signal that interrupts the sleep operation. The actual time
slept depends on the granularity of the system clock and how busy the system is running
other threads and processes.

12.11. Timing and Statistics

This section documents procedures for timing computations. The current-time procedure
described in Section 12.10 may also be used to time computations.

(time expr) syntax

returns: the values of expr
libraries: (chezscheme)

time evaluates expr and, as a side-effect, prints (to the console-output port) the amount
of cpu time, the amount of real time, the number of bytes allocated, and the amount of
collection overhead associated with evaluating expr .
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> (time (collect))
(time (collect))

1 collection
1 ms elapsed cpu time, including 1 ms collecting
1 ms elapsed real time, including 1 ms collecting
160 bytes allocated, including 8184 bytes reclaimed

(display-statistics) procedure

(display-statistics textual-output-port) procedure

returns: unspecified
libraries: (chezscheme)

This procedure displays a running total of the amount of cpu time, real time, bytes al-

located, and collection overhead. If textual-output-port is not supplied, it defaults to the

current output port.

(cpu-time) procedure

returns: the amount of cpu time consumed since system start-up
libraries: (chezscheme)

The amount is in milliseconds. The amount includes “system” as well as “user” time, i.e.,

time spent in the kernel on behalf of the process as well as time spent in the process itself.

See also current-time, which returns more precise information.

(real-time) procedure

returns: the amount of real time that has elapsed since system start-up
libraries: (chezscheme)

The amount is in milliseconds.

See also current-time, which returns more precise information.

(bytes-allocated) procedure

(bytes-allocated g) procedure

returns: the number of bytes currently allocated
libraries: (chezscheme)

If g is supplied, bytes-allocated returns the number of bytes currently allocated for

Scheme objects in the specified generation. g must be a nonnegative exact inte-

ger no greater than the maximum nonstatic generation, i.e., the value returned by

collect-maximum-generation, or the symbol static. If g is not supplied, bytes-allocated

returns the total number of bytes allocated in all generations.
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(initial-bytes-allocated) procedure

returns: the total number of bytes allocated after loading boot files
libraries: (chezscheme)

(bytes-deallocated) procedure

returns: the total number of bytes deallocated by the garbage collector
libraries: (chezscheme)

The total number of bytes allocated by the current process, whether still in use or not,

can be obtained by summing (bytes-deallocated) and (bytes-allocated) and possibly

subtracting (initial-bytes-allocated).

(current-memory-bytes) procedure

returns: the total number of bytes currently allocated, including overhead
libraries: (chezscheme)

current-memory-bytes returns the total size of the heap in bytes, including not only the

bytes occupied for Scheme objects but also various forms of overhead, including fragmenta-

tion and reserved but not currently occupied memory, and is thus an accurate measure of

the amount of heap memory currently reserved from the operating system for the current

process.

(maximum-memory-bytes) procedure

returns: the maximum number of bytes ever allocated, including overhead
libraries: (chezscheme)

maximum-memory-bytes returns the maximum size of the heap in bytes, i.e., the maximum

value that current-memory-bytes returned or could have returned, since the last call to

reset-maximum-memory-bytes! or, if there has been no such call, since the process started.

(reset-maximum-memory-bytes!) procedure

returns: unspecified
libraries: (chezscheme)

reset-maximum-memory-bytes! resets the maximum recorded size of the heap to the current

size of the heap.

(collections) procedure

returns: the number garbage collections so far
libraries: (chezscheme)
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(statistics) procedure

returns: a sstats record containing current statistics
libraries: (chezscheme)

statistics packages together various timing and allocation statistics into a single sstats

record. A sstats record has the following fields:

cpu, the cpu time consumed,

real, the elapsed real time,

bytes, the number of bytes allocated,

gc-count, the number of collections,

gc-cpu, the cpu time consumed during collections,

gc-real, the elapsed real time during collections, and

gc-bytes, the number of bytes reclaimed by the collector.

All values are computed since system start-up. The time values are time objects (Sec-

tion 12.10), and the bytes and count values are exact integers.

statistics might be defined as follows:

(define statistics
(lambda ()
(make-sstats

(current-time ’time-thread)
(current-time ’time-monotonic)
(- (+ (bytes-allocated) (bytes-deallocated))

(initial-bytes-allocated))
(collections)
(current-time ’time-collector-cpu)
(current-time ’time-collector-real)
(bytes-deallocated))))

(make-sstats cpu real bytes gc-count gc-cpu gc-real gc-bytes) procedure

returns: a sstats record
libraries: (chezscheme)

The time arguments (cpu, real , gc-cpu, and gc-real) must be time objects. The other

arguments must be exact integers.

(sstats? obj) procedure

returns: #t if obj is a sstats record, otherwise #f

libraries: (chezscheme)
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(sstats-cpu s) procedure

(sstats-real s) procedure

(sstats-bytes s) procedure

(sstats-gc-count s) procedure

(sstats-gc-cpu s) procedure

(sstats-gc-real s) procedure

(sstats-gc-bytes s) procedure

returns: the value of the corresponding field of s
libraries: (chezscheme)

s must be a sstats record.

(set-sstats-cpu! s new-value) procedure

(set-sstats-real! s new-value) procedure

(set-sstats-bytes! s new-value) procedure

(set-sstats-gc-count! s new-value) procedure

(set-sstats-gc-cpu! s new-value) procedure

(set-sstats-gc-real! s new-value) procedure

(set-sstats-gc-bytes! s new-value) procedure

returns: unspecified
libraries: (chezscheme)

s must be a sstats record, the new-value arguments for the time fields (cpu, real , gc-cpu,
and gc-real) must be time objects, and the other new-value arguments must be exact
integers. Each procedure sets the value of the corresponding field of s to new-value.

(sstats-difference s1 s2) procedure

returns: a sstats record representing the difference between s1 and s2
libraries: (chezscheme)

s1 and s2 must be sstats records. sstats-difference subtracts each field of s2 from the
corresponding field of s1 to produce the resulting sstats record.

(sstats-print s) procedure

(sstats-print s textual-output-port) procedure

returns: unspecified
libraries: (chezscheme)

s must be a sstats record. If textual-output-port is not supplied, it defaults to the
current output port. sstats-print displays the fields of s in a manner similar to
display-statistics and time.

enable-object-counts global parameter

libraries: (chezscheme)

The value of enable-object-counts is a boolean value that determines whether the col-
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lector records object counts as it runs and hence whether the object counts returned by
the procedure object-counts are accurate. The parameter is set to #f by default, since
enabling object counts adds overhead to collection.

Counts for the static generation are always correct. Counts for a nonstatic generation n are
correct immediately after a collection of generation m ≥ n (regardless of whether the target
generation is m or m+ 1) if enable-object-counts was set to #t during the collection.

One strategy for collecting object counts with minimal overhead is to enable object counts
only while collecting the maximum nonstatic generation and to obtain the object counts
immediately after that collection.

(object-counts) procedure

returns: see below
libraries: (chezscheme)

The procedure object-counts returns a nested association list representing object counts
and bytes allocated for each heap-allocated primitive type and record type with at least
one live instance in one or more generations. (Heap-allocated primitive types include, e.g.,
pairs and vectors, but not, e.g., fixnums or characters.) Object counts are gathered by the
collector only when enable-object-counts is #t. The description of enable-object-counts
details the circumstances under which the counts are accurate.

The association list returned by object-counts has the following structure:

((type (generation count . bytes) ...) ...)

type is either the name of a primitive type, represented as a symbol, e.g., pair, or a
record-type descriptor (rtd). generation is a nonnegative fixnum between 0 and the value
of (collect-maximum-generation), inclusive, or the symbol static representing the static
generation. count and bytes are nonnegative fixnums.

(collect-request-handler void)
(enable-object-counts #t)
(define-record-type frob (fields x))
(define x (make-frob (make-frob #f)))
(collect 3 3)
(cdr (assoc 3

(cdr (assoc (record-type-descriptor frob)
(object-counts))))) ⇒ (2 . 16)

12.12. Cost Centers

Cost centers are used to track the bytes allocated, instructions executed, and/or cpu time
elapsed while evaluating selected sections of code. Cost centers are created via the proce-
dure make-cost-center, and costs are tracked via the procedure with-cost-center.

Allocation and instruction counts are tracked only for code instrumented for that purpose.
This instrumentation is controlled by two parameters: generate-allocation-counts and
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generate-instruction-counts. Instrumentation is disabled by default. Built in procedures
are not instrumented, nor is interpreted code or non-Scheme code. Elapsed time is tracked
only when the optional timed? argument to with-cost-center is provided and is not false.

The with-cost-center procedure accurately tracks costs, subject to the caveats above,
even when reentered with the same cost center, used simultaneously in multiple threads,
and exited or reentered one or more times via continuation invocation.

generate-allocation-counts thread parameter

libraries: (chezscheme)

When this parameter has a true value, the compiler inserts a short sequence of instructions
at each allocation point in generated code to track the amount of allocation that occurs.
This parameter is initially false.

generate-instruction-counts thread parameter

libraries: (chezscheme)

When this parameter has a true value, the compiler inserts a short sequence of instructions
in each block of generated code to track the number of instructions executed by that block.
This parameter is initially false.

(make-cost-center) procedure

returns: a new cost center
libraries: (chezscheme)

The recorded costs of the new cost center are initialized to zero.

(cost-center? obj) procedure

returns: #t if obj is a cost center, otherwise #f

libraries: (chezscheme)

(with-cost-center cost-center thunk) procedure

(with-cost-center timed? cost-center thunk) procedure

returns: see below
libraries: (chezscheme)

thunk must be a procedure that accepts zero arguments. with-cost-center invokes thunk
without arguments and returns its values. It also tracks, dynamically, the bytes allocated,
instructions executed, and cpu time elapsed while evaluating the invocation of thunk and
adds the tracked costs to the cost center’s running record of these costs.

As described above, allocation counts are tracked only for code compiled with the param-
eter generate-allocation-counts set to true, and instruction counts are tracked only for
code compiled with generate-instruction-counts set to true. Cpu time is tracked only
if timed? is provided and not false and includes cpu time spent in instrumented, uninstru-
mented, and non-Scheme code.
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(cost-center-instruction-count cost-center) procedure

returns: the number of instructions tracked by cost-center
libraries: (chezscheme)

(cost-center-allocation-count cost-center) procedure

returns: the number of allocated bytes tracked by cost-center
libraries: (chezscheme)

(cost-center-time cost-center) procedure

returns: the cpu time tracked by cost-center
libraries: (chezscheme)

The cpu time is returned as a time object with time-type time-duration.

(reset-cost-center! cost-center) procedure

returns: unspecified
libraries: (chezscheme)

This procedure resets the costs recorded by cost-center to zero.

12.13. Parameters

This section describes mechanisms for creating and manipulating parameters. New param-

eters may be created conveniently with make-parameter. Nothing distinguishes parameters

from other procedures, however, except for their behavior. If more complicated actions

must be taken when a parameter is invoked than can be accommodated easily through the

make-parameter mechanism, the parameter may be defined directly with case-lambda.

(make-parameter object) procedure

(make-parameter object procedure) procedure

returns: a parameter (procedure)
libraries: (chezscheme)

make-parameter accepts one or two arguments. The first argument is the initial value of

the internal variable, and the second, if present, is a filter applied to the initial value and all

subsequent values. The filter should accept one argument. If the value is not appropriate,

the filter should raise an exception or convert the value into a more appropriate form.

For example, the default value of print-length is defined as follows:
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(define print-length
(make-parameter
#f
(lambda (x)

(unless (or (not x) (and (fixnum? x) (fx>= x 0)))
(assertion-violationf ’print-length

"~s is not a positive fixnum or #f"
x))

x)))

(print-length) ⇒ #f
(print-length 3)
(print-length) ⇒ 3
(format "~s" ’(1 2 3 4 5 6)) ⇒ "(1 2 3 ...)"
(print-length #f)
(format "~s" ’(1 2 3 4 5 6)) ⇒ "(1 2 3 4 5 6)"

The definition of make-parameter is straightforward using case-lambda:

(define make-parameter
(case-lambda
[(init guard)
(let ([v (guard init)])
(case-lambda
[() v]
[(u) (set! v (guard u))]))]

[(init)
(make-parameter init (lambda (x) x))]))

In threaded versions of Chez Scheme, make-parameter creates global parameters. The
procedure make-thread-parameter, described in Section 15.6, may be used to make thread
parameters.

(parameterize ((param expr) ...) body1 body2 ...) syntax

returns: the values of the body body1 body2 ...

libraries: (chezscheme)

Using the syntactic form parameterize, the values of parameters can be changed in a
manner analogous to fluid-let for ordinary variables. Each param is set to the value of the
corresponding expr while the body is evaluated. When control leaves the body by normal
return or by the invocation of a continuation created outside of the body, the parameters
are restored to their original values. If control returns to the body via a continuation
created during the execution of the body, the parameters are again set to their temporary
values.

(define test
(make-parameter 0))

(test) ⇒ 0
(test 1)
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(test) ⇒ 1
(parameterize ([test 2])

(test)) ⇒ 2
(test) ⇒ 1
(parameterize ([test 2])

(test 3)
(test)) ⇒ 3

(test) ⇒ 1
(define k (lambda (x) x))
(begin (set! k (call/cc k))

’k) ⇒ k
(parameterize ([test 2])

(test (call/cc k))
(test)) ⇒ k

(test) ⇒ 1
(k 3) ⇒ 3
(test) ⇒ 1

The definition of parameterize is similar to the definition of fluid-let (page 117):

(define-syntax parameterize
(lambda (x)
(syntax-case x ()

[(_ () b1 b2 ...) #’(begin b1 b2 ...)]
[(_ ((x e) ...) b1 b2 ...)
(with-syntax ([(p ...) (generate-temporaries #’(x ...))]

[(y ...) (generate-temporaries #’(x ...))])
#’(let ([p x] ... [y e] ...)

(let ([swap (lambda ()
(let ([t (p)]) (p y) (set! y t))
...)])

(dynamic-wind swap (lambda () b1 b2 ...) swap))))])))

12.14. Virtual registers

A limited set of virtual registers is supported by the compiler for use by programs that
require high-speed, global, and mutable storage locations. Referencing or assigning a vir-
tual register is potentially faster and never slower than accessing an assignable local or
global variable, and the code sequences for doing so are generally smaller. Assignment is
potentially significantly faster because there is no need to track pointers from the virtual
registers to young objects, as there is for variable locations that might reside in older gen-
erations. On threaded versions of the system, virtual registers are “per thread” and thus
serve as thread-local storage in a manner that is less expensive than thread parameters.

The interface consists of three procedures: virtual-register-count, which returns the
number of virtual registers, set-virtual-register!, which sets the value of a specified
virtual register, and virtual-register, which retrieves the value of a specified virtual
register.
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A virtual register is specified by a nonnegative fixnum index less than the number of virtual

registers. To get optimal performance for set-virtual-register! and virtual-register,

the index should be a constant embedded right in the call (or propagatable via optimization

to the call). To avoid putting these constants in the source code, programmers should

consider using identifier macros to give names to virtual registers, e.g.:

(define-syntax current-state
(identifier-syntax
[id (virtual-register 0)]
[(set! id e) (set-virtual-register! 0 e)]))

(set! current-state ’start)
current-state ⇒ start

A more elaborate macro could dole out indices at compile time and complain when no more

indices are available.

Virtual-registers must be treated as an application-level resource, i.e., libraries intended to

be used by multiple applications should generally not use virtual registers to avoid conflicts

with an application’s use of the registers.

(virtual-register-count) procedure

returns: the number of virtual registers
libraries: (chezscheme)

As of Version 9.0, the number of virtual registers is set at 16. It cannot be changed except

by recompiling Chez Scheme from source.

(set-virtual-register! k x) procedure

returns: unspecified
libraries: (chezscheme)

set-virtual-register! stores x in virtual register k . k must be a nonnegative fixnum less

than the value of (virtual-register-count).

(virtual-register k) procedure

returns: see below
libraries: (chezscheme)

virtual-register returns the value most recently stored in virtual register k (on the

current thread, in threaded versions of the system).
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12.15. Environmental Queries and Settings

(scheme-version) procedure

returns: a version string
libraries: (chezscheme)

The version string is in the form

"Chez Scheme Version version"

for Chez Scheme, and

"Petite Chez Scheme Version version"

for Petite Chez Scheme.

(scheme-version-number) procedure

returns: three values: the major, minor, and sub-minor version numbers
libraries: (chezscheme)

Each of the three return values is a nonnegative fixnum.

In Chez Scheme Version 7.9.4:

(scheme-version-number) ⇒ 7
9
4

(petite?) procedure

returns: #t if called in Petite Chez Scheme, #f otherwise
libraries: (chezscheme)

The only difference between Petite Chez Scheme and Chez Scheme is that the compiler is
not available in the former, so this predicate can serve as a way to determine if the compiler
is available.

(threaded?) procedure

returns: #t if called in a threaded version of the system, #f otherwise
libraries: (chezscheme)

(interactive?) procedure

returns: #t if system is run interactively, #f otherwise
libraries: (chezscheme)

This predicate returns #t if the Scheme process’s stdin and stdout are connected to a tty
(Unix-based systems) or console (Windows). Otherwise, it returns #f.
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(get-process-id) procedure

returns: the operating system process id if the current process
libraries: (chezscheme)

(getenv key) procedure

returns: environment value of key or #f

libraries: (chezscheme)

key must be a string. getenv returns the operating system shell’s environment value
associated with key , or #f if no environment value is associated with key .

(getenv "HOME") ⇒ "/u/freddy"

(putenv key value) procedure

returns: unspecified
libraries: (chezscheme)

key and value must be strings.

putenv stores the key , value pair in the environment of the process, where it is available to
the current process (e.g., via getenv) and any spawned processes. The key and value are
copied into storage allocated outside of the Scheme heap; this space is never reclaimed on
non-Windows systems.

(putenv "SCHEME" "rocks!")
(getenv "SCHEME") ⇒ "rocks!"

(get-registry key) procedure

returns: registry value of key or #f

(put-registry! key val) procedure

(remove-registry! key) procedure

returns: unspecified
libraries: (chezscheme)

key and val must be strings.

get-registry returns a string containing the registry value of key if the value exists. If no
registry value for key exists, get-registry returns #f.

put-registry! sets the registry value of key to val . It raises an exception with condition
type &assertion if the value cannot be set, which may happen if the user has insufficient
access.

remove-registry! removes the registry key or value named by key . It raises an exception
with condition type &assertion if the value cannot be removed. Reasons for failure include
the key not being present, the user having insufficient access, or key being a key with
subkeys.

These routines are defined for Windows only.
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(get-registry "hkey_local_machine\\Software\\North\\South") ⇒ #f
(put-registry! "hkey_local_machine\\Software\\North\\South" "east")
(get-registry "hkey_local_machine\\Software\\North\\South") ⇒ "east"
(remove-registry! "hkey_local_machine\\Software\\North")
(get-registry "hkey_local_machine\\Software\\North\\South") ⇒ #f

12.16. Subset Modes

subset-mode thread parameter

libraries: (chezscheme)

The value of this parameter must be #f (the default) or the symbol system. Setting
subset-mode to system allows the manipulation of various undocumented system variables,
data structures, and settings. It is typically used only for system debugging.





13. Storage Management

This chapter describes aspects of the storage management system and procedures that may
be used to control its operation.

13.1. Garbage Collection

Scheme objects such as pairs, strings, and procedures are never explicitly deallocated by
a Scheme program. Instead, the storage management system automatically reclaims the
storage associated with an object once it proves the object is no longer accessible. In order
to reclaim this storage, Chez Scheme employs a garbage collector which runs periodically as
a program runs. Starting from a set of known roots, e.g., the machine registers, the garbage
collector locates all accessible objects, copies them (in most cases) in order to eliminate
fragmentation between accessible objects, and reclaims storage occupied by inaccessible
objects.

Collections are triggered automatically by the default collect-request handler, which is
invoked via a collect-request interrupt that occurs after approximately n bytes of storage
have been allocated, where n is the value of the parameter collect-trip-bytes. The
default collect-request handler causes a collection by calling the procedure collect without
arguments. The collect-request handler can be redefined by changing the value of the
parameter collect-request-handler. A program can also cause a collection to occur
between collect-request interrupts by calling collect directly.

Chez Scheme’s collector is a generation-based collector. It segregates objects based on
their age (roughly speaking, the number of collections survived) and collects older objects
less frequently than younger objects. Since younger objects tend to become inaccessible
more quickly than older objects, the result is that most collections take little time. The
system also maintains a static generation from which storage is never reclaimed. Objects
are placed into the static generation only when a heap is compacted (see Scompact_heap

in Section 4.8) or when the target-generation argument to collect is the symbol static.

Nonstatic generations are numbered starting at zero for the youngest generation up through
the current value of collect-maximum-generation. The storage manager places newly
allocated objects into generation 0. During a generation 0 collection, objects in generation 0
that survive the collection move, by default, to generation 1. Similarly, during a generation
1 collection, objects in generations 0 and 1 that survive move to generation 2, and so on.
During the collection of the maximum nonstatic collection, all surviving nonstatic objects
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move (possibly back) into the maximum nonstatic generation. With this mechanism, it is
possible for an object to skip one or more generations, but this is not likely to happen to
many objects, and if the objects become inaccessible, their storage is reclaimed eventually.

An internal counter, gc-trip, is maintained to control when each generation is collected.
Each time collect is called without arguments (as from the default collect-request han-
dler), gc-trip is incremented by one. With a collect-generation radix of r, the collected
generation is the highest numbered generation g for which gc-trip is a multiple of rg. If
collect-generation-radix is set to 4, the system thus collects generation 0 every time,
generation 1 every 4 times, generation 2 every 16 times, and so on.

Each time collect is called with a single generation argument g, generation g is collected
and gc-trip is advanced to the next rg boundary, but not past the next rg+1 boundary,
where r is again the value of collect-generation-radix.

If collect is called with a second generation argument, tg, tg determines the target gener-
ation. When g is the maximum nonstatic generation, tg must be g or the symbol static.
Otherwise, tg must be g or g+1. When the target generation is the symbol static, all data
in the nonstatic generations are moved to the static generation. Objects in the static gen-
eration are never collected. This is primarily useful after an application’s permanent code
and data structures have been loaded and initialized, to reduce the overhead of subsequent
collections.

It is possible to make substantial adjustments in the collector’s behavior by setting the
parameters described in this section. It is even possible to completely override the collec-
tor’s default strategy for determining when each generation is collected by redefining the
collect-request handler to call collect with explicit g and tg arguments. For example, the
programmer can redefine the handler to treat the maximum nonstatic generation as a static
generation over a long period of time by calling collect with explicit g and tg arguments
that are never equal to the maximum nonstatic generation during that period of time.

Additional information on Chez Scheme’s collector can be found in the report “Don’t
stop the BiBOP: Flexible and efficient storage management for dynamically typed lan-
guages” [13].

(collect) procedure

(collect g) procedure

(collect g tg) procedure

returns: unspecified
libraries: (chezscheme)

g must be a nonnegative fixnum no greater than the maximum nonstatic generation, i.e., the
value returned by collect-maximum-generation. If g is the maximum nonstatic generation,
tg must be a fixnum equal to g or the symbol static. Otherwise, tg must be a fixnum
equal to or one greater than g .

This procedure causes the storage manager to perform a garbage collection. collect is
invoked periodically via the collect-request handler, but it may also be called explicitly to
force collection at a particular time, e.g., before timing a computation. In the threaded
versions of Chez Scheme, the thread that invokes collect must be the only active thread.
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The system determines which generations to collect, based on g and tg if provided, as

described in the lead-in to this section.

(collect-rendezvous) procedure

returns: unspecified
libraries: (chezscheme)

Requests a garbage collection in the same way as when the system determines that a

collection should occur. All running threads are coordinated so that one of them calls the

collect-request handler, while the other threads pause until the handler returns.

Note that if the collect-request handler (see collect-request-handler) does not call

collect, then collect-rendezvous does not actualy perform a garbage collection.

collect-notify global parameter

libraries: (chezscheme)

If collect-notify is set to a true value, the collector prints a message whenever a collection

is run. collect-notify is set to #f by default.

collect-trip-bytes global parameter

libraries: (chezscheme)

This parameter determines the approximate amount of storage that is allowed to be allo-

cated between garbage collections. Its value must be a positive fixnum.

Chez Scheme allocates memory internally in large chunks and subdivides these chunks

via inline operations for efficiency. The storage manager determines whether to request a

collection only once per large chunk allocated. Furthermore, some time may elapse between

when a collection is requested by the storage manager and when the collect request is

honored, especially if interrupts are temporarily disabled via with-interrupts-disabled

or disable-interrupts. Thus, collect-trip-bytes is an approximate measure only.

collect-generation-radix global parameter

libraries: (chezscheme)

This parameter determines how often each generation is collected when collect is invoked

without arguments, as by the default collect-request handler. Its value must be a positive

fixnum. Generations are collected once every rg times a collection occurs, where r is the

value of collect-generation-radix and g is the generation number.

Setting collect-generation-radix to one forces all generations to be collected each time

a collection occurs. Setting collect-generation-radix to a very large number effectively

delays collection of older generations indefinitely.
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collect-maximum-generation global parameter

libraries: (chezscheme)

This parameter determines the maximum nonstatic generation, hence the total number of
generations, currently in use. Its value is an exact integer in the range 1 through 254.
When set to 1, only two nonstatic generations are used; when set to 2, three nonstatic
generations are used, and so on. When set to 254, 255 nonstatic generations are used,
plus the single static generation for a total of 256 generations. Increasing the number of
generations effectively decreases how often old objects are collected, potentially decreasing
collection overhead but potentially increasing the number of inaccessible objects retained
in the system and thus the total amount of memory required.

collect-request-handler global parameter

libraries: (chezscheme)

The value of collect-request-handler must be a procedure. The procedure is invoked
without arguments whenever the system determines that a collection should occur, i.e.,
some time after an amount of storage determined by the parameter collect-trip-bytes

has been allocated since the last collection.

By default, collect-request-handler simply invokes collect without arguments.

Automatic collection may be disabled by setting collect-request-handler to a procedure
that does nothing, e.g.:

(collect-request-handler void)

Collection can also be temporarily disabled using critical-section, which prevents any
interrupts from occurring.

release-minimum-generation global parameter

libraries: (chezscheme)

This parameter’s value must be between 0 and the value of collect-maximum-generation,
inclusive, and defaults to the value of collect-maximum-generation.

As new data is allocated and collections occur, the storage-management system automati-
cally requests additional virtual memory address space from the operating system. Corre-
spondingly, in the event the heap shrinks significantly, the system attempts to return some
of the virtual-memory previously obtained from the operating system back to the operat-
ing system. By default, the system attempts to do so only after a collection that targets
the maximum nonstatic generation. The system can be asked to do so after collections
targeting younger generations as well by altering the value release-minimum-generation

to something less than the value of collect-maximum-generation. When the generation
to which the parameter is set, or any older generation, is the target generation of a collec-
tion, the storage management system attempts to return unneeded virtual memory to the
operating system following the collection.
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When collect-maximum-generation is set to a new value g , release-minimum-generation
is implicitly set to g as well if (a) the two parameters have the same value before the
change, or (b) release-minimum-generation has a value greater than g .

heap-reserve-ratio global parameter

libraries: (chezscheme)

This parameter determines the approximate amount of memory reserved (not returned to
the O/S as described in the entry for release-minimum-generation) in proportion to the
amount currently occupied, excluding areas of memory that have been made static. Its
value must be an inexact nonnegative flonum value; if set to an exact real value, the exact
value is converted to an inexact value. The default value, 1.0, reserves one page of memory
for each currently occupied nonstatic page. Setting it to a smaller value may result in a
smaller average virtual memory footprint, while setting it to a larger value may result in
fewer calls into the operating system to request and free memory space.

13.2. Weak Pairs, Ephemeron Pairs, and Guardians

Weak pairs allow programs to maintain weak pointers to objects. A weak pointer to an
object does not prevent the object from being reclaimed by the storage management system,
but it does remain valid as long as the object is otherwise accessible in the system.

Ephemeron pairs are like weak pairs, but ephemeron pairs combine two pointers where the
second is retained only as long as the first is retained.

Guardians allow programs to protect objects from deallocation by the garbage collector
and to determine when the objects would otherwise have been deallocated.

Weak pairs, ephemeron pairs, and guardians allow programs to retain information about
objects in separate data structures (such as hash tables) without concern that maintaining
this information will cause the objects to remain indefinitely in the system. Ephemeron
pairs allow such data structures to retain key–value combinations where a value may refer
to its key, but the combination can be reclaimed if neither must be saved otherwise. In
addition, guardians allow objects to be saved from deallocation indefinitely so that they
can be reused or so that clean-up or other actions can be performed using the data stored
within the objects.

The implementation of guardians and weak pairs used by Chez Scheme is described in [12].
Ephemerons are described in [23], but the implementation in Chez Scheme avoids quadratic-
time worst-case behavior.

(weak-cons obj1 obj2) procedure

returns: a new weak pair
libraries: (chezscheme)

obj1 becomes the car and obj2 becomes the cdr of the new pair. Weak pairs are indistin-
guishable from ordinary pairs in all but two ways:
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• weak pairs can be distinguished from pairs using the weak-pair? predicate, and

• weak pairs maintain a weak pointer to the object in the car of the pair.

The weak pointer in the car of a weak pair is just like a normal pointer as long as the

object to which it points is accessible through a normal (nonweak) pointer somewhere in

the system. If at some point the garbage collector recognizes that there are no nonweak

pointers to the object, however, it replaces each weak pointer to the object with the “broken

weak-pointer” object, #!bwp, and discards the object.

The cdr field of a weak pair is not a weak pointer, so weak pairs may be used to form

lists of weakly held objects. These lists may be manipulated using ordinary list-processing

operations such as length, map, and assv. (Procedures like map that produce list structure

always produce lists formed from nonweak pairs, however, even when their input lists are

formed from weak pairs.) Weak pairs may be altered using set-car! and set-cdr!; after a

set-car! the car field contains a weak pointer to the new object in place of the old object.

Weak pairs are especially useful for building association pairs in association lists or hash

tables.

Weak pairs are printed in the same manner as ordinary pairs; there is no reader syntax for

weak pairs. As a result, weak pairs become normal pairs when they are written and then

read.

(define x (cons ’a ’b))
(define p (weak-cons x ’()))
(car p) ⇒ (a . b)

(define x (cons ’a ’b))
(define p (weak-cons x ’()))
(set! x ’*)
(collect)
(car p) ⇒ #!bwp

The latter example above may in fact return (a . b) if a garbage collection promoting the

pair into an older generation occurs prior to the assignment of x to *. It may be necessary

to force an older generation collection to allow the object to be reclaimed. The storage

management system guarantees only that the object will be reclaimed eventually once all

nonweak pointers to it are dropped, but makes no guarantees about when this will occur.

(weak-pair? obj) procedure

returns: #t if obj is a weak pair, #f otherwise
libraries: (chezscheme)

(weak-pair? (weak-cons ’a ’b)) ⇒ #t
(weak-pair? (cons ’a ’b)) ⇒ #f
(weak-pair? "oops") ⇒ #f
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(ephemeron-cons obj1 obj2) procedure

returns: a new ephemeron pair
libraries: (chezscheme)

obj1 becomes the car and obj2 becomes the cdr of the new pair. Ephemeron pairs are

indistinguishable from ordinary pairs in all but two ways:

• ephemeron pairs can be distinguished from pairs using the ephemeron-pair? predi-

cate, and

• ephemeron pairs maintain a weak pointer to the object in the car of the pair, and

the cdr of the pair is preserved only as long as the car of the pair is preserved.

An ephemeron pair behaves like a weak pair, but the cdr is treated specially in addition

to the car: the cdr of an ephemeron is set to #!bwp at the same time that the car is set to

#!bwp. Since the car and cdr fields are set to #!bwp at the same time, then the fact that

the car object may be referenced through the cdr object does not by itself imply that car

must be preserved (unlike a weak pair); instead, the car must be saved for some reason

independent of the cdr object.

Like weak pairs and other pairs, ephemeron pairs may be altered using set-car! and

set-cdr!, and ephemeron pairs are printed in the same manner as ordinary pairs; there is

no reader syntax for ephemeron pairs.

(define x (cons ’a ’b))
(define p (ephemeron-cons x x))
(car p) ⇒ (a . b)
(cdr p) ⇒ (a . b)

(define x (cons ’a ’b))
(define p (ephemeron-cons x x))
(set! x ’*)
(collect)
(car p) ⇒ #!bwp
(cdr p) ⇒ #!bwp

(define x (cons ’a ’b))
(define p (weak-cons x x)) ; not an ephemeron pair
(set! x ’*)
(collect)
(car p) ⇒ (a . b)
(cdr p) ⇒ (a . b)

As with weak pairs, the last two expressions of the middle example above may in fact

return (a . b) if a garbage collection promoting the pair into an older generation occurs

prior to the assignment of x to *. In the last example above, however, the results of the last

two expressions will always be (a . b), because the cdr of a weak pair holds a non-weak

reference, and that non-weak reference prevents the car field from becoming #!bwp.
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(ephemeron-pair? obj) procedure

returns: #t if obj is a ephemeron pair, #f otherwise
libraries: (chezscheme)

(ephemeron-pair? (ephemeron-cons ’a ’b)) ⇒ #t
(ephemeron-pair? (cons ’a ’b)) ⇒ #f
(ephemeron-pair? (weak-cons ’a ’b)) ⇒ #f
(ephemeron-pair? "oops") ⇒ #f

(bwp-object? obj) procedure

returns: #t if obj is the broken weak-pair object, #f otherwise
libraries: (chezscheme)

(bwp-object? #!bwp) ⇒ #t
(bwp-object? ’bwp) ⇒ #f

(define x (cons ’a ’b))
(define p (weak-cons x ’()))
(set! x ’*)
(collect (collect-maximum-generation))
(car p) ⇒ #!bwp
(bwp-object? (car p)) ⇒ #t

(make-guardian) procedure

returns: a new guardian
libraries: (chezscheme)

Guardians are represented by procedures that encapsulate groups of objects registered for
preservation. When a guardian is created, the group of registered objects is empty. An
object is registered with a guardian by passing the object as an argument to the guardian:

(define G (make-guardian))
(define x (cons ’aaa ’bbb))
x ⇒ (aaa . bbb)
(G x)

It is also possible to specify a “representative” object when registering an object. Contin-
uing the above example:

(define y (cons ’ccc ’ddd))
y ⇒ (ccc . ddd)
(G y ’rep)

The group of registered objects associated with a guardian is logically subdivided into
two disjoint subgroups: a subgroup referred to as “accessible” objects, and one referred
to “inaccessible” objects. Inaccessible objects are objects that have been proven to be
inaccessible (except through the guardian mechanism itself or through the car field of a
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weak or ephemeron pair), and accessible objects are objects that have not been proven
so. The word “proven” is important here: it may be that some objects in the accessible
group are indeed inaccessible but that this has not yet been proven. This proof may not be
made in some cases until long after the object actually becomes inaccessible (in the current
implementation, until a garbage collection of the generation containing the object occurs).

Objects registered with a guardian are initially placed in the accessible group and are
moved into the inaccessible group at some point after they become inaccessible. Objects in
the inaccessible group are retrieved by invoking the guardian without arguments. If there
are no objects in the inaccessible group, the guardian returns #f. Continuing the above
example:

(G) ⇒ #f
(set! x #f)
(set! y #f)
(collect)
(G) ⇒ (aaa . bbb) ; this might come out second
(G) ⇒ rep ; and this first
(G) ⇒ #f

The initial call to G returns #f, since the pairs bound to x and y are the only object
registered with G, and the pairs are still accessible through those binding. When collect

is called, the objects shift into the inaccessible group. The two calls to G therefore return
the pair previously bound to x and the representative of the pair previously bound to y,
though perhaps in the other order from the one shown. (As noted above for weak pairs, the
call to collect may not actually be sufficient to prove the object inaccessible, if the object
has migrated into an older generation.)

Although an object registered without a representative and returned from a guardian has
been proven otherwise inaccessible (except possibly via the car field of a weak or ephemeron
pair), it has not yet been reclaimed by the storage management system and will not be
reclaimed until after the last nonweak pointer to it within or outside of the guardian system
has been dropped. In fact, objects that have been retrieved from a guardian have no special
status in this or in any other regard. This feature circumvents the problems that might
otherwise arise with shared or cyclic structure. A shared or cyclic structure consisting of
inaccessible objects is preserved in its entirety, and each piece registered for preservation
with any guardian is placed in the inaccessible set for that guardian. The programmer
then has complete control over the order in which pieces of the structure are processed.

An object may be registered with a guardian more than once, in which case it will be
retrievable more than once:

(define G (make-guardian))
(define x (cons ’aaa ’bbb))
(G x)
(G x)
(set! x #f)
(collect)
(G) ⇒ (aaa . bbb)
(G) ⇒ (aaa . bbb)



400 13. Storage Management

It may also be registered with more than one guardian, and guardians themselves can be

registered with other guardians.

An object that has been registered with a guardian without a representative and placed in

the car field of a weak or ephemeron pair remains in the car field of the weak or ephemeron

pair until after it has been returned from the guardian and dropped by the program or

until the guardian itself is dropped.

(define G (make-guardian))
(define x (cons ’aaa ’bbb))
(define p (weak-cons x ’()))
(G x)
(set! x #f)
(collect)
(set! y (G))
y ⇒ (aaa . bbb)
(car p) ⇒ (aaa . bbb)
(set! y #f)
(collect 1)
(car p) ⇒ #!bwp

(The first collector call above would promote the object at least into generation 1, requiring

the second collector call to be a generation 1 collection. This can also be forced by invoking

collect several times.)

On the other hand, if a representative (other than the object itself) is specified, the guarded

object is dropped from the car field of the weak or ephemeron pair at the same time as the

representative becomes available from the guardian.

(define G (make-guardian))
(define x (cons ’aaa ’bbb))
(define p (weak-cons x ’()))
(G x ’rep)
(set! x #f)
(collect)
(G) ⇒ rep
(car p) ⇒ #!bwp

The following example illustrates that the object is deallocated and the car field of the

weak pair set to #!bwp when the guardian itself is dropped:

(define G (make-guardian))
(define x (cons ’aaa ’bbb))
(define p (weak-cons x ’()))
(G x)
(set! x #f)
(set! G #f)
(collect)
(car p) ⇒ #!bwp

The example below demonstrates how guardians might be used to deallocate external
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storage, such as storage managed by the C library “malloc” and “free” operations.

(define malloc
(let ([malloc-guardian (make-guardian)])
(lambda (size)

; first free any storage that has been dropped. to avoid long
; delays, it might be better to deallocate no more than, say,
; ten objects for each one allocated
(let f ()
(let ([x (malloc-guardian)])

(when x
(do-free x)
(f))))

; then allocate and register the new storage
(let ([x (do-malloc size)])
(malloc-guardian x)
x))))

do-malloc must return a Scheme object “header” encapsulating a pointer to the external

storage (perhaps as an unsigned integer), and all access to the external storage must be

made through this header. In particular, care must be taken that no pointers to the external

storage exist outside of Scheme after the corresponding header has been dropped. do-free

must deallocate the external storage using the encapsulated pointer. Both primitives can

be defined in terms of foreign-alloc and foreign-free or the C-library “malloc” and

“free” operators, imported as foreign procedures. (See Chapter 4.)

If it is undesirable to wait until malloc is called to free dropped storage previously allocated

by malloc, a collect-request handler can be used instead to check for and free dropped

storage, as shown below.

(define malloc)
(let ([malloc-guardian (make-guardian)])

(set! malloc
(lambda (size)

; allocate and register the new storage
(let ([x (do-malloc size)])
(malloc-guardian x)
x)))

(collect-request-handler
(lambda ()

; first, invoke the collector
(collect)
; then free any storage that has been dropped
(let f ()
(let ([x (malloc-guardian)])

(when x
(do-free x)
(f)))))))

With a bit of refactoring, it would be possible to register the encapsulated foreign address
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as a representative with each header, in which do-free would take just the foreign address
as an argument. This would allow the header to be dropped from the Scheme heap as soon
as it becomes inaccessible.

13.3. Locking Objects

All pointers from C variables or data structures to Scheme objects should generally be
discarded before entry (or reentry) into Scheme. When this guideline cannot be fol-
lowed, the object may be locked via lock-object or via the equivalent C library procedure
Slock_object (Section 4.8).

(lock-object obj) procedure

returns: unspecified
libraries: (chezscheme)

Locking an object prevents the storage manager from reclaiming or relocating the object.
Locking should be used sparingly, as it introduces memory fragmentation and increases
storage management overhead.

Locking can also lead to accidental retention of storage if objects are not unlocked. Objects
may be unlocked via unlock-object or the equivalent C library procedure Sunlock_object.

Locking immediate values, such as fixnums, booleans, and characters, or objects that have
been made static is unnecessary but harmless.

(unlock-object obj) procedure

returns: unspecified
libraries: (chezscheme)

An object may be locked more than once by successive calls to lock-object, Slock_object,
or both, in which case it must be unlocked by an equal number of calls to unlock-object

or Sunlock_object before it is truly unlocked.

An object contained within a locked object, such as an object in the car of a locked pair,
need not also be locked unless a separate C pointer to the object exists. That is, if the inner
object is accessed only via an indirection of the outer object, it should be left unlocked so
that the collector is free to relocate it during collection.

Unlocking immediate values, such as fixnums, booleans, and characters, or objects that
have been made static is unnecessary and ineffective but harmless.

(locked-object? obj) procedure

returns: #t if obj is locked, immediate, or static
libraries: (chezscheme)

This predicate returns true if obj cannot be relocated or reclaimed by the collector, includ-
ing immediate values, such as fixnums, booleans, and characters, and objects that have
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been made static.





14. Expression Editor

When the expression editor (expeditor) is enabled as described in Section 2.2, it allows

the user to edit expressions entered into the system and move backwards and forwards

through a history of entered expressions. This chapter describes a set of parameters that

may be used to control various aspects of the expression editor’s behavior (Section 14.1),

a procedure for binding key sequences to editing commands (Section 14.2), the built-in

editing commands (Section 14.3), and mechanisms for creating new editing commands

(Section 14.4).

These mechanisms are available through the expression-editor module.

expression-editor module

libraries: (chezscheme)

The expression-editor module exports a set of bindings for parameters and other pro-

cedures that can be used to modify how the expression editor interacts with the user,

including the particular keys used to invoke the various editing commands.

Basic use of the expression editor is described in Section 2.2.

14.1. Expression Editor Parameters

ee-auto-indent global parameter

The value of ee-auto-indent is a boolean value that determines whether the expression

editor indents expressions as they are entered. Its default value is #t.

ee-standard-indent global parameter

The value of ee-standard-indent is a nonnegative fixnum value that determines the

amount (in single spaces) by which each expression is indented relative to the enclos-

ing expression, if not aligned otherwise by one of the indenter’s other heuristics, when

ee-auto-indent is true or when one of the indentation commands is invoked explicitly. It’s

default value is 2.
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ee-auto-paren-balance global parameter

The value of ee-auto-paren-balance is a boolean value that determines whether the ex-
pression editor automatically corrects a close parenthesis or bracket, when typed, to match
the corresponding open parenthesis or bracket, if any. Its default value is #t.

ee-flash-parens global parameter

The value of ee-flash-parens is a boolean value that determines whether the expression
editor briefly moves the cursor when an open or close parenthesis or bracket is typed to
the matching close or open parenthesis or bracket (if any). Its default value is #t.

ee-paren-flash-delay global parameter

The value of ee-paren-flash-delay is a nonnegative fixnum value that determines the
amount of time (in milliseconds) that the expression editor pauses when the cursor is
moved to the matching parenthesis or bracket, if any, when a parenthesis or bracket is
entered. The value is ignored if the ee-flash-parens is false. Its default value is 100.

ee-default-repeat global parameter

The value of ee-default-repeat is a nonnegative fixnum value that determines the number
of times the next command is repeated after the ee-command-repeat editing command
(bound to Esc-^U by default) is used and not followed by a sequence of digits. It’s default
value is 4.

ee-noisy global parameter

The value of ee-noisy is a boolean value that determines whether the expression editor
emits a beep (bell) when an error occurs, such as an attempt to find the matching delimiter
for a non-delimiter character. Its default value is #f.

ee-history-limit global parameter

The value of ee-history-limit is a nonnegative fixnum value that determines the number
of history entries retained by the expression editor during and across sessions. Only the
last (ee-history-limit) entries are retained.

ee-common-identifiers global parameter

The value of ee-common-identifiers is list of symbols that are considered common enough
that they should appear early when one of the incremental identifier-completion editing
commands is invoked. Its default value contains a few dozen entries. They are all more than
a few characters long (under the theory that users will most likely type short ones out fully)
and all would appear later than they likely should when incremental identifier-completion
is used.
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14.2. Key Binding

Key bindings are established via ee-bind-key. The default key bindings are described in
Section 14.3.

(ee-bind-key key procedure) procedure

returns: unspecified

The ee-bind-key procedure is used to add to or change the set of key bindings recognized
by the expression editor.

The key must be a character or string; if it is a string, it must have the following form.

〈key-string〉 −→ "〈key-char〉+"

where

〈key-char〉 −→ \\e (specifying an escape character)
| ^x (specifying control-x )
| \\^ (specifying caret)
| \\\\ (specifying back slash)
| plain char (any character other than \ or ^)

Note that each double-backslash in the syntax actually denotes just one backslash in the
string.

For example, the key "\\eX" represents the two-character sequence Escape-x, i.e., the
“escape” key followed by the (capital) “X” key. Similarly, they key "\\e^X" represents the
two-character sequence Escape-Control-x, i.e., the “escape” key followed by Control-X.

Character keys and string keys consisting of a single plain character always represent a
single keystroke.

The procedure argument should normally be one of the built-in editing commands described
below. It is also possible to define new editing commands with ee-string-macro and
ee-compose.

14.3. Editing Commands

The editing commands are grouped into sections according to usage. Each is listed along
with the default character sequence or sequences by which it may be invoked.

Insertion commands

command: ee-insert-self

key(s): most printing characters

Inserts the entered character into the entry.
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command: ee-insert-paren

key(s): (, ), [, ]

Inserts the entered parenthesis or bracket into the entry.

If the parameter ee-auto-paren-balance is true, the editor corrects close delimiters if
necessary to balance existing open delimiters, when a matching open delimiter can be
found.

If the parameter ee-flash-parens is true, the editor briefly moves the cursor to the match-
ing delimiter, if one can be found, pausing for an amount of time controlled by the pa-
rameter ee-paren-flash-delay. If the matching delimiter is not presently displayed, the
cursor is flashed to the upper-left or lower-left corner of the displayed portion of the entry,
as appropriate.

The behavior of this command is undefined if used for something other than a parenthesis
or bracket. parentheses and brackets.

command: ee-newline

key(s): none

Inserts a newline at the cursor position, moves to the next line, and indents that line
if the parameter ee-auto-indent is true. Does nothing if the entry is empty. See also
ee-newline/accept.

command: ee-open-line

key(s): ^O

Inserts a newline at the cursor position and indents the next line, but does not move to
the next line.

command: ee-yank-kill-buffer

key(s): ^Y

Inserts the contents of the kill buffer, which is set by the deletion commands described
below.

command: ee-yank-selection

key(s): ^V

Inserts the contents of the window system’s current selection or paste buffer. When running
in a shell window under X Windows, this command requires that the DISPLAY environ-
ment variable be set to the appropriate display.

Cursor movement commands

command: ee-backward-char

key(s): leftarrow, ^B

Moves the cursor left one character.

command: ee-forward-char

key(s): rightarrow, ^F
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Moves the cursor right one character.

command: ee-next-line

key(s): downarrow, ^N

Moves the cursor down one line (and to the left if necessary so that the cursor does not sit
beyond the last possible position). If the cursor is at the end of the current entry, and the
current entry has not been modified, this command behaves like ee-history-fwd.

command: ee-previous-line

key(s): uparrow, ^P

Moves the cursor up one line (and to the left if necessary so that the cursor does not sit
beyond the last possible position). If the cursor is at the top of the current entry, and the
current entry has not been modified, this command behaves like ee-history-bwd.

command: ee-beginning-of-line

key(s): home, ^A

Moves the cursor to the first character of the current line.

command: ee-end-of-line

key(s): end, ^E

Moves the cursor to the right of the last character of the current line.

command: ee-beginning-of-entry

key(s): escape-<

Moves the cursor to the first character of the entry.

command: ee-end-of-entry

key(s): escape->

Moves the cursor to the right of the last character of the entry.

command: ee-goto-matching-delimiter

key(s): escape-]

Moves the cursor to the matching delimiter. Has no effect if the character under the cursor
is not a parenthesis or bracket or if no matching delimiter can be found.

command: ee-flash-matching-delimiter

key(s): ^]

Moves the cursor briefly to the matching delimiter, if one can be found, pausing for an
amount of time controlled by the parameter ee-paren-flash-delay. If the matching de-
limiter is not presently displayed, the cursor is flashed to the upper-left or lower-left corner
of the displayed portion of the entry, as appropriate.

command: ee-exchange-point-and-mark

key(s): ^X-^X
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Moves the cursor to the mark and leaves the mark at the old cursor position. (The mark
can be set with ee-set-mark.)

command: ee-forward-sexp

key(s): escape-^F

Moves the cursor to the start of the next expression.

command: ee-backward-sexp

key(s): escape-^B

Moves the cursor to the start of the preceding expression.

command: ee-forward-word

key(s): escape-f, escape-F

Moves the cursor to the end of the next word.

command: ee-backward-word

key(s): escape-b, escape-B

Moves the cursor to the start of the preceding word.

command: ee-forward-page

key(s): pagedown, ^X-]

Moves the cursor down one screen page.

command: ee-backward-page

key(s): pageup, ^X-[

Moves the cursor up one screen page.

Deletion commands

command: ee-delete-char

key(s): delete

Deletes the character under the cursor.

See also ee-eof/delete-char.

command: ee-backward-delete-char

key(s): backspace (rubout), ^H

Deletes the character to the left of the cursor.

command: ee-delete-line

key(s): ^U

Deletes the contents of the current line, leaving behind an empty line. When used on
the first line of a multiline entry of which only the first line is displayed, i.e., immedi-
ately after history movement, ee-delete-line deletes the contents of the entire entry, like
ee-delete-entry (described below).
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command: ee-delete-to-eol

key(s): ^K, escape-K

If the cursor is at the end of a line, joins the line with the next line, otherwise deletes from
the cursor position to the end of the line.

command: ee-delete-between-point-and-mark

key(s): ^W

Deletes text between the current cursor position and the mark. (The mark can be set with
ee-set-mark.)

command: ee-delete-entry

key(s): ^G

Deletes the contents of the current entry.

command: ee-reset-entry

key(s): ^C

Deletes the contents of the current entry and moves to the end of the history.

command: ee-delete-sexp

key(s): escape-^K, escape-delete

Deletes the expression that starts under the cursor, or if no expression starts under the
cursor, deletes up to the next expression.

command: ee-backward-delete-sexp

key(s): escape-backspace (escape-rubout), escape-^H

Deletes the expression to the left of the cursor.

Identifier/filename completion commands

These commands perform either identifier or filename completion. Identifier completion
is performed outside of a string constant, and filename completion is performed within
a string constant. (In determining whether the cursor is within a string constant, the
expression editor looks only at the current line and so can be fooled by string constants
that span multiple lines.)

command: ee-id-completion

key(s): none

Inserts the common prefix of possible completions of the identifier or filename immediately
to the left of the cursor. Identifier completion is based on the identifiers defined in the
interaction environment. When there is exactly one possible completion, the common
prefix is the completion. This command has no effect if no filename or identifier prefix is
immediately the left of the cursor or if the possible completions have no common prefix. If
run twice in succession, a list of possible completions is displayed.

See also ee-id-completion/indent.
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command: ee-next-id-completion

key(s): ^R

Inserts one of the possible completions of the identifier or filename immediately to the left
of the cursor. Identifier completion is based on the identifiers defined in the interaction
environment. If run twice or more in succession, this command cycles through all of the pos-
sible completions. The order is determined by the following heuristics: appearing first are
identifiers whose names appear in the list value of the parameter ee-common-identifiers;
appearing second are identifiers bound in the interaction environment but not bound in the
scheme-environment (i.e., identifiers defined by the user), and appearing last are those in the
scheme environment. Within the set of matches appearing in the ee-common-identifiers

list, those listed earliest are shown first; the order is alphabetical within the other two sets.

See also ee-next-id-completion/indent.

History movement commands

The expression editor maintains a history of entries during each session. It also saves the
history across sessions unless this behavior is disabled via the command-line argument
“--eehistory off.”

When moving from one history entry to another, only the first line of each multi-line entry
is displayed. The redisplay command (which ^L is bound to by default) can be used to
display the entire entry. It is also possible to move down one line at a time to expose just
part of the rest of the entry.

command: ee-history-bwd

key(s): escape-uparrow, escape-^P

Moves to the preceding history entry if the current entry is empty or has not been modified;
otherwise, has no effect.

See also ee-previous-line.

command: ee-history-fwd

key(s): escape-downarrow, escape-^N

Moves to the next history entry if the current entry is empty or has not been modified;
otherwise, has no effect.

See also ee-next-line.

command: ee-history-bwd-prefix

key(s): escape-p

Moves to the closest previous history entry, if any, that starts with the sequence of char-
acters that makes up the current entry. May be used multiple times to search for same
prefix.

command: ee-history-fwd-prefix

key(s): escape-n
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Moves to the closest following history entry, if any, that starts with the sequence of char-
acters that makes up the current entry. May be used multiple times to search for same
prefix.

command: ee-history-bwd-contains

key(s): escape-P

Moves to the closest previous history entry, if any, that contains within it the sequence of
characters that makes up the current entry. May be used multiple times to search for same
content.

command: ee-history-fwd-contains

key(s): escape-N

Moves to the closest following history entry, if any, that contains within it the sequence of
characters that makes up the current entry. May be used multiple times to search for same
content.

Indentation commands

command: ee-indent

key(s): escape-tab

Re-indents the current line.

See also ee-next-id-completion/indent.

command: ee-indent-all

key(s): escape-q, escape-Q, escape-^Q

Re-indents each line of the entire entry.

Miscellaneous commands

command: ee-accept

key(s): ^J

Causes the expression editor to invoke the Scheme reader on the contents of the entry. If
the read is successful, the expression is returned to the waiter; otherwise, an error message
is printed, the entry redisplayed, and the cursor left (if possible) at the start of the invalid
subform.

See also ee-newline/accept.

command: ee-eof

key(s): none

Causes end-of-file to be returned from the expression editor, which in turn causes the waiter
to exit. Ignored unless entry is empty.

See also ee-eof/delete-char.

command: ee-redisplay

key(s): ^L



414 14. Expression Editor

Redisplays the current expression. If run twice in succession, clears the screen and redis-
plays the expression at the top of the screen.

command: ee-suspend-process

key(s): ^Z

Suspends the current process in shells that support job control.

command: ee-set-mark

key(s): ^@, ^space

Sets the mark to the current cursor position.

command: ee-command-repeat

key(s): escape-^U

Repeats the next command n times. If the next character typed is a digit, n is deter-
mined by reading up the sequence of the digits typed and treating it as a decimal number.
Otherwise, n is the value of the parameter ee-default-repeat.

Combination commands

command: ee-newline/accept

key(s): enter, ^M

Behaves like ee-accept if run at the end (not including whitespace) of an entry that starts
with a balanced expression; otherwise, behaves like ee-newline.

command: ee-id-completion/indent

key(s): tab

Behaves like ee-id-completion if an identifier (outside a string constant) or filename
(within a string constant) appears just to the left of the cursor and the last character
of that identifier or filename was just entered; otherwise, behaves like ee-indent.

If an existing identifier or filename, i.e., not one just typed, appears to the left of the
cursor, the first use of this command behaves like ee-newline, the second consecutive use
behaves like ee-id-completion, and the third behaves like a second consecutive use of
ee-id-completion.

command: ee-next-id-completion/indent

key(s): none

Behaves like ee-next-id-completion if an identifier (outside a string constant) or filename
(within a string constant) appears just to the left of the cursor and the last character of
that identifier or identifier was just entered; otherwise, behaves like ee-indent.

command: ee-eof/delete-char

key(s): ^D

Behaves like ee-delete-char if the entry is nonempty; otherwise, behaves like ee-eof. If
the entry is nonempty and this command is run twice or more in succession, it does nothing
once the entry becomes empty. This is to prevent accidental exit from the waiter in cases
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where the command is run repeatedly (perhaps with the help of a keyboard’s auto-repeat
feature) to delete all of the characters in an entry.

14.4. Creating New Editing Commands

(ee-string-macro string) procedure

returns: a new editing command

The new editing command produced inserts string before the current cursor position.

Two string macros are predefined:

(ee-string-macro "(define ") escape-d
(ee-string-macro "(lambda ") escape-l

(ee-compose ecmd ...) procedure

returns: a new editing command

Each ecmd must be an editing command.

The new editing command runs each of the editing commands ecmd ... in sequence.

For example, the following expression binds ^X-p to an editing command that behaves like
ee-history-bwd-prefix but leaves the cursor at the end of the expression rather than at
the end of the first line, causing the entire entry to be displayed.

(let ()
(import expression-editor)
(ee-bind-key "^Xp"
(ee-compose ee-history-bwd ee-end-of-entry)))

A command such as ee-id-completion that performs a different action when run twice in
succession will not recognize that it has been run twice in succession if run as part of a
composite command.





15. Thread System

This chapter describes the Chez Scheme thread-system procedures and syntactic forms.
With the exception of locks, locked increment, and locked decrement, the features of the
thread system are implemented on top of the Posix thread system (pthreads) on non-
Windows-based system and directly using the Windows API on Windows-based systems.
Consult the appropriate documentation on your system for basic details of thread creation
and interaction.

Most primitive Scheme procedures are thread-safe, meaning that they can be called
concurrently from multiple threads. This includes allocation operations like cons and
make-string, accessors like car and vector-ref, numeric operators like + and sqrt, and
nondestructive higher-level primitive operators like append and map.

Simple mutation operators, like set-car!, vector-set!, and record field mutators are
thread-safe. Likewise, assignments to local variables, including assignments to (unex-
ported) library and top-level program variables are thread-safe.

Other destructive operators are thread safe only if they are used to operate on different
objects from those being read or modified by other threads. For example, assignments to
global variables are thread-safe only as long as one thread does not assign the same variable
another thread references or assigns. Similarly, putprop can be called in one thread while
another concurrently calls putprop or getprop if the symbols whose property lists are being
modified or accessed differ.

In this context, most I/O operations should be considered destructive, since they might
modify a port’s internal structure; see also Section 15.7 for information on buffered ports.

Use of operators that are not thread-safe without proper synchronization can corrupt the
objects upon which they operate. This corruption can lead to incorrect behavior, memory
faults, and even unrecoverable errors that cause the system to abort.

The compiler and interpreter are thread-safe to the extent that user code evaluated during
the compilation and evaluation process is thread-safe or properly synchronized. Thus,
two or more threads can call any of the compiler or interpreter entry points, i.e., compile,
compile-file, compile-program, compile-script, compile-port, or interpret at the same
time. Naturally, the object-file targets of two file compilation operations that run at the
same time should be different. The same is true for eval and load as long as the default
evaluator is used or is set explicitly to compile, interpret, or some other thread-safe
evaluator.

One restriction should be observed when one of multiple threads creates or loads compiled
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code, however, which is that only that thread or subsequently created children, or children

of subsequently created children, etc., should run the code. This is because multiple-

processor systems upon which threaded code may run might not guarantee that the data

and instruction caches are synchronized across processors.

15.1. Thread Creation

(fork-thread thunk) procedure

returns: a thread object
libraries: (chezscheme)

thunk must be a procedure that accepts zero arguments.

fork-thread invokes thunk in a new thread and returns a thread object.

Nothing can be done with the thread object returned by fork-thread, other than to print

it.

Threads created by foreign code using some means other than fork-thread must call

Sactivate_thread (Section 4.8) before touching any Scheme data or calling any Scheme

procedures.

(thread? obj) procedure

returns: #t if obj is a thread object, #f otherwise
libraries: (chezscheme)

(get-thread-id) procedure

returns: the thread id of the current thread
libraries: (chezscheme)

The thread id is a thread number assigned by thread id, and has no relationship to the

process id returned by get-process-id, which is the same in all threads.

15.2. Mutexes

(make-mutex) procedure

returns: a new mutex object
libraries: (chezscheme)

(mutex? obj) procedure

returns: #t if obj is a mutex, #f otherwise
libraries: (chezscheme)
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(mutex-acquire mutex) procedure

(mutex-acquire mutex block?) procedure

returns: see below
libraries: (chezscheme)

mutex must be a mutex.

mutex-acquire acquires the mutex identified by mutex . The optional boolean argument

block? defaults to #t and specifies whether the thread should block waiting for the mutex.

If block? is omitted or is true, the thread blocks until the mutex has been acquired, and

an unspecified value is returned.

If block? is false and the mutex currently belongs to a different thread, the current thread

does not block. Instead, mutex-acquire returns immediately with the value #f to indicate

that the mutex is not available. If block? is false and the mutex is successfully acquired,

mutex-acquire returns #t.

Mutexes are recursive in Posix threads terminology, which means that the calling thread

can use mutex-acquire to (re)acquire a mutex it already has. In this case, an equal number

of mutex-release calls is necessary to release the mutex.

(mutex-release mutex) procedure

returns: unspecified
libraries: (chezscheme)

mutex must be a mutex.

mutex-release releases the mutex identified by mutex . Unpredictable behavior results if

the mutex is not owned by the calling thread.

(with-mutex mutex body1 body2 ...) syntax

returns: the values of the body body1 body2 ...

libraries: (chezscheme)

with-mutex evaluates the expression mutex , which must evaluate to a mutex, acquires

the mutex, evaluates the body body1 body2 ..., and releases the mutex. The mutex is

released whether the body returns normally or via a control operation (that is, throw

to a continuation, perhaps because of an error) that results in a nonlocal exit from the

with-mutex form. If control subsequently returns to the body via a continuation invocation,

the mutex is reacquired.

Using with-mutex is generally more convenient and safer than using mutex-acquire and

mutex-release directly.
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15.3. Conditions

(make-condition) procedure

returns: a new condition object
libraries: (chezscheme)

(thread-condition? obj) procedure

returns: #t if obj is a condition object, #f otherwise
libraries: (chezscheme)

(condition-wait cond mutex) procedure

(condition-wait cond mutex timeout) procedure

returns: #t if the calling thread was awakened by the condition, #f if the calling thread
timed out waiting
libraries: (chezscheme)

cond must be a condition object, and mutex must be a mutex. The optional argument

timeout is a time record of type time-duration or time-utc, or #f for no timeout. It

defaults to #f.

condition-wait waits up to the specified timeout for the condition identified by the con-

dition object cond . The calling thread must have acquired the mutex identified by the

mutex mutex at the time condition-wait is called. mutex is released as a side effect of

the call to condition-wait. When a thread is later released from the condition variable

by one of the procedures described below or the timeout expires, mutex is reacquired and

condition-wait returns.

(condition-signal cond) procedure

returns: unspecified
libraries: (chezscheme)

cond must be a condition object.

condition-signal releases one of the threads waiting for the condition identified by cond .

(condition-broadcast cond) procedure

returns: unspecified
libraries: (chezscheme)

cond must be a condition object.

condition-broadcast releases all of the threads waiting for the condition identified by

cond .
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15.4. Locks

Locks are more primitive but more flexible and efficient than mutexes and can be used

in situations where the added mutex functionality is not needed or desired. They can

also be used independently of the thread system (including in nonthreaded versions of

Chez Scheme) to synchronize operations running in separate Scheme processes as long as

the lock is allocated in memory shared by the processes.

A lock is simply a word-sized integer, i.e., an iptr or uptr foreign type (Section 4.5) with

the native endiannes of the target machine, possibly part of a larger structure defined using

define-ftype (page 77). It must be explicitly allocated in memory that resides outside

the Scheme heap and, when appropriate, explicitly deallocated. When just threads are

involved (i.e., when multiple processes are not involved), the memory can be allocated via

foreign-alloc. When multiple processes are involved, the lock should be allocated in some

area shared by the processes that will interact with the lock.

Once initialized using ftype-init-lock!, a process or thread can attempt to lock the lock

via ftype-lock! or ftype-spin-lock!. Once the lock has been locked and before it is

unlocked, further attempts to lock the lock fail, even by the process or thread that most

recently locked it. Locks can be unlocked, via ftype-unlock!, by any process or thread,

not just by the process or thread that most recently locked the lock.

The lock mechanism provides little structure, and mistakes in allocation and use can lead

to memory faults, deadlocks, and other problems. Thus, it is usually advisable to use

locks only as part of a higher-level abstraction that ensures locks are used in a disciplined

manner.

(define lock
(make-ftype-pointer uptr
(foreign-alloc (ftype-sizeof uptr))))

(ftype-init-lock! uptr () lock)
(ftype-lock! uptr () lock) ⇒ #t
(ftype-lock! uptr () lock) ⇒ #f
(ftype-unlock! uptr () lock)
(ftype-spin-lock! uptr () lock)
(ftype-lock! uptr () lock) ⇒ #f
(ftype-unlock! uptr () lock)
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(ftype-init-lock! ftype-name (a ...) fptr-expr) syntax

(ftype-init-lock! ftype-name (a ...) fptr-expr index) syntax

returns: unspecified
(ftype-lock! ftype-name (a ...) fptr-expr) syntax

(ftype-lock! ftype-name (a ...) fptr-expr index) syntax

returns: #t if the lock is not already locked, #f otherwise
(ftype-spin-lock! ftype-name (a ...) fptr-expr) syntax

(ftype-spin-lock! ftype-name (a ...) fptr-expr index) syntax

returns: unspecified
(ftype-unlock! ftype-name (a ...) fptr-expr) syntax

(ftype-unlock! ftype-name (a ...) fptr-expr index) syntax

returns: unspecified
libraries: (chezscheme)

Each of these has a syntax like and behaves similarly to ftype-set! (page 86), though with

an implicit val-expr . In particular, the restrictions on and handling of fptr-expr and the

accessors a ... is similar, with one important restriction: the field specified by the last

accessor, upon which the form operates, must be a word-size integer, i.e., an iptr, uptr,

or the equivalent, with the native endianness.

ftype-init-lock! should be used to initialize the lock prior to the use of any of the other

operators; if this is not done, the behavior of the other operators is undefined.

ftype-lock! can be used to lock the lock. If it finds the lock unlocked at the time of the

operation, it locks the lock and returns #t; if it finds the lock already locked, it returns #f

without changing the lock.

ftype-spin-lock! can also be used to lock the lock. If it finds the lock unlocked at the

time of the operation, it locks the lock and returns; if it finds the lock already locked,

it waits until the lock is unlocked, then locks the lock and returns. If no other thread

or process unlocks the lock, the operation does not return and cannot be interrupted by

normal means, including by the storage manager for the purpose of initiating a garbage

collection. There are also no guarantees of fairness, so a process might hang indefinitely

even if other processes are actively locking and unlocking the lock.

ftype-unlock! is used to unlock a lock. If it finds the lock locked, it unlocks the lock and

returns. Otherwise, it returns without changing the lock.

15.5. Locked increment and decrement

The locked operations described here can be used when just an atomic increment or decre-

ment is required.
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(ftype-locked-incr! ftype-name (a ...) fptr-expr) syntax

(ftype-locked-incr! ftype-name (a ...) fptr-expr index) syntax

returns: #t if the updated value is 0, #f otherwise
(ftype-locked-decr! ftype-name (a ...) fptr-expr) syntax

(ftype-locked-decr! ftype-name (a ...) fptr-expr index) syntax

returns: #t if the updated value is 0, #f otherwise
libraries: (chezscheme)

Each of these has a syntax like and behaves similarly to ftype-set! (page 86), though with

an implicit val-expr . In particular, the restrictions on and handling of fptr-expr and the

accessors a ... is similar, with one important restriction: the field specified by the last

accessor, upon which the form operates, must be a word-size integer, i.e., an iptr, uptr,

or the equivalent, with the native endianness.

ftype-locked-incr! atomically reads the value of the specified field, adds 1 to the value,

and writes the new value back into the field. Similarly, ftype-locked-decr! atomically

reads the value of the specified field, subtracts 1 from the value, and writes the new value

back into the field. Both return #t if the new value is 0, otherwise #f.

15.6. Thread Parameters

(make-thread-parameter object) procedure

(make-thread-parameter object procedure) procedure

returns: a new thread parameter
libraries: (chezscheme)

See Section 12.13 for a general discussion of parameters and the use of the optional second

argument.

When a thread parameter is created, a separate location is set aside in each current and

future thread to hold the value of the parameter’s internal state variable. (This location

may be eliminated by the storage manager when the parameter becomes inaccessible.)

Changes to the thread parameter in one thread are not seen by any other thread.

When a new thread is created (see fork-thread), the current value (not location) of each

thread parameter is inherited from the forking thread by the new thread. Similarly, when

a thread created by some other means is activated for the first time (see Sactivate_thread

in Section 4.8), the current value (not location) of each thread parameter is inherited from

the main (original) thread by the new thread.

Most built-in parameters are thread parameters, but some are global. All are marked as

global or thread where they are defined. There is no distinction between built-in global

and thread parameters in the nonthreaded versions of the system.
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15.7. Buffered I/O

Chez Scheme buffers file I/O operations for efficiency, but buffered I/O is not thread safe.
Two threads that write to or read from the same buffered port concurrently can corrupt
the port, resulting in buffer overruns and, ultimately, invalid memory references.

Buffering on binary output ports can be disabled when opened with buffer-mode none.
Buffering on input ports cannot be completely disabled, however, due to the need to support
lookahead, and buffering on textual ports, even textual output ports, cannot be disabled
completely because the transcoders that convert between characters and bytes sometimes
require some lookahead.

Two threads should thus never read from or write to the same port concurrently, except
in the special case of a binary output port opened buffer-mode none. Alternatives include
appointing one thread to perform all I/O for a given port and providing a per-thread
generic-port wrapper that forwards requests to the port only after acquiring a mutex.

The initial console and current input and output ports are thread-safe, as are transcript
ports, so it is safe for multiple threads to print error and/or debugging messages to the
console. The output may be interleaved, even within the same line, but the port will
not become corrupted. Thread safety for these ports is accomplished at the high cost of
acquiring a mutex for each I/O operation.

15.8. Example: Bounded Queues

The following code, taken from the article “A Scheme for native threads [10],” implements
a bounded queue using many of the thread-system features. A bounded queue has a fixed
number of available slots. Attempting to enqueue when the queue is full causes the calling
thread to block. Attempting to dequeue from an empty queue causes the calling thread to
block.

(define-record-type bq
(fields
(immutable data)
(mutable head)
(mutable tail)
(immutable mutex)
(immutable ready)
(immutable room))

(protocol
(lambda (new)

(lambda (bound)
(new (make-vector bound) 0 0 (make-mutex)

(make-condition) (make-condition))))))

(define dequeue!
(lambda (q)
(with-mutex (bq-mutex q)

(let loop ()
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(let ([head (bq-head q)])
(cond

[(= head (bq-tail q))
(condition-wait (bq-ready q) (bq-mutex q))
(loop)]

[else
(bq-head-set! q (incr q head))
(condition-signal (bq-room q))
(vector-ref (bq-data q) head)]))))))

(define enqueue!
(lambda (item q)
(with-mutex (bq-mutex q)

(let loop ()
(let* ([tail (bq-tail q)] [tail^ (incr q tail)])

(cond
[(= tail^ (bq-head q))
(condition-wait (bq-room q) (bq-mutex q))
(loop)]
[else
(vector-set! (bq-data q) tail item)
(bq-tail-set! q tail^)
(condition-signal (bq-ready q))]))))))

(define incr
(lambda (q i)
(modulo (+ i 1) (vector-length (bq-data q)))))

The code below demonstrates the use of the bounded queue abstraction with a set of

threads that act as consumers and producers of the data in the queue.

(define job-queue)
(define die? #f)

(define make-job
(let ([count 0])
(define fib

(lambda (n)
(if (< n 2)

n
(+ (fib (- n 2)) (fib (- n 1))))))

(lambda (n)
(set! count (+ count 1))
(printf "Adding job #~s = (lambda () (fib ~s))\n" count n)
(cons count (lambda () (fib n))))))

(define make-producer
(lambda (n)
(rec producer

(lambda ()
(printf "producer ~s posting a job\n" n)
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(enqueue! (make-job (+ 20 (random 10))) job-queue)
(if die?

(printf "producer ~s dying\n" n)
(producer))))))

(define make-consumer
(lambda (n)
(rec consumer

(lambda ()
(printf "consumer ~s looking for a job~%" n)
(let ([job (dequeue! job-queue)])

(if die?
(printf "consumer ~s dying\n" n)
(begin

(printf "consumer ~s executing job #~s~%" n (car job))
(printf "consumer ~s computed: ~s~%" n ((cdr job)))
(consumer))))))))

(define (bq-test np nc)
(set! job-queue (make-bq (max nc np)))
(do ([np np (- np 1)])

((<= np 0))
(fork-thread (make-producer np)))

(do ([nc nc (- nc 1)])
((<= nc 0))
(fork-thread (make-consumer nc))))

Here are a possible first several lines of output from a sample run of the example program.

> (begin
(bq-test 3 4)
(system "sleep 3")
(set! die? #t))

producer 3 posting a job
Adding job #1 = (lambda () (fib 29))
producer 3 posting a job
Adding job #2 = (lambda () (fib 26))
producer 3 posting a job
Adding job #3 = (lambda () (fib 22))
producer 3 posting a job
Adding job #4 = (lambda () (fib 21))
producer 2 posting a job
Adding job #5 = (lambda () (fib 29))
producer 1 posting a job
Adding job #6 = (lambda () (fib 29))
consumer 4 looking for a job
producer 3 posting a job
Adding job #7 = (lambda () (fib 24))
consumer 4 executing job #1
consumer 3 looking for a job
producer 2 posting a job
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Adding job #8 = (lambda () (fib 26))
consumer 3 executing job #2
consumer 3 computed: 121393
consumer 3 looking for a job
producer 1 posting a job
Adding job #9 = (lambda () (fib 26))
...

Additional examples, including definitions of suspendable threads and threads that au-
tomatically terminate when they become inaccessible, are given in “A Scheme for native
threads [10].”





16. Compatibility Features

This chapter describes several items that are included with current versions of Chez Scheme
primarily for compatibility with older versions of the system.

Section 16.1 describes a hash-table interface that has since been replaced by the R6RS
hashtable interface. Section 16.2 describes extend-syntax macros. These features are
supported directly by current versions of Chez Scheme, but support may be dropped in
future versions. New programs should use the standard mechanisms described in The
Scheme Programming Language, 4th Edition [11] instead.

Section 16.3 describes a mechanism for defining record-like structures as vectors instead
of new unique types. New programs should use define-record, which is described in
Section 7.15, instead.

Section 16.4 describes a compatibility file distributed with Chez Scheme that contains
definitions for forms and procedures no longer supported directly by Chez Scheme.

16.1. Hash Tables

The hash table procedures here are obviated by the new hash table procedures listed in
Section 7.12.

(make-hash-table) procedure

(make-hash-table weak?) procedure

returns: a new hash table
libraries: (chezscheme)

If weak? is provided and is non-false, the hash table is a weak hash table, which means
that it does not protect keys from the garbage collector. Keys reclaimed by the garbage
collector are removed from the table, and their associated values are dropped the next time
the table is modified, if not sooner.

(hash-table? obj) procedure

returns: #t if obj is a hash table, otherwise #f

libraries: (chezscheme)
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(put-hash-table! ht k v) procedure

returns: unspecified
libraries: (chezscheme)

ht must be a hash table. k and v may be any Scheme values.

put-hash-table! associates the value v with the key k in ht .

(get-hash-table ht k d) procedure

returns: see below
libraries: (chezscheme)

get-hash-table returns the value associated with k in ht . If no value is associated with k

in ht , get-hash-table returns d .

Key comparisons are performed with eq? .

Because objects may be moved by the garbage collector, get-hash-table may need to

rehash some objects and therefore cause side effects in the hash table. Thus, it is not

safe to perform concurrent accesses of the same hash table from multiple threads using

get-hash-table.

(remove-hash-table! ht k) procedure

returns: unspecified
libraries: (chezscheme)

remove-hash-table! drops any association for k from ht .

(hash-table-map ht p) procedure

returns: see below
libraries: (chezscheme)

hash-table-map applies p to each key, value association in ht , in no particular order, and

returns a list of the resulting values, again in no particular order. p should accept two

arguments, a key and a value.

(hash-table-for-each ht p) procedure

returns: unspecified
libraries: (chezscheme)

hash-table-for-each applies p to each key, value association in ht , in no particular or-

der. Unlike hash-table-map, it does not create a list of the values; instead, it’s value is

unspecified. p should accept two arguments, a key and a value.
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16.2. Extend-Syntax Macros

This section describes extend-syntax, a powerful yet easy to use syntactic extension facility
based on pattern matching [27]. Syntactic transformations written using extend-syntax

are similar to those written using a define-syntax with syntax-case, except that the
transformations produced by extend-syntax do not automatically respect lexical scoping.

It is not typically possible to mix syntactic abstractions written using syntax-case with
those written using extend-syntax seamlessly; it is generally preferable to use one or the
other wherever possible. Support for extend-syntax within the syntax-case expander is
provided only as an aid to migrating to syntax-case.

(extend-syntax (name key ...) (pat fender template) ...) syntax

returns: unspecified
libraries: (chezscheme)

The identifier name is the name, or syntax keyword, for the syntactic extension to be
defined. When the system expander processes any list expression whose car is name,
the syntactic transformation procedure generated by extend-syntax is invoked on this
expression. The remaining identifiers key ... are additional keywords to be recognized
within input expressions during expansion (such as else in cond or case).

Each clause after the list of keys consists of a pattern pat , an optional fender , and a
template. The optional fender is omitted more often than not. The pat specifies the
syntax the input expression must have for the clause to be chosen. Identifiers within the
pattern that are not keywords (pattern variables) are bound to corresponding pieces of the
input expression. If present, the fender is a Scheme expression that specifies additional
constraints on the input expression (accessed through the pattern variables) that must be
satisfied in order for the clause to be chosen. The template specifies what form the output
takes, usually in terms of the pattern variables.

During expansion, the transformation procedure extend-syntax generates attempts to
match the input expression against each pattern in the order the clauses are given. If
the input expression matches the pattern, the pattern variables are bound to the corre-
sponding pieces of the input expression and the fender for the clause, if any, is evaluated.
If the fender returns a true value, the given expansion is performed. If input does not
match the pattern or if the fender returns a false value, the transformation procedure tries
the next clause. An exception is raised with condition type &assertion if no clause can be
chosen.

Within the pattern, ellipsis (...) may be used to specify zero or more occurrences of the
preceding pattern fragment, or prototype. Similarly, ellipses may be used in the output to
specify the construction of zero or more expansion prototypes. In this case, the expansion
prototype must contain part of an input pattern prototype. The use of patterns, templates,
ellipses within patterns and templates, and fenders is illustrated in the following sequence
of examples.

The first example, defining rec, uses a single keyword, a single clause with no fender, and
no ellipses.
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(extend-syntax (rec)
[(rec id val)
(let ([id #f])

(set! id val)
id)])

The second example, defining when, shows the use of ellipses.

(extend-syntax (when)
[(when test exp1 exp2 ...)
(if test (begin exp1 exp2 ...) #f)])

The next example shows the definition of let. The definition of let shows the use of

multiple ellipses, employing one for the identifier/value pairs and one for the expressions in

the body. It also shows that the prototype need not be a single identifier, and that pieces

of the prototype may be separated from one another in the template.

(extend-syntax (let)
[(let ([x e] ...) b1 b2 ...)
((lambda (x ...) b1 b2 ...) e ...)])

The next example shows let*, whose syntax is the same as for let, but which is defined

recursively in terms of let with two clauses (one for the base case, one for the recursion

step) since it must produce a nested structure.

(extend-syntax (let*)
[(let* () b1 b2 ...)
(let () b1 b2 ...)]
[(let* ([x e] more ...) b1 b2 ...)
(let ([x e]) (let* (more ...) b1 b2 ...))])

The first pattern/template pair matches any let* expression with no identifier/value pairs

and maps it into the equivalent begin expression. This is the base case. The second

pattern/template pair matches any let* expression with one or more identifier/value pairs

and transforms it into a let expression binding the first pair whose body is a let* expression

binding the remaining pairs. This is the recursion step, which will eventually lead us to

the base case because we remove one identifier/value pair at each step. Notice that the

second pattern uses the pattern variable more for the second and later identifier/value pairs;

this makes the pattern and template less cluttered and makes it clear that only the first

identifier/value pair is dealt with explicitly.

The definition for and requires three clauses. The first clause is necessary to recognize

(and), and the second two define all other and forms recursively.

(extend-syntax (and)
[(and) #t]
[(and x) x]
[(and x y ...) (if x (and y ...) #f)])

The definition for cond requires four clauses. As with let*, cond must be described re-
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cursively, partly because it produces nested if expressions, and partly because one ellipsis
prototype would not be sufficient to describe all possible cond clauses. The definition of
cond also requires that we specify else as a keyword, in addition to cond. Here is the
definition:

(extend-syntax (cond else)
[(cond) #f]
[(cond (else e1 e2 ...))
(begin e1 e2 ...)]
[(cond (test) more ...)
(or test (cond more ...))]
[(cond (test e1 e2 ...) more ...)
(if test

(begin e1 e2 ...)
(cond more ...))])

Two of the clauses are base cases and two are recursion steps. The first base case is an empty
cond. The value of cond in this case is unspecified, so the choice of #f is somewhat arbitrary.
The second base case is a cond containing only an else clause; this is transformed to the
equivalent begin expression. The two recursion steps differ in the number of expressions
in the cond clause. The value of cond when the first true clause contains only the test
expression is the value of the test. This is similar to what or does, so we expand the cond

clause into an or expression. On the other hand, when there are expressions following the
test expression, the value of the last expression is returned, so we use if and begin.

To be absolutely correct about the syntax of let, we actually must require that the bound
identifiers in the input are symbols. If we typed something like (let ([3 x]) x) we would
not get an error from let because it does not check to verify that the objects in the identifier
positions are symbols. Instead, lambda may complain, or perhaps the system evaluator long
after expansion is complete. This is where fenders are useful.

(extend-syntax (let)
[(let ([x e] ...) b1 b2 ...)
(andmap symbol? ’(x ...))
((lambda (x ...) b1 b2 ...) e ...)])

The andmap of symbol? over ’(x ...) assures that each bound identifier is a symbol. A
fender is simply a Scheme expression. Within that expression, any quoted object is first
expanded by the same rules as the template part of the clause. In this case, ’(x ...) is
expanded to the list of identifiers from the identifier/value pairs.

extend-syntax typically handles everything you need it for, but some syntactic exten-
sion definitions require the ability to include the result of evaluating an arbitrary Scheme
expression. This ability is provided by with.

(with ((pat expr) ...) template) syntax

returns: processed template

with is valid only within an template inside of extend-syntax. with patterns are the same
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as extend-syntax patterns, with expressions are the same as extend-syntax fenders, and
with templates are the same as extend-syntax templates.

with can be used to introduce new pattern identifiers bound to expressions produced by
arbitrary Scheme expressions within extend-syntax templates. That is, with allows an
escape from the declarative style of extend-syntax into the procedural style of full Scheme.

One common use of with is the introduction of a temporary identifier or list of temporary
identifiers into a template. with is also used to perform complex transformations that
might be clumsy or inefficient if performed within the extend-syntax framework.

For example, or requires the use of a temporary identifier. We could define or as follows.

(extend-syntax (or)
[(or) #f]
[(or x) x]
[(or x y ...)
(let ([temp x])

(if temp temp (or y ...)))])

This would work until we placed an or expression within the scope of an occurrence of temp,
in which case strange things could happen, since extend-syntax does not respect lexical
scoping. (This is one of the reasons that define-syntax is preferable to extend-syntax.)

(let ([temp #t])
(or #f temp)) ⇒ #f

One solution is to use gensym and with to create a temporary identifier, as follows.

(extend-syntax (or)
[(or) #f]
[(or x) x]
[(or x y ...)
(with ([temp (gensym)])

(let ([temp x])
(if temp temp (or y ...))))])

Also, with can be used to combine elements of the input pattern in ways not possible
directly with extend-syntax, such as the following folding-plus example.

(extend-syntax (folding-plus)
[(folding-plus x y)
(and (number? ’x) (number? ’y))
(with ([val (+ ’x ’y)])

val)]
[(folding-plus x y) (+ x y)])

folding-plus collapses into the value of (+ x y) if both x and y are numeric constants.
Otherwise, folding-plus is transformed into (+ x y) for later evaluation. The fender
checks that the operands are numbers at expansion time, and the with performs the eval-
uation. As with fenders, expansion is performed only within a quoted expressions, since
quote sets the data apart from the remainder of the Scheme expression.
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The example below binds a list of pattern variables to a list of temporary symbols, taking
advantage of the fact that with allows us to bind patterns to expressions. This list of
temporaries helps us to implement the sigma syntactic extension. sigma is similar to lambda,
except it assigns the identifiers in the identifier list instead of creating new bindings. It
may be used to perform a series of assignments in parallel.

(extend-syntax (sigma)
[(sigma (x ...) e1 e2 ...)
(with ([(t ...) (map (lambda (x) (gensym)) ’(x ...))])

(lambda (t ...)
(set! x t) ...
e1 e2 ...))])

(let ([x ’a] [y ’b])
((sigma (x y) (list x y)) y x)) ⇒ (b a)

The final example below uses extend-syntax to implement define-structure, following a
similar example using syntax-case in Section 8.4 of The Scheme Programming Language,
4th Edition.

The definition of define-structure makes use of two pattern/template clauses. Two
clauses are needed to handle the optionality of the second subexpression. The first clause
matches the form without the second subexpression and merely converts it into the equiv-
alent form with the second subexpression present, but empty.

The definition also makes heavy use of with to evaluate Scheme expressions at expansion
time. The first four with clauses are used to manufacture the identifiers that name the
automatically defined procedures. (The procedure format is particularly useful here, but
it could be replaced with string-append!, using symbol->string as needed.) The first two
clauses yield single identifiers (for the constructor and predicate), while the next two yield
lists of identifiers (for the field access and assignment procedures). The fifth with clause
(the final clause in the outer with) is used to count the total length vector needed for each
instance of the structure, which must include room for the name and all of the fields. The
final with clause (the only clause in the inner with) is used to create a list of vector indexes,
one for each field (starting at 1, since the structure name occupies position 0).

(extend-syntax (define-structure)
[(define-structure (name id1 ...))
(define-structure (name id1 ...) ())]
[(define-structure (name id1 ...) ([id2 val] ...))
(with ([constructor

(string->symbol (format "make-~a" ’name))]
[predicate
(string->symbol (format "~a?" ’name))]

[(access ...)
(map (lambda (x)

(string->symbol
(format "~a-~a" ’name x)))

’(id1 ... id2 ...))]
[(assign ...)
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(map (lambda (x)
(string->symbol
(format "set-~a-~a!" ’name x)))

’(id1 ... id2 ...))]
[count (length ’(name id1 ... id2 ...))])

(with ([(index ...)
(let f ([i 1])
(if (= i ’count)

’()
(cons i (f (+ i 1)))))])

(begin
(define constructor

(lambda (id1 ...)
(let* ([id2 val] ...)
(vector ’name id1 ... id2 ...))))

(define predicate
(lambda (obj)
(and (vector? obj)

(= (vector-length obj) count)
(eq? (vector-ref obj 0) ’name))))

(define access
(lambda (obj)
(vector-ref obj index)))

...
(define assign

(lambda (obj newval)
(vector-set! obj index newval)))

...)))])

16.3. Structures

This section describes a mechanism, similar to the record-defining mechanisms of Sec-
tion 7.15, that permits the creation of data structures with fixed sets of named fields.
Unlike record types, structure types are not unique types, but are instead implemented as
vectors. Specifically, a structure is implemented as a vector whose length is one more than
the number of fields and whose first element contains the symbolic name of the structure.

The representation of structures as vectors simplifies reading and printing of structures
somewhat as well as extension of the structure definition facility. It does, however, have
some drawbacks. One is that structures may be treated as ordinary vectors by mistake in
situations where doing so is inappropriate. When dealing with both structures and vectors
in a program, care must be taken to look for the more specific structure type before checking
for the more generic vector type, e.g., in a series of cond clauses. A similar drawback is
that structure instances are easily “forged,” either intentionally or by accident. It is also
impossible to control how structures are printed and read.

Structures are created via define-structure. Each structure definition defines a construc-
tor procedure, a type predicate, an access procedure for each of its fields, and an assignment
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procedure for each of its fields. define-structure allows the programmer to control which
fields are arguments to the generated constructor procedure and which fields are explicitly
initialized by the constructor procedure.

define-structure is simple yet powerful enough for most applications, and it is easily
extended to handle many applications for which it is not sufficient. The definition of
define-structure given at the end of this section can serve as a starting point for more
complicated variants.

(define-structure (name id1 ...) ((id2 expr) ...)) syntax

returns: unspecified
libraries: (chezscheme)

A define-structure form is a definition and may appear anywhere and only where other
definitions may appear.

define-structure defines a new data structure, name, and creates a set of procedures for
creating and manipulating instances of the structure. The identifiers id1 ... and id2 ...

name the fields of the data structure.

The following procedures are defined by define-structure:

• a constructor procedure whose name is make-name,

• a type predicate whose name is name?,

• an access procedure whose name is name-field for each field name id1 ... and
id2 ..., and

• an assignment procedure whose name is set-name-field! for each field name id1 ...

and id2 ....

The fields named by the identifiers id1 ... are initialized by the arguments to the con-
structor procedure. The fields named by the identifiers id2 ... are initialized explicitly to
the values of the expressions expr .... Each expression is evaluated within the scope of
the identifiers id1 ... (bound to the corresponding field values) and any of the identifiers
id2 ... (bound to the corresponding field values) appearing before it (as if within a let*).

To clarify, the constructor behaves as if defined as

(define make-name
(lambda (id1 ...)
(let* ([id2 expr] ...)

body)))

where body builds the structure from the values of the identifiers id1 ... and id2 ....

If no fields other than those initialized by the arguments to the constructor procedure are
needed, the second subexpression, ((id2 expr) ...), may be omitted.

The following simple example demonstrates how pairs might be defined in Scheme if they
did not already exist. Both fields are initialized by the arguments to the constructor
procedure.
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(define-structure (pare car cdr))
(define p (make-pare ’a ’b))

(pare? p) ⇒ #t
(pair? p) ⇒ #f
(pare? ’(a . b)) ⇒ #f

(pare-car p) ⇒ a
(pare-cdr p) ⇒ b

(set-pare-cdr! p (make-pare ’b ’c))

(pare-car (pare-cdr p)) ⇒ b
(pare-cdr (pare-cdr p)) ⇒ c

The following example defines a handy string data structure, called a stretch-string, that

grows as needed. This example uses a field explicitly initialized to a value that depends on

the value of the constructor argument fields.

(define-structure (stretch-string length fill)
([string (make-string length fill)]))

(define stretch-string-ref
(lambda (s i)
(let ([n (stretch-string-length s)])

(when (>= i n) (stretch-stretch-string! s (+ i 1) n))
(string-ref (stretch-string-string s) i))))

(define stretch-string-set!
(lambda (s i c)
(let ([n (stretch-string-length s)])

(when (>= i n) (stretch-stretch-string! s (+ i 1) n))
(string-set! (stretch-string-string s) i c))))

(define stretch-string-fill!
(lambda (s c)
(string-fill! (stretch-string-string s) c)
(set-stretch-string-fill! s c)))

(define stretch-stretch-string!
(lambda (s i n)
(set-stretch-string-length! s i)
(let ([str (stretch-string-string s)]

[fill (stretch-string-fill s)])
(let ([xtra (make-string (- i n) fill)])
(set-stretch-string-string! s

(string-append str xtra))))))

As often happens, most of the procedures defined automatically are used only to de-

fine more specialized procedures, in this case the procedures stretch-string-ref and

stretch-string-set!. stretch-string-length and stretch-string-string are the only

automatically defined procedures that are likely to be called directly in code that uses
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stretch strings.

(define ss (make-stretch-string 2 #\X))

(stretch-string-string ss) ⇒ "XX"
(stretch-string-ref ss 3) ⇒ #\X
(stretch-string-length ss) ⇒ 4
(stretch-string-string ss) ⇒ "XXXX"

(stretch-string-fill! ss #\@)
(stretch-string-string ss) ⇒ "@@@@"
(stretch-string-ref ss 5) ⇒ #\@
(stretch-string-string ss) ⇒ "@@@@@@"

(stretch-string-set! ss 7 #\=)
(stretch-string-length ss) ⇒ 8
(stretch-string-string ss) ⇒ "@@@@@@@="

Section 8.4 of The Scheme Programming Language, 4th Edition defines a simplified variant

of define-structure as an example of the use of syntax-case. The definition given below

implements the complete version.

define-structure expands into a series of definitions for names generated from the struc-

ture name and field names. The generated identifiers are created with datum->syntax

to make the identifiers visible where the define-structure form appears. Since a

define-structure form expands into a begin containing definitions, it is itself a defini-

tion and can be used wherever definitions are valid.

(define-syntax define-structure
(lambda (x)
(define gen-id

(lambda (template-id . args)
(datum->syntax template-id

(string->symbol
(apply string-append

(map (lambda (x)
(if (string? x)

x
(symbol->string

(syntax->datum x))))
args))))))

(syntax-case x ()
((_ (name field1 ...))
(andmap identifier? #’(name field1 ...))
#’(define-structure (name field1 ...) ()))

((_ (name field1 ...) ((field2 init) ...))
(andmap identifier? #’(name field1 ... field2 ...))
(with-syntax
((constructor (gen-id #’name "make-" #’name))
(predicate (gen-id #’name #’name "?"))
((access ...)
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(map (lambda (x) (gen-id x #’name "-" x))
#’(field1 ... field2 ...)))

((assign ...)
(map (lambda (x) (gen-id x "set-" #’name "-" x "!"))

#’(field1 ... field2 ...)))
(structure-length
(+ (length #’(field1 ... field2 ...)) 1))

((index ...)
(let f ([i 1] [ids #’(field1 ... field2 ...)])
(if (null? ids)

’()
(cons i (f (+ i 1) (cdr ids)))))))

#’(begin
(define constructor
(lambda (field1 ...)

(let* ([field2 init] ...)
(vector ’name field1 ... field2 ...))))

(define predicate
(lambda (x)

(and (vector? x)
(#3%fx= (vector-length x) structure-length)
(eq? (vector-ref x 0) ’name))))

(define access (lambda (x) (vector-ref x index)))
...
(define assign

(lambda (x update) (vector-set! x index update)))
...))))))

16.4. Compatibility File

Current versions of Chez Scheme are distributed with a compatibility file containing
definitions of various syntactic forms and procedures supported by earlier versions of
Chez Scheme for which support has since been dropped. This file, compat.ss, is typi-
cally installed in the library subdirectory of the Chez Scheme installation directory.

In some cases, the forms and procedures found in compat.ss have been dropped because
they were infrequently used and easily written directly in Scheme. In other cases, the forms
and procedures have been rendered obsolete by improvements in the system. In such cases,
new code should be written to use the newer features, and older code should be rewritten
if possible to use the newer features as well.
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Summary of Forms

The table that follows summarizes the syntactic forms and procedures described in this
book along with standard Scheme syntactic forms and procedures. It shows each item’s
category and the page number where it is defined. Page numbers prefixed by “t” refer to
The Scheme Programming Language, 4th Edition (TSPL4).

Form Category Page

’obj syntax t141
‘obj syntax t142
,obj syntax t142
,@obj syntax t142
=> syntax t112
_ syntax t297
... syntax t297
#’template syntax t300
#‘template syntax t305
#,template syntax t305
#,@template syntax t305
#%variable syntax 348
#2%variable syntax 348
#3%variable syntax 348
($primitive variable) syntax 348
($primitive 2 variable) syntax 348
($primitive 3 variable) syntax 348
$system module 305
&assertion syntax t366
&condition syntax t362
&continuation syntax 319
&error syntax t367
&format syntax 318
&i/o syntax t371
&i/o-decoding syntax t375
&i/o-encoding syntax t376
&i/o-file-already-exists syntax t374
&i/o-file-does-not-exist syntax t374
&i/o-file-is-read-only syntax t374
&i/o-file-protection syntax t373
&i/o-filename syntax t373
&i/o-invalid-position syntax t372
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&i/o-port syntax t375
&i/o-read syntax t372
&i/o-write syntax t372
&implementation-restriction syntax t369
&irritants syntax t368
&lexical syntax t370
&message syntax t368
&no-infinities syntax t376
&no-nans syntax t377
&non-continuable syntax t369
&serious syntax t366
&source syntax 318
&syntax syntax t370
&undefined syntax t371
&violation syntax t366
&warning syntax t367
&who syntax t369
(* num ...) procedure t172
(+ num ...) procedure t171
(- num) procedure t172
(- num1 num2 num3 ...) procedure t172
(-1+ num) procedure 207
(/ num) procedure t172
(/ num1 num2 num3 ...) procedure t172
(1+ num) procedure 207
(1- num) procedure 207
(< real1 real2 real3 ...) procedure 206
(< real1 real2 real3 ...) procedure t170
(<= real1 real2 real3 ...) procedure 206
(<= real1 real2 real3 ...) procedure t170
(= num1 num2 num3 ...) procedure 206
(= num1 num2 num3 ...) procedure t170
(> real1 real2 real3 ...) procedure 206
(> real1 real2 real3 ...) procedure t170
(>= real1 real2 real3 ...) procedure 206
(>= real1 real2 real3 ...) procedure t170
(abort) procedure 366
(abort obj ) procedure 366
abort-handler thread param 366
(abs real) procedure t178
(acos num) procedure t185
(acosh num) procedure 210
(add-duration time timed) procedure 372
(add-duration! time timed) procedure 372
add-prefix syntax 304
(add1 num) procedure 207
alias syntax 304
(alias id1 id2) syntax 308
(and expr ...) syntax t110
(andmap procedure list1 list2 ...) procedure 125
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(angle num) procedure t183
(annotation-expression annotation) procedure 311
(annotation-option-set symbol ...) syntax 313
(annotation-options annotation) procedure 312
(annotation-source annotation) procedure 311
(annotation-stripped annotation) procedure 312
(annotation? obj ) procedure 311
(append) procedure t160
(append list ... obj ) procedure t160
(append! list ...) procedure 137
(apply procedure obj ... list) procedure t107
(apropos s) procedure 327
(apropos s env) procedure 327
(apropos-list s) procedure 327
(apropos-list s env) procedure 327
(ash int count) procedure 202
(asin num) procedure t185
(asinh num) procedure 210
(assert expression) syntax t359
(assertion-violation who msg irritant ...) procedure t358
(assertion-violation? obj ) procedure t366
(assertion-violationf who msg irritant ...) procedure 318
(assoc obj alist) procedure t165
(assp procedure alist) procedure t166
(assq obj alist) procedure t165
(assv obj alist) procedure t165
(atan num) procedure t185
(atan real1 real2) procedure t185
(atanh num) procedure 210
(atom? obj ) procedure 133
base-exception-handler thread param 320
(begin expr1 expr2 ...) syntax t108
(bignum? obj ) procedure 188
(binary-port-input-buffer binary-input-port) procedure 217
(binary-port-input-count binary-input-port) procedure 218
(binary-port-input-index binary-input-port) procedure 217
(binary-port-input-size binary-input-port) procedure 217
(binary-port-output-buffer output-port) procedure 219
(binary-port-output-count binary-output-port) procedure 220
(binary-port-output-index output-port) procedure 219
(binary-port-output-size output-port) procedure 219
(binary-port? obj ) procedure t270
(bitwise-and exint ...) procedure t186
(bitwise-arithmetic-shift exint1 exint2) procedure t190
(bitwise-arithmetic-shift-left exint1 exint2) procedure t189
(bitwise-arithmetic-shift-right exint1 exint2) procedure t189
(bitwise-bit-count exint) procedure t187
(bitwise-bit-field exint1 exint2 exint3) procedure t189
(bitwise-bit-set? exint1 exint2) procedure t188
(bitwise-copy-bit exint1 exint2 exint3) procedure t188
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(bitwise-copy-bit-field exint1 exint2 exint3 exint4) procedure t189
(bitwise-first-bit-set exint) procedure t187
(bitwise-if exint1 exint2 exint3) procedure t186
(bitwise-ior exint ...) procedure t186
(bitwise-length exint) procedure t187
(bitwise-not exint) procedure t186
(bitwise-reverse-bit-field exint1 exint2 exint3) procedure t191
(bitwise-rotate-bit-field exint1 exint2 exint3 exint4) procedure t190
(bitwise-xor exint ...) procedure t186
(block-read textual-input-port string) procedure 233
(block-read textual-input-port string count) procedure 233
(block-write textual-output-port string) procedure 240
(block-write textual-output-port string count) procedure 240
(boolean=? boolean1 boolean2) procedure t243
(boolean? obj ) procedure t150
(bound-identifier=? identifier1 identifier2) procedure t302
(box obj ) procedure 150
(box-immutable obj ) procedure 151
(box? obj ) procedure 150
(break who msg irritant ...) procedure 321
(break who) procedure 321
(break) procedure 321
break-handler thread param 322
(buffer-mode symbol) syntax t261
(buffer-mode? obj ) syntax t262
(bwp-object? obj ) procedure 398
(bytes-allocated) procedure 377
(bytes-allocated g) procedure 377
(bytes-deallocated) procedure 378
(bytevector fill ...) procedure 146
(bytevector->immutable-bytevector bytevector) procedure 149
(bytevector->s8-list bytevector) procedure 146
(bytevector->sint-list bytevector eness size) procedure t238
(bytevector->string bytevector transcoder) procedure t286
(bytevector->u8-list bytevector) procedure t232
(bytevector->uint-list bytevector eness size) procedure t238
(bytevector-compress bytevector) procedure 149
(bytevector-copy bytevector) procedure t229
(bytevector-copy! src src-start dst dst-start n) procedure t230
(bytevector-fill! bytevector fill) procedure t229
(bytevector-ieee-double-native-ref bytevector n) procedure t239
(bytevector-ieee-double-native-set! bytevector n x) procedure t239
(bytevector-ieee-double-ref bytevector n eness) procedure t240
(bytevector-ieee-double-set! bytevector n x eness) procedure t240
(bytevector-ieee-single-native-ref bytevector n) procedure t239
(bytevector-ieee-single-native-set! bytevector n x) procedure t239
(bytevector-ieee-single-ref bytevector n eness) procedure t240
(bytevector-ieee-single-set! bytevector n x eness) procedure t240
(bytevector-length bytevector) procedure t229
(bytevector-s16-native-ref bytevector n) procedure t232
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(bytevector-s16-native-set! bytevector n s16) procedure t233
(bytevector-s16-ref bytevector n eness) procedure t235
(bytevector-s16-set! bytevector n s16 eness) procedure t236
(bytevector-s24-ref bytevector n eness) procedure 148
(bytevector-s24-set! bytevector n s24 eness) procedure 148
(bytevector-s32-native-ref bytevector n) procedure t232
(bytevector-s32-native-set! bytevector n s32) procedure t233
(bytevector-s32-ref bytevector n eness) procedure t235
(bytevector-s32-set! bytevector n s32 eness) procedure t236
(bytevector-s40-ref bytevector n eness) procedure 148
(bytevector-s40-set! bytevector n s40 eness) procedure 148
(bytevector-s48-ref bytevector n eness) procedure 148
(bytevector-s48-set! bytevector n s48 eness) procedure 148
(bytevector-s56-ref bytevector n eness) procedure 148
(bytevector-s56-set! bytevector n s56 eness) procedure 148
(bytevector-s64-native-ref bytevector n) procedure t232
(bytevector-s64-native-set! bytevector n s64) procedure t233
(bytevector-s64-ref bytevector n eness) procedure t235
(bytevector-s64-set! bytevector n s64 eness) procedure t236
(bytevector-s8-ref bytevector n) procedure t231
(bytevector-s8-set! bytevector n s8) procedure t231
(bytevector-sint-ref bytevector n eness size) procedure t237
(bytevector-sint-set! bytevector n sint eness size) procedure t238
(bytevector-truncate! bytevector n) procedure 147
(bytevector-u16-native-ref bytevector n) procedure t232
(bytevector-u16-native-set! bytevector n u16) procedure t233
(bytevector-u16-ref bytevector n eness) procedure t235
(bytevector-u16-set! bytevector n u16 eness) procedure t236
(bytevector-u24-ref bytevector n eness) procedure 148
(bytevector-u24-set! bytevector n u24 eness) procedure 148
(bytevector-u32-native-ref bytevector n) procedure t232
(bytevector-u32-native-set! bytevector n u32) procedure t233
(bytevector-u32-ref bytevector n eness) procedure t235
(bytevector-u32-set! bytevector n u32 eness) procedure t236
(bytevector-u40-ref bytevector n eness) procedure 148
(bytevector-u40-set! bytevector n u40 eness) procedure 148
(bytevector-u48-ref bytevector n eness) procedure 148
(bytevector-u48-set! bytevector n u48 eness) procedure 148
(bytevector-u56-ref bytevector n eness) procedure 148
(bytevector-u56-set! bytevector n u56 eness) procedure 148
(bytevector-u64-native-ref bytevector n) procedure t232
(bytevector-u64-native-set! bytevector n u64) procedure t233
(bytevector-u64-ref bytevector n eness) procedure t235
(bytevector-u64-set! bytevector n u64 eness) procedure t236
(bytevector-u8-ref bytevector n) procedure t230
(bytevector-u8-set! bytevector n u8) procedure t231
(bytevector-uint-ref bytevector n eness size) procedure t237
(bytevector-uint-set! bytevector n uint eness size) procedure t238
(bytevector-uncompress bytevector) procedure 149
(bytevector=? bytevector1 bytevector2) procedure t229
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(bytevector? obj ) procedure t155
(caaaar pair) procedure t157
(caaadr pair) procedure t157
(caaar pair) procedure t157
(caadar pair) procedure t157
(caaddr pair) procedure t157
(caadr pair) procedure t157
(caar pair) procedure t157
(cadaar pair) procedure t157
(cadadr pair) procedure t157
(cadar pair) procedure t157
(caddar pair) procedure t157
(cadddr pair) procedure t157
(caddr pair) procedure t157
(cadr pair) procedure t157
(call-with-bytevector-output-port procedure) procedure t266
(call-with-bytevector-output-port procedure ?transcoder) procedure t266
(call-with-current-continuation procedure) procedure t123
(call-with-input-file path procedure) procedure 228
(call-with-input-file path procedure options) procedure 228
(call-with-input-file path procedure) procedure t281
(call-with-output-file path procedure) procedure 237
(call-with-output-file path procedure options) procedure 237
(call-with-output-file path procedure) procedure t282
(call-with-port port procedure) procedure t272
(call-with-string-output-port procedure) procedure t267
(call-with-values producer consumer) procedure t131
(call/1cc procedure) procedure 126
(call/cc procedure) procedure t123
(car pair) procedure t156
(case expr0 clause1 clause2 ...) syntax 123
(case expr0 clause1 clause2 ...) syntax t113
(case-lambda clause ...) syntax t94
case-sensitive thread param 250
cd global param 256
(cdaaar pair) procedure t157
(cdaadr pair) procedure t157
(cdaar pair) procedure t157
(cdadar pair) procedure t157
(cdaddr pair) procedure t157
(cdadr pair) procedure t157
(cdar pair) procedure t157
(cddaar pair) procedure t157
(cddadr pair) procedure t157
(cddar pair) procedure t157
(cdddar pair) procedure t157
(cddddr pair) procedure t157
(cdddr pair) procedure t157
(cddr pair) procedure t157
(cdr pair) procedure t156
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(ceiling real) procedure t177
(cfl* cflonum ...) procedure 196
(cfl+ cflonum ...) procedure 196
(cfl- cflonum1 cflonum2 ...) procedure 196
(cfl-conjugate cflonum) procedure 197
(cfl-imag-part cflonum) procedure 196
(cfl-magnitude-squared cflonum) procedure 197
(cfl-real-part cflonum) procedure 196
(cfl/ cflonum1 cflonum2 ...) procedure 196
(cfl= cflonum ...) procedure 196
(cflonum? obj ) procedure 189
(char- char1 char2) procedure 138
(char->integer char) procedure t215
(char-alphabetic? char) procedure t213
(char-ci<=? char1 char2 ...) procedure 138
(char-ci<=? char1 char2 char3 ...) procedure t212
(char-ci<? char1 char2 ...) procedure 138
(char-ci<? char1 char2 char3 ...) procedure t212
(char-ci=? char1 char2 ...) procedure 138
(char-ci=? char1 char2 char3 ...) procedure t212
(char-ci>=? char1 char2 ...) procedure 138
(char-ci>=? char1 char2 char3 ...) procedure t212
(char-ci>? char1 char2 ...) procedure 138
(char-ci>? char1 char2 char3 ...) procedure t212
(char-downcase char) procedure t214
(char-foldcase char) procedure t215
(char-general-category char) procedure t214
(char-lower-case? char) procedure t213
(char-name obj ) procedure 248
(char-name name char) procedure 248
(char-numeric? char) procedure t213
(char-ready?) procedure 232
(char-ready? textual-input-port) procedure 232
(char-title-case? char) procedure t213
(char-titlecase char) procedure t214
(char-upcase char) procedure t214
(char-upper-case? char) procedure t213
(char-whitespace? char) procedure t213
(char<=? char1 char2 ...) procedure 138
(char<=? char1 char2 char3 ...) procedure t212
(char<? char1 char2 ...) procedure 138
(char<? char1 char2 char3 ...) procedure t212
(char=? char1 char2 ...) procedure 138
(char=? char1 char2 char3 ...) procedure t212
(char>=? char1 char2 ...) procedure 138
(char>=? char1 char2 char3 ...) procedure t212
(char>? char1 char2 ...) procedure 138
(char>? char1 char2 char3 ...) procedure t212
(char? obj ) procedure t154
(chmod path mode) procedure 259
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(clear-input-port) procedure 224
(clear-input-port input-port) procedure 224
(clear-output-port) procedure 224
(clear-output-port output-port) procedure 224
(close-input-port input-port) procedure t285
(close-output-port output-port) procedure t285
(close-port port) procedure t270
(collect) procedure 392
(collect g) procedure 392
(collect g tg) procedure 392
collect-generation-radix global param 393
collect-maximum-generation global param 394
collect-notify global param 393
(collect-rendezvous) procedure 393
collect-request-handler global param 394
collect-trip-bytes global param 393
(collections) procedure 378
command-line global param 368
(command-line) procedure t350
command-line-arguments global param 368
commonization-level thread param 353
(compile obj ) procedure 329
(compile obj env) procedure 329
compile-compressed thread param 350
(compile-file input-filename) procedure 331
(compile-file input-filename output-filename) procedure 331
compile-file-message thread param 350
compile-imported-libraries thread param 284
compile-interpret-simple thread param 349
(compile-library input-filename) procedure 333
(compile-library input-filename output-filename) procedure 333
compile-library-handler thread param 334
(compile-port input-port output-port) procedure 336
(compile-port input-port output-port sfd) procedure 336
(compile-port input-port output-port sfd wpo-port) procedure 336
compile-profile thread param 358
(compile-program input-filename) procedure 333
(compile-program input-filename output-filename) procedure 333
compile-program-handler thread param 334
(compile-script input-filename) procedure 332
(compile-script input-filename output-filename) procedure 332
(compile-to-file obj-list output-file) procedure 337
(compile-to-file obj-list output-file sfd) procedure 337
(compile-to-port obj-list output-port) procedure 336
(compile-to-port obj-list output-port sfd) procedure 336
(compile-to-port obj-list output-port sfd wpo-port) procedure 336
(compile-whole-library input-filename output-filename) procedure 335
(compile-whole-program input-filename output-filename) procedure 335
(compile-whole-program input-filename output-filename libs-visible?) procedure 335
(complex? obj ) procedure t151
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(compute-composition object) procedure 55
(compute-composition object generation) procedure 55
(compute-size object) procedure 54
(compute-size object generation) procedure 54
(cond clause1 clause2 ...) syntax t111
(condition condition ...) procedure t362
(condition-accessor rtd procedure) procedure t365
(condition-broadcast cond) procedure 420
(condition-continuation condition) procedure 319
(condition-irritants condition) procedure t368
(condition-message condition) procedure t368
(condition-predicate rtd) procedure t365
(condition-signal cond) procedure 420
(condition-wait cond mutex) procedure 420
(condition-wait cond mutex timeout) procedure 420
(condition-who condition) procedure t369
(condition? obj ) procedure t362
(conjugate num) procedure 209
(cons obj1 obj2) procedure t156
(cons* obj ... final-obj ) procedure t158
console-error-port thread param 235
console-input-port global param 227
console-output-port global param 235
constant syntax t141
constructor syntax 177
(continuation-condition? obj ) procedure 319
(copy-environment env) procedure 326
(copy-environment env mutable?) procedure 326
(copy-environment env mutable? syms) procedure 326
(copy-time time) procedure 372
(cos num) procedure t185
(cosh num) procedure 209
(cost-center-allocation-count cost-center) procedure 383
(cost-center-instruction-count cost-center) procedure 383
(cost-center-time cost-center) procedure 383
(cost-center? obj ) procedure 382
cp0-effort-limit thread param 350
cp0-outer-unroll-limit thread param 350
cp0-score-limit thread param 350
(cpu-time) procedure 377
(create-exception-state) procedure 321
(create-exception-state procedure) procedure 321
(critical-section body1 body2 ...) syntax 323
(current-date) procedure 373
(current-date offset) procedure 373
current-directory global param 256
current-error-port thread param 236
(current-error-port) procedure t263
current-eval thread param 328
current-exception-state thread param 320
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current-expand thread param 339
current-input-port thread param 227
(current-input-port) procedure t263
current-locate-source-object-source thread param 315
current-make-source-object thread param 313
(current-memory-bytes) procedure 378
current-output-port thread param 235
(current-output-port) procedure t263
(current-time) procedure 370
(current-time time-type) procedure 370
current-transcoder thread param 216
custom-port-buffer-size thread param 227
(date->time-utc date) procedure 375
(date-and-time) procedure 376
(date-and-time date) procedure 376
(date-day date) procedure 374
(date-dst? date) procedure 375
(date-hour date) procedure 374
(date-minute date) procedure 374
(date-month date) procedure 374
(date-nanosecond date) procedure 374
(date-second date) procedure 374
(date-week-day date) procedure 374
(date-year date) procedure 374
(date-year-day date) procedure 374
(date-zone-name date) procedure 375
(date-zone-offset date) procedure 374
(date? obj ) procedure 374
(datum template) syntax 291
(datum->syntax template-identifier obj ) procedure t308
(datum->syntax-object template-identifier obj ) procedure 291
(debug) procedure 41
debug-condition thread param 320
debug-level thread param 348
debug-on-exception global param 320
(decode-float x) procedure 195
(default-exception-handler obj ) procedure 319
(default-prompt-and-read level) procedure 364
default-record-equal-procedure thread param 169
default-record-hash-procedure thread param 169
(define var expr) syntax t100
(define var) syntax t100
(define (var0 var1 ...) body1 body2 ...) syntax t100
(define (var0 . varr) body1 body2 ...) syntax t100
(define (var0 var1 var2 ... . varr) body1 body2 ...) syntax t100
(define-condition-type name parent constructor pred field ...) syntax t364
(define-enumeration name (symbol ...) constructor) syntax t250
(define-ftype ftype-name ftype) syntax 77
(define-ftype (ftype-name ftype) ...) syntax 77
(define-property id key expr) syntax 296
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(define-record name (fld1 ...) ((fld2 init) ...) (opt ...)) syntax 172
(define-record name parent (fld1 ...) ((fld2 init) ...) (opt ...)) syntax 172
(define-record-type record-name clause ...) syntax t328
(define-record-type (record-name constructor pred) clause ...) syntax t328
(define-structure (name id1 ...) ((id2 expr) ...)) syntax 437
(define-syntax keyword expr) syntax t292
(define-top-level-syntax symbol obj ) procedure 119
(define-top-level-syntax symbol obj env) procedure 119
(define-top-level-value symbol obj ) procedure 117
(define-top-level-value symbol obj env) procedure 117
(define-values formals expr) syntax 114
(delay expr) syntax t128
(delete-directory path) procedure 259
(delete-directory path error?) procedure 259
(delete-file path) procedure 258
(delete-file path error?) procedure 258
(delete-file path) procedure t286
(denominator rat) procedure t181
(directory-list path) procedure 257
(directory-separator) procedure 260
(directory-separator? char) procedure 260
(disable-interrupts) procedure 323
(display obj ) procedure t285
(display obj textual-output-port) procedure t285
(display-condition obj ) procedure 319
(display-condition obj textual-output-port) procedure 319
(display-statistics) procedure 377
(display-statistics textual-output-port) procedure 377
(display-string string) procedure 240
(display-string string textual-output-port) procedure 240
(div x1 x2) procedure t175
(div-and-mod x1 x2) procedure t175
(div0 x1 x2) procedure t176
(div0-and-mod0 x1 x2) procedure t176
(do ((var init update) ...) (test result ...) expr ...) syntax t115
drop-prefix syntax 304
(dynamic-wind in body out) procedure 127
(dynamic-wind critical? in body out) procedure 127
(dynamic-wind in body out) procedure t124
ee-auto-indent global param 405
ee-auto-paren-balance global param 406
(ee-bind-key key procedure) procedure 407
ee-common-identifiers global param 406
(ee-compose ecmd ...) procedure 415
ee-default-repeat global param 406
ee-flash-parens global param 406
ee-history-limit global param 406
ee-noisy global param 406
ee-paren-flash-delay global param 406
ee-standard-indent global param 405
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(ee-string-macro string) procedure 415
else syntax t112
enable-cross-library-optimization thread param 349
(enable-interrupts) procedure 323
enable-object-counts global param 380
(endianness symbol) syntax t228
(engine-block) procedure 131
(engine-return obj ...) procedure 132
(enum-set->list enum-set) procedure t252
(enum-set-complement enum-set) procedure t254
(enum-set-constructor enum-set) procedure t251
(enum-set-difference enum-set1 enum-set2) procedure t253
(enum-set-indexer enum-set) procedure t254
(enum-set-intersection enum-set1 enum-set2) procedure t253
(enum-set-member? symbol enum-set) procedure t253
(enum-set-projection enum-set1 enum-set2) procedure t254
(enum-set-subset? enum-set1 enum-set2) procedure t252
(enum-set-union enum-set1 enum-set2) procedure t253
(enum-set-universe enum-set) procedure t252
(enum-set=? enum-set1 enum-set2) procedure t252
(enum-set? obj ) procedure 133
(enumerate ls) procedure 135
(environment import-spec ...) procedure t137
(environment-mutable? env) procedure 325
(environment-symbols env) procedure 326
(environment? obj ) procedure 324
(eof-object) procedure t273
(eof-object? obj ) procedure t273
(eol-style symbol) syntax t259
(ephemeron-cons obj1 obj2) procedure 397
(ephemeron-pair? obj ) procedure 398
(eq-hashtable-cell hashtable key default) procedure 162
(eq-hashtable-contains? hashtable key) procedure 161
(eq-hashtable-delete! hashtable key) procedure 162
(eq-hashtable-ephemeron? hashtable) procedure 160
(eq-hashtable-ref hashtable key default) procedure 160
(eq-hashtable-set! hashtable key value) procedure 160
(eq-hashtable-update! hashtable key procedure default) procedure 161
(eq-hashtable-weak? hashtable) procedure 160
(eq-hashtable? obj ) procedure 160
(eq? obj1 obj2) procedure t143
(equal-hash obj ) procedure t245
(equal? obj1 obj2) procedure t148
(eqv? obj1 obj2) procedure t146
(error who msg irritant ...) procedure t358
(error-handling-mode symbol) syntax t260
(error? obj ) procedure t367
(errorf who msg irritant ...) procedure 318
(eval obj ) procedure 328
(eval obj env) procedure 328
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(eval obj environment) procedure t136
eval-syntax-expanders-when thread param 345
(eval-when situations form1 form2 ...) syntax 341
(even? int) procedure t174
(exact num) procedure t180
(exact->inexact num) procedure t181
(exact-integer-sqrt n) procedure t184
(exact? num) procedure t170
except syntax 304
(exclusive-cond clause1 clause2 ...) syntax 123
(exists procedure list1 list2 ...) procedure t119
(exit obj ...) procedure 366
(exit) procedure t350
(exit obj ) procedure t350
exit-handler thread param 366
(exp num) procedure t184
(expand obj ) procedure 339
(expand obj env) procedure 339
expand-output thread param 353
(expand/optimize obj ) procedure 340
(expand/optimize obj env) procedure 340
expand/optimize-output thread param 353
(export export-spec ...) syntax 280
expression-editor module 405
(expt num1 num2) procedure t179
(expt-mod int1 int2 int3) procedure 207
(extend-syntax (name key ...) (pat fender template) ...) syntax 431
(fasl-file ifn ofn) procedure 256
(fasl-read binary-input-port) procedure 256
(fasl-strip-options symbol ...) syntax 338
(fasl-write obj binary-output-port) procedure 256
fields syntax t331
(file-access-time path/port) procedure 258
(file-access-time path/port follow?) procedure 258
file-buffer-size thread param 226
(file-change-time path/port) procedure 258
(file-change-time path/port follow?) procedure 258
(file-directory? path) procedure 257
(file-directory? path follow?) procedure 257
(file-exists? path) procedure 257
(file-exists? path follow?) procedure 257
(file-exists? path) procedure t286
(file-length port) procedure 222
(file-modification-time path/port) procedure 258
(file-modification-time path/port follow?) procedure 258
(file-options symbol ...) syntax t261
(file-port? port) procedure 227
(file-position port) procedure 223
(file-position port pos) procedure 223
(file-regular? path) procedure 257
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(file-regular? path follow?) procedure 257
(file-symbolic-link? path) procedure 257
(filter procedure list) procedure t164
(find procedure list) procedure t165
(finite? real) procedure t174
(fixnum->flonum fx) procedure t211
(fixnum-width) procedure t193
(fixnum? obj ) procedure t193
(fl* fl ...) procedure t207
(fl+ fl ...) procedure t206
(fl- fl) procedure t206
(fl- fl1 fl2 fl3 ...) procedure t206
(fl-make-rectangular flonum1 flonum2) procedure 196
(fl/ fl) procedure t207
(fl/ fl1 fl2 fl3 ...) procedure t207
(fl< flonum1 flonum2 ...) procedure 193
(fl<= flonum1 flonum2 ...) procedure 193
(fl<=? fl1 fl2 fl3 ...) procedure t203
(fl<? fl1 fl2 fl3 ...) procedure t203
(fl= flonum1 flonum2 ...) procedure 193
(fl=? fl1 fl2 fl3 ...) procedure t203
(fl> flonum1 flonum2 ...) procedure 193
(fl>= flonum1 flonum2 ...) procedure 193
(fl>=? fl1 fl2 fl3 ...) procedure t203
(fl>? fl1 fl2 fl3 ...) procedure t203
(flabs fl) procedure t209
(flacos fl) procedure t210
(flasin fl) procedure t210
(flatan fl) procedure t210
(flatan fl1 fl2) procedure t210
(flceiling fl) procedure t208
(flcos fl) procedure t210
(fldenominator fl) procedure t209
(fldiv fl1 fl2) procedure t207
(fldiv-and-mod fl1 fl2) procedure t207
(fldiv0 fl1 fl2) procedure t208
(fldiv0-and-mod0 fl1 fl2) procedure t208
(fleven? fl-int) procedure t205
(flexp fl) procedure t209
(flexpt fl1 fl2) procedure t210
(flfinite? fl) procedure t205
(flfloor fl) procedure t208
(flinfinite? fl) procedure t205
(flinteger? fl) procedure t204
(fllog fl) procedure t209
(fllog fl1 fl2) procedure t209
(fllp flonum) procedure 195
(flmax fl1 fl2 ...) procedure t205
(flmin fl1 fl2 ...) procedure t205
(flmod fl1 fl2) procedure t207
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(flmod0 fl1 fl2) procedure t208
(flnan? fl) procedure t205
(flnegative? fl) procedure t204
(flnonnegative? fl) procedure 194
(flnonpositive? fl) procedure 194
(flnumerator fl) procedure t209
(flodd? fl-int) procedure t205
(flonum->fixnum flonum) procedure 193
(flonum? obj ) procedure t203
(floor real) procedure t177
(flpositive? fl) procedure t204
(flround fl) procedure t208
(flsin fl) procedure t210
(flsqrt fl) procedure t210
(fltan fl) procedure t210
(fltruncate fl) procedure t208
(fluid-let ((var expr) ...) body1 body2 ...) syntax 116
(fluid-let-syntax ((keyword expr) ...) form1 form2 ...) syntax 287
(flush-output-port) procedure 224
(flush-output-port output-port) procedure 224
(flush-output-port output-port) procedure t280
(flzero? fl) procedure t204
(fold-left procedure obj list1 list2 ...) procedure t120
(fold-right procedure obj list1 list2 ...) procedure t121
(for-all procedure list1 list2 ...) procedure t119
(for-each procedure list1 list2 ...) procedure t118
(force promise) procedure t128
(foreign-address-name address) procedure 90
(foreign-alloc n) procedure 74
(foreign-callable conv ... proc-exp (param-type ...) res-type) syntax 70
(foreign-callable-code-object address) procedure 73
(foreign-callable-entry-point code) procedure 73
(foreign-entry entry-name) procedure 90
(foreign-entry? entry-name) procedure 90
(foreign-free address) procedure 74
(foreign-procedure conv ... entry-exp (param-type ...) res-type) syntax 59
(foreign-ref type address offset) procedure 75
(foreign-set! type address offset value) procedure 76
(foreign-sizeof type) procedure 77
(fork-thread thunk) procedure 418
(format format-string obj ...) procedure 246
(format #f format-string obj ...) procedure 246
(format #t format-string obj ...) procedure 246
(format textual-output-port format-string obj ...) procedure 246
(format-condition? obj ) procedure 318
(fprintf textual-output-port format-string obj ...) procedure 248
(free-identifier=? identifier1 identifier2) procedure t302
(fresh-line) procedure 240
(fresh-line textual-output-port) procedure 240
(ftype-&ref ftype-name (a ...) fptr-expr) syntax 84
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(ftype-&ref ftype-name (a ...) fptr-expr index) syntax 84
(ftype-init-lock! ftype-name (a ...) fptr-expr) syntax 422
(ftype-init-lock! ftype-name (a ...) fptr-expr index) syntax 422
(ftype-lock! ftype-name (a ...) fptr-expr) syntax 422
(ftype-lock! ftype-name (a ...) fptr-expr index) syntax 422
(ftype-locked-decr! ftype-name (a ...) fptr-expr) syntax 423
(ftype-locked-decr! ftype-name (a ...) fptr-expr index) syntax 423
(ftype-locked-incr! ftype-name (a ...) fptr-expr) syntax 423
(ftype-locked-incr! ftype-name (a ...) fptr-expr index) syntax 423
(ftype-pointer->sexpr fptr) procedure 88
(ftype-pointer-address fptr) procedure 84
(ftype-pointer-ftype fptr) procedure 88
(ftype-pointer-null? fptr) syntax 84
(ftype-pointer=? fptr1 fptr2) syntax 84
(ftype-pointer? obj ) syntax 83
(ftype-pointer? ftype-name obj ) syntax 83
(ftype-ref ftype-name (a ...) fptr-expr) syntax 86
(ftype-ref ftype-name (a ...) fptr-expr index) syntax 86
(ftype-set! ftype-name (a ...) fptr-expr val-expr) syntax 86
(ftype-set! ftype-name (a ...) fptr-expr index val-expr) syntax 86
(ftype-sizeof ftype-name) syntax 81
(ftype-spin-lock! ftype-name (a ...) fptr-expr) syntax 422
(ftype-spin-lock! ftype-name (a ...) fptr-expr index) syntax 422
(ftype-unlock! ftype-name (a ...) fptr-expr) syntax 422
(ftype-unlock! ftype-name (a ...) fptr-expr index) syntax 422
(fx* fixnum ...) procedure 191
(fx* fx1 fx2) procedure t195
(fx*/carry fx1 fx2 fx3) procedure t197
(fx+ fixnum ...) procedure 190
(fx+ fx1 fx2) procedure t195
(fx+/carry fx1 fx2 fx3) procedure t197
(fx- fixnum1 fixnum2 ...) procedure 191
(fx- fx) procedure t195
(fx- fx1 fx2) procedure t195
(fx-/carry fx1 fx2 fx3) procedure t197
(fx/ fixnum1 fixnum2 ...) procedure 191
(fx1+ fixnum) procedure 191
(fx1- fixnum) procedure 191
(fx< fixnum1 fixnum2 ...) procedure 189
(fx<= fixnum1 fixnum2 ...) procedure 189
(fx<=? fx1 fx2 fx3 ...) procedure t193
(fx<? fx1 fx2 fx3 ...) procedure t193
(fx= fixnum1 fixnum2 ...) procedure 189
(fx=? fx1 fx2 fx3 ...) procedure t193
(fx> fixnum1 fixnum2 ...) procedure 189
(fx>= fixnum1 fixnum2 ...) procedure 189
(fx>=? fx1 fx2 fx3 ...) procedure t193
(fx>? fx1 fx2 fx3 ...) procedure t193
(fxabs fixnum) procedure 192
(fxand fx ...) procedure t197
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(fxarithmetic-shift fx1 fx2) procedure t201
(fxarithmetic-shift-left fx1 fx2) procedure t201
(fxarithmetic-shift-right fx1 fx2) procedure t201
(fxbit-count fx) procedure t198
(fxbit-field fx1 fx2 fx3) procedure t200
(fxbit-set? fx1 fx2) procedure t199
(fxcopy-bit fx1 fx2 fx3) procedure t200
(fxcopy-bit-field fx1 fx2 fx3 fx4) procedure t200
(fxdiv fx1 fx2) procedure t196
(fxdiv-and-mod fx1 fx2) procedure t196
(fxdiv0 fx1 fx2) procedure t196
(fxdiv0-and-mod0 fx1 fx2) procedure t196
(fxeven? fx) procedure t194
(fxfirst-bit-set fx) procedure t199
(fxif fx1 fx2 fx3) procedure t198
(fxior fx ...) procedure t197
(fxlength fx) procedure t198
(fxlogand fixnum ...) procedure 202
(fxlogbit0 index fixnum) procedure 204
(fxlogbit1 index fixnum) procedure 205
(fxlogbit? index fixnum) procedure 203
(fxlogior fixnum ...) procedure 202
(fxlognot fixnum) procedure 203
(fxlogor fixnum ...) procedure 202
(fxlogtest fixnum1 fixnum2) procedure 204
(fxlogxor fixnum ...) procedure 203
(fxmax fx1 fx2 ...) procedure t195
(fxmin fx1 fx2 ...) procedure t195
(fxmod fx1 fx2) procedure t196
(fxmod0 fx1 fx2) procedure t196
(fxmodulo fixnum1 fixnum2) procedure 192
(fxnegative? fx) procedure t194
(fxnonnegative? fixnum) procedure 190
(fxnonpositive? fixnum) procedure 190
(fxnot fx) procedure t197
(fxodd? fx) procedure t194
(fxpositive? fx) procedure t194
(fxquotient fixnum1 fixnum2 ...) procedure 192
(fxremainder fixnum1 fixnum2) procedure 192
(fxreverse-bit-field fx1 fx2 fx3) procedure t202
(fxrotate-bit-field fx1 fx2 fx3 fx4) procedure t201
(fxsll fixnum count) procedure 205
(fxsra fixnum count) procedure 205
(fxsrl fixnum count) procedure 205
(fxvector fixnum ...) procedure 143
(fxvector->immutable-fxvector fxvector) procedure 145
(fxvector->list fxvector) procedure 144
(fxvector-copy fxvector) procedure 145
(fxvector-fill! fxvector fixnum) procedure 144
(fxvector-length fxvector) procedure 143
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(fxvector-ref fxvector n) procedure 144
(fxvector-set! fxvector n fixnum) procedure 144
(fxvector? obj ) procedure 143
(fxxor fx ...) procedure t197
(fxzero? fx) procedure t194
(gcd int ...) procedure t179
generate-allocation-counts thread param 382
generate-inspector-information thread param 349
generate-instruction-counts thread param 382
generate-interrupt-trap thread param 348
(generate-profile-forms) thread param 359
(generate-temporaries list) procedure t310
generate-wpo-files thread param 349
(gensym) procedure 152
(gensym pretty-name) procedure 152
(gensym pretty-name unique-name) procedure 152
(gensym->unique-string gensym) procedure 154
gensym-count thread param 153
gensym-prefix thread param 153
(gensym? obj ) procedure 154
(get-bytevector-all binary-input-port) procedure t275
(get-bytevector-n binary-input-port n) procedure t274
(get-bytevector-n! binary-input-port bytevector start n) procedure t274
(get-bytevector-some binary-input-port) procedure t275
(get-bytevector-some! binary-input-port bytevector start n) procedure 230
(get-char textual-input-port) procedure t275
(get-datum textual-input-port) procedure t278
(get-datum/annotations textual-input-port sfd bfp) procedure 314
(get-hash-table ht k d) procedure 430
(get-line textual-input-port) procedure t277
(get-mode path) procedure 259
(get-mode path follow?) procedure 259
(get-output-string string-output-port) procedure 226
(get-process-id) procedure 388
(get-registry key) procedure 388
(get-string-all textual-input-port) procedure t277
(get-string-n textual-input-port n) procedure t276
(get-string-n! textual-input-port string start n) procedure t276
(get-string-some textual-input-port) procedure 230
(get-string-some! textual-input-port string start n) procedure 230
(get-thread-id) procedure 418
(get-u8 binary-input-port) procedure t274
(getenv key) procedure 388
(getprop symbol key) procedure 154
(getprop symbol key default) procedure 154
(greatest-fixnum) procedure t193
(guard (var clause1 clause2 ...) b1 b2 ...) syntax t361
(hash-table-for-each ht p) procedure 430
(hash-table-map ht p) procedure 430
(hash-table? obj ) procedure 429
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(hashtable-cell hashtable key default) procedure 157
(hashtable-clear! hashtable) procedure t249
(hashtable-clear! hashtable size) procedure t249
(hashtable-contains? hashtable key) procedure t246
(hashtable-copy hashtable) procedure t248
(hashtable-copy hashtable mutable?) procedure t248
(hashtable-delete! hashtable key) procedure t248
(hashtable-entries hashtable) procedure t250
(hashtable-ephemeron? obj ) procedure 159
(hashtable-equivalence-function hashtable) procedure t245
(hashtable-hash-function hashtable) procedure t245
(hashtable-keys hashtable) procedure t249
(hashtable-mutable? hashtable) procedure t245
(hashtable-ref hashtable key default) procedure t246
(hashtable-set! hashtable key obj ) procedure t246
(hashtable-size hashtable) procedure t248
(hashtable-update! hashtable key procedure default) procedure t247
(hashtable-values hashtable) procedure 158
(hashtable-weak? obj ) procedure 159
(hashtable? obj ) procedure t155
heap-reserve-ratio global param 395
(i/o-decoding-error? obj ) procedure t375
(i/o-encoding-error-char condition) procedure t376
(i/o-encoding-error? obj ) procedure t376
(i/o-error-filename condition) procedure t373
(i/o-error-port condition) procedure t375
(i/o-error-position condition) procedure t372
(i/o-error? obj ) procedure t371
(i/o-file-already-exists-error? obj ) procedure t374
(i/o-file-does-not-exist-error? obj ) procedure t374
(i/o-file-is-read-only-error? obj ) procedure t374
(i/o-file-protection-error? obj ) procedure t373
(i/o-filename-error? obj ) procedure t373
(i/o-invalid-position-error? obj ) procedure t372
(i/o-port-error? obj ) procedure t375
(i/o-read-error? obj ) procedure t372
(i/o-write-error? obj ) procedure t372
(iconv-codec code-page) procedure 216
(identifier-syntax tmpl) syntax t297
(identifier-syntax (id1 tmpl1) ((set! id2 e2) tmpl2)) syntax t297
(identifier? obj ) procedure t301
ieee module 305
(ieee-environment) procedure 325
(if test consequent alternative) syntax t109
(if test consequent) syntax t109
(imag-part num) procedure t182
immutable syntax t331
(immutable-box? obj ) procedure 151
(immutable-bytevector? obj ) procedure 149
(immutable-fxvector? obj ) procedure 145
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(immutable-string? obj ) procedure 141
(immutable-vector? obj ) procedure 142
(implementation-restriction-violation? obj ) procedure t369
(implicit-exports #t) syntax 282
(implicit-exports #f) syntax 282
(import import-spec ...) syntax 276
import-notify thread param 284
(import-only import-spec ...) syntax 276
(include path) syntax 292
(indirect-export id indirect-id ...) syntax 281
(inexact num) procedure t180
(inexact->exact num) procedure t181
(inexact? num) procedure t170
(infinite? real) procedure t174
(initial-bytes-allocated) procedure 378
(input-port-ready? input-port) procedure 232
(input-port? obj ) procedure t270
(inspect obj ) procedure 42
(inspect/object object) procedure 47
(integer->char n) procedure t215
(integer-length n) procedure 208
(integer-valued? obj ) procedure t153
(integer? obj ) procedure t151
interaction-environment thread param 325
(interactive?) procedure 387
internal-defines-as-letrec* thread param 114
(interpret obj ) procedure 329
(interpret obj env) procedure 329
(iota n) procedure 135
(irritants-condition? obj ) procedure t368
(isqrt n) procedure 208
keyboard-interrupt-handler thread param 322
(lambda formals body1 body2 ...) syntax t92
(last-pair list) procedure 134
(latin-1-codec) procedure t259
(lcm int ...) procedure t179
(least-fixnum) procedure t193
(length list) procedure t159
(let ((var expr) ...) body1 body2 ...) syntax t95
(let name ((var expr) ...) body1 body2 ...) syntax t114
(let* ((var expr) ...) body1 body2 ...) syntax t96
(let*-values ((formals expr) ...) body1 body2 ...) syntax t99
(let-syntax ((keyword expr) ...) form1 form2 ...) syntax t293
(let-values ((formals expr) ...) body1 body2 ...) syntax t99
(letrec ((var expr) ...) body1 body2 ...) syntax t97
(letrec* ((var expr) ...) body1 body2 ...) syntax t98
(letrec-syntax ((keyword expr) ...) form1 form2 ...) syntax t293
(lexical-violation? obj ) procedure t370
(library name exports imports library-body) syntax 274
library-directories thread param 283
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(library-exports libref ) procedure 284
library-extensions thread param 283
(library-list) procedure 284
(library-object-filename libref ) procedure 284
(library-requirements libref ) procedure 284
(library-requirements libref options) procedure 284
(library-requirements-options symbol ...) syntax 286
(library-version libref ) procedure 284
(list obj ...) procedure t158
(list* obj ... final-obj ) procedure 135
(list->fxvector list) procedure 145
(list->string list) procedure t223
(list->vector list) procedure t226
(list-copy list) procedure 134
(list-head list n) procedure 134
(list-ref list n) procedure t159
(list-sort predicate list) procedure t167
(list-tail list n) procedure t160
(list? obj ) procedure t158
(literal-identifier=? identifier1 identifier2) procedure 294
(load path) procedure 329
(load path eval-proc) procedure 329
(load-library path) procedure 330
(load-library path eval-proc) procedure 330
(load-program path) procedure 330
(load-program path eval-proc) procedure 330
(load-shared-object path) procedure 91
(locate-source sfd pos) procedure 314
(locate-source sfd pos use-cache?) procedure 314
(locate-source-object-source source-object get-start? use-cache?) procedure 315
(lock-object obj ) procedure 402
(locked-object? obj ) procedure 402
(log num) procedure t184
(log num1 num2) procedure t184
(logand int ...) procedure 198
(logbit0 index int) procedure 201
(logbit1 index int) procedure 201
(logbit? index int) procedure 199
(logior int ...) procedure 198
(lognot int) procedure 199
(logor int ...) procedure 198
(logtest int1 int2) procedure 200
(logxor int ...) procedure 199
(lookahead-char textual-input-port) procedure t275
(lookahead-u8 binary-input-port) procedure t274
(machine-type) procedure 339
(magnitude num) procedure t183
(magnitude-squared num) procedure 209
(make-annotation obj source-object stripped-obj ) procedure 311
(make-annotation obj source-object stripped-obj options) procedure 311
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(make-assertion-violation) procedure t366
(make-boot-file output-filename base-boot-list input-filename ...) procedure 337
(make-boot-header output-filename base-boot1 base-boot2...) procedure 337
(make-bytevector n) procedure t228
(make-bytevector n fill) procedure t228
(make-compile-time-value obj ) procedure 294
(make-condition) procedure 420
(make-continuation-condition continuation) procedure 319
(make-cost-center) procedure 382
(make-custom-binary-input-port id r! gp sp! close) procedure t267
(make-custom-binary-input/output-port id r! w! gp sp! close) procedure t267
(make-custom-binary-output-port id w! gp sp! close) procedure t267
(make-custom-textual-input-port id r! gp sp! close) procedure t268
(make-custom-textual-input/output-port id r! w! gp sp! close) procedure t268
(make-custom-textual-output-port id w! gp sp! close) procedure t268
(make-date nsec sec min hour day mon year) procedure 373
(make-date nsec sec min hour day mon year offset) procedure 373
(make-engine thunk) procedure 127
(make-enumeration symbol-list) procedure t251
(make-ephemeron-eq-hashtable) procedure 159
(make-ephemeron-eq-hashtable size) procedure 159
(make-ephemeron-eqv-hashtable) procedure 159
(make-ephemeron-eqv-hashtable size) procedure 159
(make-eq-hashtable) procedure t243
(make-eq-hashtable size) procedure t243
(make-eqv-hashtable) procedure t244
(make-eqv-hashtable size) procedure t244
(make-error) procedure t367
(make-format-condition) procedure 318
(make-ftype-pointer ftype-name expr) syntax 82
(make-fxvector n) procedure 143
(make-fxvector n fixnum) procedure 143
(make-guardian) procedure 398
(make-hash-table) procedure 429
(make-hash-table weak?) procedure 429
(make-hashtable hash equiv?) procedure t244
(make-hashtable hash equiv? size) procedure t244
(make-i/o-decoding-error pobj ) procedure t375
(make-i/o-encoding-error pobj cobj ) procedure t376
(make-i/o-error) procedure t371
(make-i/o-file-already-exists-error filename) procedure t374
(make-i/o-file-does-not-exist-error filename) procedure t374
(make-i/o-file-is-read-only-error filename) procedure t374
(make-i/o-file-protection-error filename) procedure t373
(make-i/o-filename-error filename) procedure t373
(make-i/o-invalid-position-error position) procedure t372
(make-i/o-port-error pobj ) procedure t375
(make-i/o-read-error) procedure t372
(make-i/o-write-error) procedure t372
(make-implementation-restriction-violation) procedure t369
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(make-input-port handler input-buffer) procedure 217
(make-input/output-port handler input-buffer output-buffer) procedure 217
(make-irritants-condition irritants) procedure t368
(make-lexical-violation) procedure t370
(make-list n) procedure 135
(make-list n obj ) procedure 135
(make-message-condition message) procedure t368
(make-mutex) procedure 418
(make-no-infinities-violation) procedure t376
(make-no-nans-violation) procedure t377
(make-non-continuable-violation) procedure t369
(make-object-finder pred) procedure 53
(make-object-finder pred g) procedure 53
(make-object-finder pred x g) procedure 53
(make-output-port handler output-buffer) procedure 217
(make-parameter object) procedure 383
(make-parameter object procedure) procedure 383
(make-polar real1 real2) procedure t183
(make-record-constructor-descriptor rtd parent-rcd protocol) procedure t332
(make-record-type type-name fields) procedure 181
(make-record-type parent-rtd type-name fields) procedure 181
(make-record-type-descriptor name parent uid s? o? fields) procedure t331
(make-rectangular real1 real2) procedure t182
(make-serious-condition) procedure t366
(make-source-condition form) procedure 318
(make-source-file-descriptor string binary-input-port) procedure 313
(make-source-file-descriptor string binary-input-port reset?) procedure 313
(make-source-object sfd bfp efp) procedure 312
(make-source-object sfd bfp efp line column) procedure 312
(make-sstats cpu real bytes gc-count gc-cpu gc-real gc-bytes) procedure 379
(make-string n) procedure t218
(make-string n char) procedure t218
(make-syntax-violation form subform) procedure t370
(make-thread-parameter object) procedure 423
(make-thread-parameter object procedure) procedure 423
(make-time type nsec sec) procedure 370
(make-transcoder codec) procedure t259
(make-transcoder codec eol-style) procedure t259
(make-transcoder codec eol-style error-handling-mode) procedure t259
(make-undefined-violation) procedure t371
(make-variable-transformer procedure) procedure t306
(make-vector n) procedure t224
(make-vector n obj ) procedure t224
(make-violation) procedure t366
(make-warning) procedure t367
(make-weak-eq-hashtable) procedure 158
(make-weak-eq-hashtable size) procedure 158
(make-weak-eqv-hashtable) procedure 158
(make-weak-eqv-hashtable size) procedure 158
(make-who-condition who) procedure t369
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(map procedure list1 list2 ...) procedure t117
(mark-port-closed! port) procedure 220
(max real1 real2 ...) procedure t178
(maximum-memory-bytes) procedure 378
(maybe-compile-file input-filename) procedure 333
(maybe-compile-file input-filename output-filename) procedure 333
(maybe-compile-library input-filename) procedure 333
(maybe-compile-library input-filename output-filename) procedure 333
(maybe-compile-program input-filename) procedure 333
(maybe-compile-program input-filename output-filename) procedure 333
(member obj list) procedure t161
(memp procedure list) procedure t163
(memq obj list) procedure t161
(memv obj list) procedure t161
(merge predicate list1 list2) procedure 157
(merge! predicate list1 list2) procedure 157
(message-condition? obj ) procedure t368
(meta . definition) syntax 305
(meta-cond clause1 clause2 ...) syntax 307
(min real1 real2 ...) procedure t178
(mkdir path) procedure 258
(mkdir path mode) procedure 258
(mod x1 x2) procedure t175
(mod0 x1 x2) procedure t176
(module name interface defn ... init ...) syntax 299
(module interface defn ... init ...) syntax 299
(modulo int1 int2) procedure t175
(most-negative-fixnum) procedure 189
(most-positive-fixnum) procedure 189
(multibyte->string code-page bytevector) procedure 242
mutable syntax t331
(mutable-box? obj ) procedure 151
(mutable-bytevector? obj ) procedure 149
(mutable-fxvector? obj ) procedure 145
(mutable-string? obj ) procedure 141
(mutable-vector? obj ) procedure 142
(mutex-acquire mutex) procedure 419
(mutex-acquire mutex block?) procedure 419
(mutex-release mutex) procedure 419
(mutex? obj ) procedure 418
(nan? real) procedure t174
(native-endianness) procedure t228
(native-eol-style) procedure t260
(native-transcoder) procedure t259
(negative? real) procedure t173
(new-cafe) procedure 363
(new-cafe eval-proc) procedure 363
(newline) procedure t285
(newline textual-output-port) procedure t285
(no-infinities-violation? obj ) procedure t376
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(no-nans-violation? obj ) procedure t377
(non-continuable-violation? obj ) procedure t369
nongenerative syntax t331
(nonnegative? real) procedure 209
(nonpositive? real) procedure 208
(not obj ) procedure t110
(null-environment version) procedure t137
(null? obj ) procedure t151
(number->string num) procedure 210
(number->string num radix) procedure 210
(number->string num radix precision) procedure 210
(number->string num) procedure t191
(number->string num radix) procedure t191
(number->string num radix precision) procedure t191
(number? obj ) procedure t151
(numerator rat) procedure t181
(object-counts) procedure 381
(oblist) procedure 155
(odd? int) procedure t174
only syntax 304
opaque syntax t331
(open-bytevector-input-port bytevector) procedure t264
(open-bytevector-input-port bytevector ?transcoder) procedure t264
(open-bytevector-output-port) procedure t265
(open-bytevector-output-port ?transcoder) procedure t265
(open-fd-input-port fd) procedure 229
(open-fd-input-port fd b-mode) procedure 229
(open-fd-input-port fd b-mode ?transcoder) procedure 229
(open-fd-input/output-port fd) procedure 241
(open-fd-input/output-port fd b-mode) procedure 241
(open-fd-input/output-port fd b-mode ?transcoder) procedure 241
(open-fd-output-port fd) procedure 238
(open-fd-output-port fd b-mode) procedure 238
(open-fd-output-port fd b-mode ?transcoder) procedure 238
(open-file-input-port path) procedure t262
(open-file-input-port path options) procedure t262
(open-file-input-port path options b-mode) procedure t262
(open-file-input-port path options b-mode ?transcoder) procedure t262
(open-file-input/output-port path) procedure t263
(open-file-input/output-port path options) procedure t263
(open-file-input/output-port path options b-mode) procedure t263
(open-file-input/output-port path options b-mode ?transcoder) procedure t263
(open-file-output-port path) procedure t262
(open-file-output-port path options) procedure t262
(open-file-output-port path options b-mode) procedure t262
(open-file-output-port path options b-mode ?transcoder) procedure t262
(open-input-file path) procedure 228
(open-input-file path options) procedure 228
(open-input-file path) procedure t280
(open-input-output-file path) procedure 241



470 Summary of Forms

(open-input-output-file path options) procedure 241
(open-input-string string) procedure 225
(open-output-file path) procedure 236
(open-output-file path options) procedure 236
(open-output-file path) procedure t281
(open-output-string) procedure 225
(open-process-ports command) procedure 58
(open-process-ports command b-mode) procedure 58
(open-process-ports command b-mode ?transcoder) procedure 58
(open-source-file sfd) procedure 314
(open-string-input-port string) procedure t265
(open-string-output-port) procedure t266
optimize-level thread param 347
(or expr ...) syntax t110
(ormap procedure list1 list2 ...) procedure 125
(output-port-buffer-mode port) procedure t273
(output-port? obj ) procedure t270
(pair? obj ) procedure t151
(parameterize ((param expr) ...) body1 body2 ...) syntax 384
parent syntax t331
parent-rtd syntax t331
(pariah expr1 expr2 ...) syntax 354
(partition procedure list) procedure t164
(path-absolute? path) procedure 260
(path-extension path) procedure 260
(path-first path) procedure 260
(path-last path) procedure 260
(path-parent path) procedure 260
(path-rest path) procedure 260
(path-root path) procedure 260
(peek-char) procedure t284
(peek-char textual-input-port) procedure t284
(petite?) procedure 387
(port-bol? port) procedure 221
(port-closed? port) procedure 220
(port-eof? input-port) procedure t278
(port-file-compressed! port) procedure 224
(port-file-descriptor port) procedure 227
(port-handler port) procedure 217
(port-has-port-length? port) procedure 222
(port-has-port-nonblocking?? port) procedure 223
(port-has-port-position? port) procedure t271
(port-has-set-port-length!? port) procedure 222
(port-has-set-port-nonblocking!? port) procedure 223
(port-has-set-port-position!? port) procedure t272
(port-input-buffer input-port) procedure 217
(port-input-count input-port) procedure 218
(port-input-empty? input-port) procedure 218
(port-input-index input-port) procedure 217
(port-input-size input-port) procedure 217
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(port-length port) procedure 222
(port-name port) procedure 221
(port-nonblocking? port) procedure 223
(port-output-buffer output-port) procedure 219
(port-output-count output-port) procedure 220
(port-output-full? output-port) procedure 220
(port-output-index output-port) procedure 219
(port-output-size output-port) procedure 219
(port-position port) procedure t271
(port-transcoder port) procedure t271
(port? obj ) procedure t270
(positive? real) procedure t173
predicate syntax 177
prefix syntax 177
(pretty-file ifn ofn) procedure 243
(pretty-format sym) procedure 243
(pretty-format sym fmt) procedure 243
pretty-initial-indent thread param 245
pretty-line-length thread param 245
pretty-maximum-lines thread param 246
pretty-one-line-limit thread param 245
(pretty-print obj ) procedure 242
(pretty-print obj textual-output-port) procedure 242
pretty-standard-indent thread param 245
print-brackets thread param 253
print-char-name thread param 250
print-extended-identifiers thread param 253
print-gensym thread param 252
print-graph thread param 250
print-length thread param 251
print-level thread param 251
print-precision thread param 255
print-radix thread param 252
print-record thread param 181
print-unicode thread param 255
print-vector-length thread param 254
(printf format-string obj ...) procedure 248
(expr0 expr1 ...) syntax t107
(procedure-arity-mask proc) procedure 186
(procedure? obj ) procedure t155
(process command) procedure 58
(profile source-object) syntax 359
(profile-clear) procedure 359
(profile-clear-database) procedure 363
(profile-dump) procedure 359
(profile-dump-data path) procedure 362
(profile-dump-data path dump) procedure 362
(profile-dump-html) procedure 360
(profile-dump-html prefix) procedure 360
(profile-dump-html prefix dump) procedure 360
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(profile-dump-list) procedure 361
(profile-dump-list warn?) procedure 361
(profile-dump-list warn? dump) procedure 361
(profile-line-number-color) thread param 361
(profile-load-data path ...) procedure 362
(profile-palette) thread param 360
(profile-query-weight obj ) procedure 362
(property-list symbol) procedure 155
protocol syntax t331
(put-bytevector binary-output-port bytevector) procedure t279
(put-bytevector binary-output-port bytevector start) procedure t279
(put-bytevector binary-output-port bytevector start n) procedure t279
(put-bytevector-some binary-output-port bytevector) procedure 239
(put-bytevector-some binary-output-port bytevector start) procedure 239
(put-bytevector-some binary-output-port bytevector start n) procedure 239
(put-char textual-output-port char) procedure t279
(put-datum textual-output-port obj ) procedure t279
(put-hash-table! ht k v) procedure 430
(put-registry! key val) procedure 388
(put-string textual-output-port string) procedure t279
(put-string textual-output-port string start) procedure t279
(put-string textual-output-port string start n) procedure t279
(put-string-some textual-output-port string) procedure 239
(put-string-some textual-output-port string start) procedure 239
(put-string-some textual-output-port string start n) procedure 239
(put-u8 binary-output-port octet) procedure t278
(putenv key value) procedure 388
(putprop symbol key value) procedure 154
(quasiquote obj ...) syntax t142
(quasisyntax template ...) syntax t305
(quote obj ) syntax t141
(quotient int1 int2) procedure t175
r5rs module 305
r5rs-syntax module 305
(raise obj ) procedure t357
(raise-continuable obj ) procedure t357
(random real) procedure 206
random-seed thread param 206
(rational-valued? obj ) procedure t153
(rational? obj ) procedure t151
(rationalize real1 real2) procedure t181
(ratnum? obj ) procedure 189
(read) procedure t284
(read textual-input-port) procedure t284
(read-char) procedure t284
(read-char textual-input-port) procedure t284
(read-token) procedure 233
(read-token textual-input-port) procedure 233
(real->flonum real) procedure t211
(real-part num) procedure t182
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(real-time) procedure 377
(real-valued? obj ) procedure t153
(real? obj ) procedure t151
(rec var expr) syntax 115
(record-accessor rtd idx) procedure t334
(record-case expr clause1 clause2 ...) syntax 124
(record-constructor rcd) procedure 183
(record-constructor rtd) procedure 183
(record-constructor rcd) procedure t333
(record-constructor-descriptor record-name) syntax t333
(record-constructor-descriptor? obj ) procedure 133
(record-equal-procedure record1 record2) procedure 168
(record-field-accessible? rtd field-id) procedure 183
(record-field-accessor rtd field-id) procedure 183
(record-field-mutable? rtd field-id) procedure 184
(record-field-mutable? rtd idx) procedure t338
(record-field-mutator rtd field-id) procedure 183
(record-hash-procedure record) procedure 169
(record-mutator rtd idx) procedure t334
(record-predicate rtd) procedure t333
(record-reader name) procedure 178
(record-reader rtd) procedure 178
(record-reader name rtd) procedure 178
(record-reader name #f) procedure 178
(record-reader rtd #f) procedure 178
(record-rtd record) procedure t338
(record-type-descriptor rec) procedure 185
(record-type-descriptor record-name) syntax t333
(record-type-descriptor? obj ) procedure t332
(record-type-equal-procedure rtd equal-proc) procedure 168
(record-type-equal-procedure rtd) procedure 168
(record-type-field-decls rtd) procedure 185
(record-type-field-names rtd) procedure 184
(record-type-field-names rtd) procedure t337
(record-type-generative? rtd) procedure t337
(record-type-hash-procedure rtd hash-proc) procedure 169
(record-type-hash-procedure rtd) procedure 169
(record-type-name rtd) procedure 184
(record-type-name rtd) procedure t336
(record-type-opaque? rtd) procedure t337
(record-type-parent rtd) procedure t336
(record-type-sealed? rtd) procedure t337
(record-type-symbol rtd) procedure 184
(record-type-uid rtd) procedure t336
(record-writer rtd) procedure 179
(record-writer rtd procedure) procedure 179
(record? obj ) procedure 185
(record? obj rtd) procedure 185
(record? obj ) procedure t338
(register-signal-handler sig procedure) procedure 324
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release-minimum-generation global param 394
(remainder int1 int2) procedure t175
(remove obj list) procedure t163
(remove! obj list) procedure 136
(remove-foreign-entry entry-name) procedure 93
(remove-hash-table! ht k) procedure 430
(remove-registry! key) procedure 388
(remp procedure list) procedure t163
(remprop symbol key) procedure 155
(remq obj list) procedure t163
(remq! obj list) procedure 136
(remv obj list) procedure t163
(remv! obj list) procedure 136
rename syntax 304
(rename-file old-pathname new-pathname) procedure 259
require-nongenerative-clause thread param 166
(reset) procedure 365
(reset-cost-center! cost-center) procedure 383
reset-handler thread param 365
(reset-maximum-memory-bytes!) procedure 378
(reverse list) procedure t161
(reverse! list) procedure 137
(revisit path) procedure 331
(round real) procedure t178
run-cp0 thread param 350
(s8-list->bytevector list) procedure 147
(sc-expand obj ) procedure 339
(sc-expand obj env) procedure 339
scheme module 305
(scheme-environment) procedure 325
scheme-program global param 367
(scheme-report-environment version) procedure t137
scheme-script global param 367
scheme-start global param 366
(scheme-version) procedure 387
(scheme-version-number) procedure 387
sealed syntax t331
(serious-condition? obj ) procedure t366
(set! var expr) syntax t102
(set-binary-port-input-buffer! binary-input-port bytevector) procedure 218
(set-binary-port-input-index! binary-input-port n) procedure 218
(set-binary-port-input-size! binary-input-port n) procedure 218
(set-binary-port-output-buffer! binary-output-port bytevector) procedure 219
(set-binary-port-output-index! output-port n) procedure 219
(set-binary-port-output-size! output-port n) procedure 219
(set-box! box obj ) procedure 150
(set-car! pair obj ) procedure t157
(set-cdr! pair obj ) procedure t157
(set-port-bol! output-port obj ) procedure 220
(set-port-eof! input-port obj ) procedure 221
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(set-port-input-buffer! input-port x) procedure 218
(set-port-input-index! input-port n) procedure 218
(set-port-input-size! input-port n) procedure 218
(set-port-length! port len) procedure 222
(set-port-name! port obj ) procedure 222
(set-port-nonblocking! port obj ) procedure 223
(set-port-output-buffer! output-port x) procedure 219
(set-port-output-index! output-port n) procedure 219
(set-port-output-size! output-port n) procedure 219
(set-port-position! port pos) procedure t272
(set-sstats-bytes! s new-value) procedure 380
(set-sstats-cpu! s new-value) procedure 380
(set-sstats-gc-bytes! s new-value) procedure 380
(set-sstats-gc-count! s new-value) procedure 380
(set-sstats-gc-cpu! s new-value) procedure 380
(set-sstats-gc-real! s new-value) procedure 380
(set-sstats-real! s new-value) procedure 380
(set-textual-port-input-buffer! textual-input-port string) procedure 218
(set-textual-port-input-index! textual-input-port n) procedure 218
(set-textual-port-input-size! textual-input-port n) procedure 218
(set-textual-port-output-buffer! textual-output-port string) procedure 219
(set-textual-port-output-index! textual-output-port n) procedure 219
(set-textual-port-output-size! textual-output-port n) procedure 219
(set-time-nanosecond! time nsec) procedure 371
(set-time-second! time sec) procedure 371
(set-time-type! time type) procedure 371
(set-timer n) procedure 322
(set-top-level-value! symbol obj ) procedure 118
(set-top-level-value! symbol obj env) procedure 118
(set-virtual-register! k x) procedure 386
(simple-conditions condition) procedure t363
(sin num) procedure t185
(sinh num) procedure 209
(sint-list->bytevector list eness size) procedure t239
(sleep time) procedure 376
(sort predicate list) procedure 157
(sort! predicate list) procedure 157
(source-condition-form condition) procedure 318
(source-condition? obj ) procedure 318
source-directories global param 346
(source-file-descriptor path checksum) procedure 313
(source-file-descriptor-checksum sfd) procedure 313
(source-file-descriptor-path sfd) procedure 313
(source-file-descriptor? obj ) procedure 313
(source-object-bfp source-object) procedure 312
(source-object-column source-object) procedure 312
(source-object-efp source-object) procedure 312
(source-object-line source-object) procedure 312
(source-object-sfd source-object) procedure 312
(source-object? obj ) procedure 312
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(sqrt num) procedure t183
(sstats-bytes s) procedure 380
(sstats-cpu s) procedure 380
(sstats-difference s1 s2) procedure 380
(sstats-gc-bytes s) procedure 380
(sstats-gc-count s) procedure 380
(sstats-gc-cpu s) procedure 380
(sstats-gc-real s) procedure 380
(sstats-print s) procedure 380
(sstats-print s textual-output-port) procedure 380
(sstats-real s) procedure 380
(sstats? obj ) procedure 379
(standard-error-port) procedure 239
(standard-error-port b-mode) procedure 239
(standard-error-port b-mode ?transcoder) procedure 239
(standard-error-port) procedure t264
(standard-input-port) procedure 229
(standard-input-port b-mode) procedure 229
(standard-input-port b-mode ?transcoder) procedure 229
(standard-input-port) procedure t264
(standard-output-port) procedure 238
(standard-output-port b-mode) procedure 238
(standard-output-port b-mode ?transcoder) procedure 238
(standard-output-port) procedure t264
(statistics) procedure 379
(string char ...) procedure t218
(string->bytevector string transcoder) procedure t287
(string->immutable-string string) procedure 141
(string->list string) procedure t222
(string->multibyte code-page string) procedure 242
(string->number string) procedure 210
(string->number string radix) procedure 210
(string->number string) procedure t191
(string->number string radix) procedure t191
(string->symbol string) procedure t242
(string->utf16 string) procedure t287
(string->utf16 string endianness) procedure t287
(string->utf32 string) procedure t287
(string->utf32 string endianness) procedure t287
(string->utf8 string) procedure t287
(string-append string ...) procedure t219
(string-ci-hash string) procedure t245
(string-ci<=? string1 string2 string3 ...) procedure 139
(string-ci<=? string1 string2 string3 ...) procedure t217
(string-ci<? string1 string2 string3 ...) procedure 139
(string-ci<? string1 string2 string3 ...) procedure t217
(string-ci=? string1 string2 string3 ...) procedure 139
(string-ci=? string1 string2 string3 ...) procedure t217
(string-ci>=? string1 string2 string3 ...) procedure 139
(string-ci>=? string1 string2 string3 ...) procedure t217
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(string-ci>? string1 string2 string3 ...) procedure 139
(string-ci>? string1 string2 string3 ...) procedure t217
(string-copy string) procedure t219
(string-copy! src src-start dst dst-start n) procedure 139
(string-downcase string) procedure t221
(string-fill! string char) procedure t220
(string-foldcase string) procedure t221
(string-for-each procedure string1 string2 ...) procedure t122
(string-hash string) procedure t245
(string-length string) procedure t218
(string-normalize-nfc string) procedure t222
(string-normalize-nfd string) procedure t222
(string-normalize-nfkc string) procedure t222
(string-normalize-nfkd string) procedure t222
(string-ref string n) procedure t218
(string-set! string n char) procedure t219
(string-titlecase string) procedure t221
(string-truncate! string n) procedure 140
(string-upcase string) procedure t221
(string<=? string1 string2 string3 ...) procedure 139
(string<=? string1 string2 string3 ...) procedure t216
(string<? string1 string2 string3 ...) procedure 139
(string<? string1 string2 string3 ...) procedure t216
(string=? string1 string2 string3 ...) procedure 139
(string=? string1 string2 string3 ...) procedure t216
(string>=? string1 string2 string3 ...) procedure 139
(string>=? string1 string2 string3 ...) procedure t216
(string>? string1 string2 string3 ...) procedure 139
(string>? string1 string2 string3 ...) procedure t216
(string? obj ) procedure t154
(strip-fasl-file input-path output-path options) procedure 338
(sub1 num) procedure 207
subset-mode thread param 389
(subst new old tree) procedure 136
(subst! new old tree) procedure 136
(substq new old tree) procedure 136
(substq! new old tree) procedure 136
(substring string start end) procedure t220
(substring-fill! string start end char) procedure 140
(substv new old tree) procedure 136
(substv! new old tree) procedure 136
(subtract-duration time timed) procedure 372
(subtract-duration! time timed) procedure 372
suppress-greeting global param 368
(symbol->string symbol) procedure t242
(symbol-hash symbol) procedure t245
(symbol-hashtable-cell hashtable key default) procedure 164
(symbol-hashtable-contains? hashtable key) procedure 163
(symbol-hashtable-delete! hashtable key) procedure 165
(symbol-hashtable-ref hashtable key default) procedure 163
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(symbol-hashtable-set! hashtable key value) procedure 163
(symbol-hashtable-update! hashtable key procedure default) procedure 164
(symbol-hashtable? obj ) procedure 163
(symbol=? symbol1 symbol2) procedure t242
(symbol? obj ) procedure t154
(syntax template) syntax t300
(syntax->annotation obj ) procedure 314
(syntax->datum obj ) procedure t308
(syntax->list syntax-object) procedure 289
(syntax->vector syntax-object) procedure 290
(syntax-case expr (literal ...) clause ...) syntax t299
(syntax-error obj string ...) procedure 293
(syntax-object->datum obj ) procedure 290
(syntax-rules (literal ...) clause ...) syntax 289
(syntax-rules (literal ...) clause ...) syntax t294
(syntax-violation who msg form) procedure t359
(syntax-violation who msg form subform) procedure t359
(syntax-violation-form condition) procedure t370
(syntax-violation-subform condition) procedure t370
(syntax-violation? obj ) procedure t370
(system command) procedure 57
(tan num) procedure t185
(tanh num) procedure 209
(textual-port-input-buffer textual-input-port) procedure 217
(textual-port-input-count textual-input-port) procedure 218
(textual-port-input-index textual-input-port) procedure 217
(textual-port-input-size textual-input-port) procedure 217
(textual-port-output-buffer output-port) procedure 219
(textual-port-output-count textual-output-port) procedure 220
(textual-port-output-index output-port) procedure 219
(textual-port-output-size output-port) procedure 219
(textual-port? obj ) procedure t270
(thread-condition? obj ) procedure 420
(thread? obj ) procedure 418
(threaded?) procedure 387
(time expr) syntax 376
(time-difference time1 time2) procedure 372
(time-difference! time1 time2) procedure 372
(time-nanosecond time) procedure 371
(time-second time) procedure 371
(time-type time) procedure 371
(time-utc->date time) procedure 375
(time-utc->date time offset) procedure 375
(time<=? time1 time2) procedure 371
(time<? time1 time2) procedure 371
(time=? time1 time2) procedure 371
(time>=? time1 time2) procedure 371
(time>? time1 time2) procedure 371
(time? obj ) procedure 370
timer-interrupt-handler thread param 322
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(top-level-bound? symbol) procedure 118
(top-level-bound? symbol env) procedure 118
(top-level-mutable? symbol) procedure 119
(top-level-mutable? symbol env) procedure 119
(top-level-program imports body) syntax 275
(top-level-syntax symbol) procedure 120
(top-level-syntax symbol env) procedure 120
(top-level-syntax? symbol) procedure 121
(top-level-syntax? symbol env) procedure 121
(top-level-value symbol) procedure 118
(top-level-value symbol env) procedure 118
(trace var1 var2 ...) syntax 36
(trace) syntax 36
(trace-case-lambda name clause ...) syntax 34
(trace-define var expr) syntax 38
(trace-define (var . idspec) body1 body2 ...) syntax 38
(trace-define-syntax keyword expr) syntax 39
(trace-do ((var init update) ...) (test result ...) expr ...) syntax 35
(trace-lambda name formals body1 body2 ...) syntax 33
(trace-let name ((var expr) ...) body1 body2 ...) syntax 34
trace-output-port thread param 38
trace-print thread param 38
(transcoded-port binary-port transcoder) procedure t271
(transcoder-codec transcoder) procedure t259
(transcoder-eol-style transcoder) procedure t259
(transcoder-error-handling-mode transcoder) procedure t259
(transcoder? obj ) procedure 216
(transcript-cafe path) procedure 369
(transcript-off) procedure 368
(transcript-on path) procedure 368
(truncate real) procedure t177
(truncate-file output-port) procedure 240
(truncate-file output-port pos) procedure 240
(truncate-port output-port) procedure 240
(truncate-port output-port pos) procedure 240
(type-descriptor name) syntax 178
(u8-list->bytevector list) procedure t232
(uint-list->bytevector list eness size) procedure t239
(unbox box) procedure 150
undefined-variable-warnings thread param 353
(undefined-violation? obj ) procedure t371
(unget-char textual-input-port char) procedure 231
(unget-u8 binary-input-port octet) procedure 232
(unless test-expr expr1 expr2 ...) syntax t112
(unlock-object obj ) procedure 402
(unquote obj ...) syntax t142
(unquote-splicing obj ...) syntax t142
(unread-char char) procedure 231
(unread-char char textual-input-port) procedure 231
(unsyntax template ...) syntax t305
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(unsyntax-splicing template ...) syntax t305
(untrace var1 var2 ...) syntax 37
(untrace) syntax 37
(utf-16-codec) procedure 215
(utf-16-codec endianness) procedure 215
(utf-16-codec) procedure t259
(utf-16be-codec) procedure 215
(utf-16le-codec) procedure 215
(utf-8-codec) procedure t259
(utf16->string bytevector endianness) procedure t288
(utf16->string bytevector endianness endianness-mandatory?) procedure t288
(utf32->string bytevector endianness) procedure t288
(utf32->string bytevector endianness endianness-mandatory?) procedure t288
(utf8->string bytevector) procedure t287
(values obj ...) procedure t131
variable syntax t91
(vector obj ...) procedure t224
(vector->immutable-vector vector) procedure 142
(vector->list vector) procedure t225
(vector-copy vector) procedure 141
(vector-fill! vector obj ) procedure t225
(vector-for-each procedure vector1 vector2 ...) procedure t122
(vector-length vector) procedure t224
(vector-map procedure vector1 vector1 ...) procedure t121
(vector-ref vector n) procedure t224
(vector-set! vector n obj ) procedure t225
(vector-set-fixnum! vector n fixnum) procedure 142
(vector-sort predicate vector) procedure t226
(vector-sort! predicate vector) procedure t226
(vector? obj ) procedure t154
(violation? obj ) procedure t366
(virtual-register k) procedure 386
(virtual-register-count) procedure 386
(visit path) procedure 330
(void) procedure 156
waiter-prompt-and-read thread param 364
waiter-prompt-string thread param 364
waiter-write thread param 365
(warning who msg irritant ...) procedure 317
(warning? obj ) procedure t367
(warningf who msg irritant ...) procedure 318
(weak-cons obj1 obj2) procedure 395
(weak-pair? obj ) procedure 396
(when test-expr expr1 expr2 ...) syntax t112
(who-condition? obj ) procedure t369
(with ((pat expr) ...) template) syntax 433
(with-cost-center cost-center thunk) procedure 382
(with-cost-center timed? cost-center thunk) procedure 382
(with-exception-handler procedure thunk) procedure t360
(with-implicit (id0 id1 ...) body1 body2 ...) syntax 291
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(with-input-from-file path thunk) procedure 229
(with-input-from-file path thunk options) procedure 229
(with-input-from-file path thunk) procedure t283
(with-input-from-string string thunk) procedure 225
(with-interrupts-disabled body1 body2 ...) syntax 323
(with-mutex mutex body1 body2 ...) syntax 419
(with-output-to-file path thunk) procedure 237
(with-output-to-file path thunk options) procedure 237
(with-output-to-file path thunk) procedure t283
(with-output-to-string thunk) procedure 226
(with-source-path who name procedure) procedure 346
(with-syntax ((pattern expr) ...) body1 body2 ...) syntax t304
(write obj ) procedure t284
(write obj textual-output-port) procedure t284
(write-char char) procedure t285
(write-char char textual-output-port) procedure t285
(zero? num) procedure t173
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! (exclamation point), t8
" (double quote), t216
#!r6rs, t456
#n# (graph reference), 3, 251
#2% ($primitive), 348
#3% ($primitive), 348
#% ($primitive), 3, 348
#& (box prefix), 3, 150
#’ (syntax), t300
#( (vector prefix), 3
#n( (vector prefix), 3
#, (unsyntax), t305
#,@ (unsyntax-splicing), t305
#: (gensym prefix), 2, 152, 252
#; (datum comment), t455
#n= (graph mark), 3, 250
#[ (record prefix), 3
#\, t211
#\alarm, 3
#\backspace, 3
#\bel, 3
#\delete, 3
#\esc, 3
#\linefeed, 3
#\ls, 3
#\nel, 3
#\newline, 3
#\nul, 3
#\page, 3
#\return, 3
#\rubout, 3
#{ (gensym prefix), 2, 152, 252
#\space, 3
#\tab, 3
#\vt, 3
#‘ (quasisyntax), t305
#b (binary), t169
#d (decimal), t169
#f, t143
#o (octal), t169
#nr (radix prefix), 3

#t, t36
#x (hexadecimal), t169
#|...|# (block comment), t455
$primitive ( #% ), 348
$primitive ( #2% ), 348
$primitive ( #3% ), 348
$system, 305
$system module, 304
&assertion, t366
&condition, t362
&continuation, 319
&error, t367
&format, 318
&i/o, t371
&i/o-decoding, t375
&i/o-encoding, t376
&i/o-file-already-exists, t374
&i/o-file-does-not-exist, t374
&i/o-file-is-read-only, t374
&i/o-file-protection, t373
&i/o-filename, t373
&i/o-invalid-position, t372
&i/o-port, t375
&i/o-read, t372
&i/o-write, t372
&implementation-restriction, t369
&irritants, t368
&lexical, t370
&message, t368
&no-infinities, t376
&no-nans, t377
&non-continuable, t369
&serious, t366
&source, 318
&syntax, t370
&undefined, t371
&violation, t366
&warning, t367
&who, t369
’ (quote), t17, t141
(), t19
(chezscheme csv7) library, 272
(chezscheme) library, 272
(scheme csv7) library, 272
(scheme) library, 272
*, t16, t172
+, t16, t171
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, (unquote), t142
,@ (unquote-splicing), t142
-, t16, t172
-- command-line option, 29
--boot command-line option, 29, 337
--compact command-line option, 30
--compile-imported-libraries command-line

option, 29, 284
--debug-on-exception command-line option, 10,

29, 41, 320
--eedisable command-line-option, 29
--eehistory command-line-option, 29, 412
--enable-object-counts command-line-option, 29
--heap command-line option, 30
--help command-line option, 29
--import-notify command-line option, 18, 29
--libdirs command-line option, 21, 29, 283
--libexts command-line option, 21, 29, 283
--optimize-level command-line option, 23, 29,

347
--program command-line option, 10, 21, 29, 41,

273, 333, 348, 367
--quiet command-line option, 29
--retain-static-relocation command-line

option, 29, 53, 54
--saveheap command-line option, 30
--script command-line option, 10, 20, 29, 41,

332, 367, 368
--verbose command-line option, 29
--version command-line option, 29
-1+, 207
->, t8
-b command-line option, 29, 337
-c command-line option, 30
-h command-line option, 30
-q command-line option, 29
-s command-line option, 30
. (dot), t460
... (ellipses), 251, 431
... (ellipsis), t294, t297
/, t16, t172
; (comment), t7
<, t170, 206
<=, t170, 206
=, t170, 206
=>, t111, t112
>, t170, 206
>=, t170, 206
? (question mark), t37
[, 244
], 244
_ (underscore), t296
_ (underscore), t294, t297
‘ (quasiquote), t142
1+, 207
1-, 207

abort, 366

abort-handler, 366
abs, t34, t178
abstract objects, t408
acos, t185
acosh, 210
actual parameters, t92
add-duration, 372
add-duration!, 372
add-prefix, 304
add1, 207
Algol 60, t6
alias, 113, 304, 308
and, t62, t110, 432
andmap, 125, 433
angle, t183
annotation-expression, 311
annotation-option-set, 313
annotation-options, 312
annotation-source, 311
annotation-stripped, 312
annotation?, 311
annotations, 309
append, t46, t160
append!, 137
applications, 24
apply, t107
apropos, 327
apropos-list, 327
arbitrary precision, t167
ash, 202
asin, t185
asinh, 210
assert, t359
assertion-violation, t358
assertion-violation?, t366
assertion-violationf, 318
assignable variables, 41
assignment, t102
assignments, t102, 116, 118
assoc, t165
association list, t404
assp, t166
assq, t165
assv, t165
atan, t185
atanh, 210
atom?, t41, 133
auxiliary keywords, 17, t61

base case, t41
base-exception-handler, 11, 320
be-like-begin, t313
begin, t60, t108, 113
bignum, 187, 188
bignum?, 188
binary port, t257
binary trees, t155
binary-port-input-buffer, 217
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binary-port-input-count, 218
binary-port-input-index, 217
binary-port-input-size, 217
binary-port-output-buffer, 219
binary-port-output-count, 220
binary-port-output-index, 219
binary-port-output-size, 219
binary-port?, t270
binding, t4
bitwise-and, t186
bitwise-arithmetic-shift, t190
bitwise-arithmetic-shift-left, t189
bitwise-arithmetic-shift-right, t189
bitwise-bit-count, t187
bitwise-bit-field, t189
bitwise-bit-set?, t188
bitwise-copy-bit, t188
bitwise-copy-bit-field, t189
bitwise-first-bit-set, t187
bitwise-if, t186
bitwise-ior, t186
bitwise-length, t187
bitwise-not, t186
bitwise-reverse-bit-field, t191
bitwise-rotate-bit-field, t190
bitwise-xor, t186
block buffering, t258
block comment ( #|...|# ), t455
block profiling, 354
block structure, t4
block-read, 233
block-write, 240
boolean, 63, 66
boolean syntax, t457
boolean values, t7
boolean=?, t243
boolean?, t150
boot files, 28, 30
bound-identifier=?, t302
box, 150
box-immutable, 150, 151
box?, 150
boxes, 150
brackets ( [ ] ), t155
break, t308, 321
break-handler, 322
broadcast streams, 211
buffer modes, t258
buffer-mode, t261
buffer-mode?, t262
bwp-object?, 398
bytes-allocated, 377
bytes-deallocated, 378
bytevector, 146
bytevector syntax, t461
bytevector->immutable-bytevector, 146, 149
bytevector->s8-list, 146
bytevector->sint-list, t238

bytevector->string, t286
bytevector->u8-list, t232
bytevector->uint-list, t238
bytevector-compress, 149
bytevector-copy, t229
bytevector-copy!, t230
bytevector-fill!, t229
bytevector-ieee-double-native-ref, t239
bytevector-ieee-double-native-set!, t239
bytevector-ieee-double-ref, t240
bytevector-ieee-double-set!, t240
bytevector-ieee-single-native-ref, t239
bytevector-ieee-single-native-set!, t239
bytevector-ieee-single-ref, t240
bytevector-ieee-single-set!, t240
bytevector-length, t229
bytevector-s16-native-ref, t232
bytevector-s16-native-set!, t233
bytevector-s16-ref, t235
bytevector-s16-set!, t236
bytevector-s24-ref, 148
bytevector-s24-set!, 148
bytevector-s32-native-ref, t232
bytevector-s32-native-set!, t233
bytevector-s32-ref, t235
bytevector-s32-set!, t236
bytevector-s40-ref, 148
bytevector-s40-set!, 148
bytevector-s48-ref, 148
bytevector-s48-set!, 148
bytevector-s56-ref, 148
bytevector-s56-set!, 148
bytevector-s64-native-ref, t232
bytevector-s64-native-set!, t233
bytevector-s64-ref, t235
bytevector-s64-set!, t236
bytevector-s8-ref, t231
bytevector-s8-set!, t231
bytevector-sint-ref, t237
bytevector-sint-set!, t238
bytevector-truncate!, 147
bytevector-u16-native-ref, t232
bytevector-u16-native-set!, t233
bytevector-u16-ref, t235
bytevector-u16-set!, t236
bytevector-u24-ref, 148
bytevector-u24-set!, 148
bytevector-u32-native-ref, t232
bytevector-u32-native-set!, t233
bytevector-u32-ref, t235
bytevector-u32-set!, t236
bytevector-u40-ref, 148
bytevector-u40-set!, 148
bytevector-u48-ref, 148
bytevector-u48-set!, 148
bytevector-u56-ref, 148
bytevector-u56-set!, 148
bytevector-u64-native-ref, t232
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bytevector-u64-native-set!, t233
bytevector-u64-ref, t235
bytevector-u64-set!, t236
bytevector-u8-ref, t230
bytevector-u8-set!, t231
bytevector-uint-ref, t237
bytevector-uint-set!, t238
bytevector-uncompress, 149
bytevector=?, t229
bytevector?, t155

C, t393
C (programming language), 57, 59, 91, 93, 94
C preprocessor macros, 94
C-callable library functions, 94
caaaar, t157
caaadr, t157
caaar, t157
caadar, t157
caaddr, t157
caadr, t157
caar, t157
caar, cadr, ..., cddddr, t34
cadaar, t157
cadadr, t157
cadar, t157
caddar, t157
cadddr, t157
caddr, t157
cadr, t34, t157
café, 363
call-by-name, t408
call-by-reference, 150
call-by-value, t407
call-with-bytevector-output-port, t266
call-with-current-continuation, t426, t123
call-with-input-file, t281, 228
call-with-output-file, t282, 237
call-with-port, t272
call-with-string-output-port, t267
call-with-values, t130, t131
call/1cc, 126
call/cc, t425, t123
car, t18, t156
case, t306, t113, 123
case-lambda, 34, t94, t94, 384
case-sensitive, 250
cd, 256
cdaaar, t157
cdaadr, t157
cdaar, t157
cdadar, t157
cdaddr, t157
cdadr, t157
cdar, t157
cddaar, t157
cddadr, t157
cddar, t157

cdddar, t157
cddddr, t157
cdddr, t157
cddr, t31, t157
cdr, t18, t156
ceiling, t177
cfl*, 196
cfl+, 196
cfl-, 196
cfl-conjugate, 197
cfl-imag-part, 196
cfl-magnitude-squared, 197
cfl-real-part, 196
cfl/, 196
cfl=, 196
cflonum, 188
cflonum?, 189
cflonums, 196
char, 63, 66
char-, 138
char->integer, t215
char-alphabetic?, t213
char-ci<=?, t212, 138
char-ci<?, t212, 138
char-ci=?, t212, 138
char-ci>=?, t212, 138
char-ci>?, t212, 138
char-downcase, t214
char-foldcase, t215
char-general-category, t214
char-lower-case?, t213
char-name, 137, 248
char-numeric?, t213
char-ready?, 232
char-title-case?, t213
char-titlecase, t214
char-upcase, t214
char-upper-case?, t213
char-whitespace?, t213
char<=?, t212, 138
char<?, t212, 138
char=?, t212, 138
char>=?, t212, 138
char>?, t212, 138
char?, t154
character syntax, t457
characters, t211
Chez Scheme, t42
CHEZSCHEMELIBDIRS, 22
CHEZSCHEMELIBEXTS, 22
child type, t325
chmod, 259
circular lists, t156
clear-input-port, 224
clear-output-port, 224
close-input-port, t285
close-output-port, t285
close-port, t270
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codec, t257
collect, 391, 392
collect-generation-radix, 393
collect-maximum-generation, 391, 394
collect-notify, 393
collect-rendezvous, 393
collect-request-handler, 391, 394
collect-trip-bytes, 391, 393
collections, 378
command-line, t350, 367, 368
command-line options, 29
command-line-arguments, 367, 368
comments, t7
Common Lisp, t6
commonization-level, 353
compilation, 331
compile, 328, 329, 349
compile-compressed, 332, 350
compile-file, 10, 26, 331, 347
compile-file-message, 350
compile-imported-libraries, 18, 19, 284
compile-interpret-simple, 349
compile-library, 19, 23, 26, 333
compile-library-handler, 334
compile-port, 336
compile-profile, 355, 358
compile-program, 19, 23, 26, 274, 333
compile-program-handler, 334
compile-script, 21, 26, 332
compile-to-file, 334, 337
compile-to-port, 336
compile-whole-library, 335
compile-whole-program, 28, 335, 349
compiler, t4
complete, see engines, see engines
complex numbers, t167, 195
complex?, t167, t151
compose, t34
compound condition, t362
compute-composition, 55
compute-size, 42, 54
concatenated streams, 211
cond, t304, t111, 432
condition, t362
condition object, t361
condition type, t361
condition-accessor, t365
condition-broadcast, 420
condition-continuation, 319
condition-irritants, t368
condition-message, t368
condition-predicate, t365
condition-signal, 420
condition-wait, 420
condition-who, t369
condition?, t362
conditionals, t109
conditions, t357

conjugate, 197, 209
cons, t19, t156
cons cell, t155
cons*, t158
consing, t19
console-error-port, 235
console-input-port, 227, 364
console-output-port, 235, 364
constant, t141
constants, t21
constructor, 177
continuation-condition?, 319
continuation-passing style, t78
continuations, t124
control structures, t107
copy propagation, 22
copy-environment, 326
copy-time, 372
core syntactic forms, t22
cos, t185
cosh, 209
cost-center-allocation-count, 383
cost-center-instruction-count, 383
cost-center-time, 383
cost-center?, 382
cp0-effort-limit, 350
cp0-outer-unroll-limit, 350
cp0-score-limit, 350
CPS, t78
cpu-time, 377
create-exception-state, 321
creating subprocesses, 57
critical-section, 323
current exception handler, t357
current-date, 373
current-directory, 256
current-error-port, t263, 236
current-eval, 328
current-exception-state, 320
current-expand, 339
current-input-port, t263, 227
current-locate-source-object-source, 315
current-make-source-object, 313
current-memory-bytes, 378
current-output-port, t263, 235
current-time, 370
current-transcoder, 216
custom-port-buffer-size, 227
customization, 24
cyclic lists, t56

d (double), t169
data, t141
date->time-utc, 375
date-and-time, 376
date-day, 374
date-dst?, 375
date-hour, 374
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date-minute, 374
date-month, 374
date-nanosecond, 374
date-second, 374
date-week-day, 374
date-year, 374
date-year-day, 374
date-zone-name, 375
date-zone-offset, 374
date?, 374
datum, 291
datum comment ( #; ), t455
datum syntax, t455
datum->syntax, t317, t308, 439
datum->syntax-object, 291
debug, 41
debug-condition, 320
debug-level, 348
debug-on-exception, 10, 320
debugger, 321, 322
decode-float, 195
default protocol, t327
default-exception-handler, 319
default-prompt-and-read, 364
default-record-equal-procedure, 166, 169
default-record-hash-procedure, 166, 169
define, t30, t100, 113, 117
define-condition-type, t364
define-enumeration, t250
define-ftype, 77
define-integrable, t315, 288
define-object, t408
define-property, 296
define-record, 170, 172
define-record-type, t323, t328, 165, 166
define-structure, t318, 437
define-syntax, t389, t292, 113, 119
define-top-level-syntax, 119
define-top-level-value, 117
define-values, 114
defining syntactic extensions, t60
definitions, 113
defun syntax, t33
delay, t128
delayed evaluation, t408
delete-directory, 259
delete-file, t286, 258
delq!, t54
denominator, t181
describe-segment, t132
directory-list, 257
directory-separator, 260
directory-separator?, 260
disable-interrupts, 323, 393
display, t397, t285
display-condition, 319
display-statistics, 377
display-string, 240

distributing applications, 24
div, t175
div-and-mod, t175
div0, t176
div0-and-mod0, t176
divisors, t116
do, 35, t312, t115
dot ( . ), t19
dotted pair, t155
double, t27, 63, 64, 66
double quotes, t216
double-any, t30
double-cons, t33
double-float, 61, 64, 65
doubler, t33
doubly recursive, t70
drop-prefix, 304
dxdy, t131
dynamic allocation, t3
dynamic-wind, t124, 127

echo streams, 211
ee-accept, 413
ee-auto-indent, 405, 408
ee-auto-paren-balance, 406, 408
ee-backward-char, 408
ee-backward-delete-char, 410
ee-backward-delete-sexp, 411
ee-backward-page, 410
ee-backward-sexp, 410
ee-backward-word, 410
ee-beginning-of-entry, 409
ee-beginning-of-line, 409
ee-bind-key, 407
ee-command-repeat, 414
ee-common-identifiers, 406, 412
ee-compose, 407, 415
ee-default-repeat, 406, 414
ee-delete-between-point-and-mark, 411
ee-delete-char, 410
ee-delete-entry, 411
ee-delete-line, 410
ee-delete-sexp, 411
ee-delete-to-eol, 411
ee-end-of-entry, 409
ee-end-of-line, 409
ee-eof, 413
ee-eof/delete-char, 414
ee-exchange-point-and-mark, 409
ee-flash-matching-delimiter, 409
ee-flash-parens, 406, 408
ee-forward-char, 408
ee-forward-page, 410
ee-forward-sexp, 410
ee-forward-word, 410
ee-goto-matching-delimiter, 409
ee-history-bwd, 409, 412
ee-history-bwd-contains, 413
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ee-history-bwd-prefix, 412
ee-history-fwd, 409, 412
ee-history-fwd-contains, 413
ee-history-fwd-prefix, 412
ee-history-limit, 406
ee-id-completion, 411
ee-id-completion/indent, 411, 414
ee-indent, 413
ee-indent-all, 413
ee-insert-paren, 408
ee-insert-self, 407
ee-newline, 408
ee-newline/accept, 414
ee-next-id-completion, 412
ee-next-id-completion/indent, 412, 414
ee-next-line, 409
ee-noisy, 406
ee-open-line, 408
ee-paren-flash-delay, 406, 408, 409
ee-previous-line, 409
ee-redisplay, 413
ee-reset-entry, 411
ee-set-mark, 414
ee-standard-indent, 405
ee-string-macro, 407, 415
ee-suspend-process, 414
ee-yank-kill-buffer, 408
ee-yank-selection, 408
ellipses ( ... ), 251, 431
ellipsis ( ... ), t294
else, t113, t112, 123, 124
empty list, t19
enable-cross-library-optimization, 349
enable-interrupts, 323
enable-object-counts, 380
endianness, t228
engine-block, 131
engine-return, 132
engines, t421, 127, 128
enum-set->list, t252
enum-set-complement, t254
enum-set-constructor, t251
enum-set-difference, t253
enum-set-indexer, t254
enum-set-intersection, t253
enum-set-member?, t253
enum-set-projection, t254
enum-set-subset?, t252
enum-set-union, t253
enum-set-universe, t252
enum-set=?, t252
enum-set?, 133
enumerate, 135
environment, t404
environment, t137
environment-mutable?, 325
environment-symbols, 326
environment?, 324

eof object, t257
eof-object, t273
eof-object?, t257, t273
eol style, t257
eol-style, t259
ephemeron pairs, 395
ephemeron-cons, 397
ephemeron-pair?, 398
eq-hashtable-cell, 162
eq-hashtable-contains?, 161
eq-hashtable-delete!, 162
eq-hashtable-ephemeron?, 160
eq-hashtable-ref, 160
eq-hashtable-set!, 160
eq-hashtable-update!, 161
eq-hashtable-weak?, 160
eq-hashtable?, 160
eq?, t143
equal-hash, t245, 166
equal-hash on records, 166
equal?, t148, 166
equal? on records, 166
equivalence predicates, t143
eqv?, t38, t146
error, t358
error handling mode, t258
error-handling-mode, t260
error?, t367
errorf, 318
eval, t136, 328, 328
eval-syntax-expanders-when, 345
eval-when, 341, 347
even?, t81, t174
exact, t180, 193
exact complexnum, 187
exact->inexact, t181
exact-integer-sqrt, t184
exact?, t167, t170
exactness, t180
exactness preserving, t167
except, 304
except import set, t346
exception handling, 317
exceptions, 4, t357
exclamation point ( ! ), t8
exclusive-cond, 123
exists, t119
exit, t350, 366
exit-handler, 366
exp, t184
expand, 339, 339, 353, 363
expand-output, 339, 353
expand-time generativity, 171
expand/optimize, 340, 351, 353
expand/optimize-output, 341, 353
expansion, t59
expire, see engines, see engines
export, t345, 280
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export level, t345
expression-editor, 405
expressions, t7
expt, t179
expt-mod, 207
extend-syntax, 431
extended examples, t381

f (single), t169
factor, t72
factorial, t68
false, t36
fasl-file, 256
fasl-read, 256
fasl-strip-options, 338
fasl-write, 256
fast Fourier transform (FFT), t412
fast loading format, 255
fenders, t299, 431, 433
fibonacci, t422, 128
Fibonacci numbers, t69
fields, t331
file, t257
file-access-time, 258
file-buffer-size, 226
file-change-time, 258
file-directory?, 257
file-exists?, t286, 257
file-length, 222
file-modification-time, 258
file-options, t261
file-port?, 227
file-position, 223
file-regular?, 257
file-symbolic-link?, 257
filter, t164
find, t165
finite?, t174
first-class data values, t3
first-class procedures, t5
fixnum, t192, 187, 188
fixnum, 63
fixnum->flonum, t211
fixnum-width, t193
fixnum?, t193
fl*, t207
fl+, t206
fl-, t206
fl-make-rectangular, 196
fl/, t207
fl<, 193
fl<=, 193
fl<=?, t203
fl<?, t203
fl=, 193
fl=?, t203
fl>, 193
fl>=, 193

fl>=?, t203
fl>?, t203
flabs, t209
flacos, t210
flasin, t210
flatan, t210
flceiling, t208
flcos, t210
fldenominator, t209
fldiv, t207
fldiv-and-mod, t207
fldiv0, t208
fldiv0-and-mod0, t208
fleven?, t205
flexp, t209
flexpt, t210
flfinite?, t205
flfloor, t208
flinfinite?, t205
flinteger?, t204
flip-flop, t102
fllog, t209
fllp, 195
flmax, t205
flmin, t205
flmod, t207
flmod0, t208
flnan?, t205
flnegative?, t204
flnonnegative?, 194
flnonpositive?, 194
flnumerator, t209
float, 63, 64, 66
floating point, t167
flodd?, t205
flonum, t202, 187, 188
flonum->fixnum, 193
flonum?, t203
floor, t177
flpositive?, t204
flround, t208
flsin, t210
flsqrt, t210
fltan, t210
fltruncate, t208
fluid binding, t125, 116
fluid-let, 116
fluid-let-syntax, 287, 289
flush-output-port, t280, 224
flzero?, t204
fold-left, t120
fold-right, t121
folding, t121
for-all, t119
for-each, t118
force, t128
foreign entry, 59
foreign types, 77
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foreign-address-name, 90
foreign-alloc, 74
foreign-callable, 70, 82
foreign-callable-code-object, 73
foreign-callable-entry-point, 70, 73
foreign-entry, 90
foreign-entry?, 90, 93
foreign-free, 74
foreign-procedure, 59, 69, 87
foreign-procedure interface, 59
foreign-ref, 75
foreign-set!, 76
foreign-sizeof, 77
fork-thread, 418
formal parameters, t26
format, 246, 435
format-condition?, 318
formatted error messages, 318
formatted output, t401, 246
fprintf, t401, 248
Fred, 155
free variable, t28
free-identifier=?, 17, t302
frequency, t393
fresh-line, 240
ftype, 64, 68
ftype subtyping, 81
ftype-&ref, 84
ftype-init-lock!, 422
ftype-lock!, 422
ftype-locked-decr!, 423
ftype-locked-incr!, 423
ftype-pointer->sexpr, 88
ftype-pointer-address, 84
ftype-pointer-ftype, 88
ftype-pointer-null?, 84
ftype-pointer=?, 84
ftype-pointer?, 83
ftype-ref, 86
ftype-set!, 86
ftype-sizeof, 81
ftype-spin-lock!, 422
ftype-unlock!, 422
ftypes, 77
function ftype, 77, 82, 83, 87
fx*, t195, 191
fx*/carry, t197
fx+, t195, 190
fx+/carry, t197
fx-, t195, 191
fx-/carry, t197
fx/, 191
fx1+, 191
fx1-, 191
fx<, 189
fx<=, 189
fx<=?, t193
fx<?, t193

fx=, 189
fx=?, t193
fx>, 189
fx>=, 189
fx>=?, t193
fx>?, t193
fxabs, 192
fxand, t197
fxarithmetic-shift, t201
fxarithmetic-shift-left, t201
fxarithmetic-shift-right, t201
fxbit-count, t198
fxbit-field, t200
fxbit-set?, t199
fxcopy-bit, t200
fxcopy-bit-field, t200
fxdiv, t196
fxdiv-and-mod, t196
fxdiv0, t196
fxdiv0-and-mod0, t196
fxeven?, t194
fxfirst-bit-set, t199
fxif, t198
fxior, t197
fxlength, t198
fxlogand, 202
fxlogbit0, 204
fxlogbit1, 205
fxlogbit?, 203
fxlogior, 202
fxlognot, 203
fxlogor, 202
fxlogtest, 204
fxlogxor, 203
fxmax, t195
fxmin, t195
fxmod, t196
fxmod0, t196
fxmodulo, 192
fxnegative?, t194
fxnonnegative?, 190
fxnonpositive?, 190
fxnot, t197
fxodd?, t194
fxpositive?, t194
fxquotient, 192
fxremainder, 192
fxreverse-bit-field, t202
fxrotate-bit-field, t201
fxsll, 205
fxsra, 205
fxsrl, 205
fxvector, 143
fxvector->immutable-fxvector, 143, 145
fxvector->list, 144
fxvector-copy, 145
fxvector-fill!, 144
fxvector-length, 143



492 Index

fxvector-ref, 144
fxvector-set!, 144
fxvector?, 143
fxvectors, 142
fxxor, t197
fxzero?, t194

garbage collector, t3, 391
gcd, t179
generate-allocation-counts, 382
generate-inspector-information, 27, 349
generate-instruction-counts, 382
generate-interrupt-trap, 348
generate-profile-forms, 359
generate-temporaries, t310
generate-wpo-files, 335, 349
generated symbols, 152
generative, t324
generativity of record definitions, 171
generic port, 211, 217
gensym, 152, 153, 252, 434
gensym->unique-string, 154
gensym-count, 153
gensym-prefix, 153
gensym?, 154
gensyms, 152
get-bytevector-all, t275
get-bytevector-n, t274
get-bytevector-n!, t274
get-bytevector-some, t275
get-bytevector-some!, 230
get-char, t275
get-datum, t278
get-datum/annotations, 310, 314
get-hash-table, 430
get-line, t277
get-mode, 259
get-output-string, 226
get-process-id, 388, 418
get-property, 296
get-registry, 388
get-string-all, t277
get-string-n, t276
get-string-n!, t276
get-string-some, 230
get-string-some!, 230
get-thread-id, 418
get-u8, t274
getenv, 388
getprop, 154
getq, t54
goodbye, t41
greatest-fixnum, t193
guard, t361
guardians, 395

half, 33
hare and tortoise, t66

hash-table-for-each, 430
hash-table-map, 430
hash-table?, 429
hashtable-cell, 157
hashtable-clear!, t249
hashtable-contains?, t246
hashtable-copy, t248
hashtable-delete!, t248
hashtable-entries, t250
hashtable-ephemeron?, 159
hashtable-equivalence-function, t245
hashtable-hash-function, t245
hashtable-keys, t249
hashtable-mutable?, t245
hashtable-ref, t246
hashtable-set!, t246
hashtable-size, t248
hashtable-update!, t247
hashtable-values, 158
hashtable-weak?, 159
hashtable?, t155
hashtables, t243
heap files, 30
heap-reserve-ratio, 395

i/o-decoding-error?, t375
i/o-encoding-error-char, t376
i/o-encoding-error?, t376
i/o-error-filename, t373
i/o-error-port, t375
i/o-error-position, t372
i/o-error?, t371
i/o-file-already-exists-error?, t374
i/o-file-does-not-exist-error?, t374
i/o-file-is-read-only-error?, t374
i/o-file-protection-error?, t373
i/o-filename-error?, t373
i/o-invalid-position-error?, t372
i/o-port-error?, t375
i/o-read-error?, t372
i/o-write-error?, t372
iconv-codec, 216, 241
identifier-syntax, t316, t297
identifier?, t301
identifiers, t6
ieee, 305
ieee module, 304
ieee-environment, 305, 325
if, t35, t109
imag-part, t182
imaginary numbers, 195
immutability of exports, t349
immutable, 177
immutable, t331
immutable boxes, 150, 151
immutable bytevectors, 146, 149
immutable fxvectors, 143, 145
immutable strings, 139, 141
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immutable vectors, 141, 142
immutable-box?, 151
immutable-bytevector?, 149
immutable-fxvector?, 145
immutable-string?, 141
immutable-vector?, 142
implementation-restriction-violation?, t369
implicit begin, t109
implicit-exports, 282
import, t345, 113, 271, 276, 283
import level, t345
import spec, t345
import-notify, 18, 284
import-only, 113, 276
improper list, t19
include, t309, 284, 292
indirect exports, t349
indirect-export, 281
inexact, t180
inexact complexnum, 187
inexact->exact, t181
inexact?, t167, t170
infinite?, t174
inheritance, t412
inheritance in records, t325, 171, 173
initial-bytes-allocated, 378
INITLOCK, 105
inlining, 22
input port, t257
input-port-ready?, 58, 232
input-port?, t270
inspect, 42
inspect/object, 47
inspector, 41
int, 62, 65
integer-16, 61, 65
integer-32, 61, 65
integer-64, 61, 65
integer-8, 61, 65
integer->char, t215
integer-divide, t79
integer-length, 208
integer-valued?, t153
integer?, t167, t151
integers, t167
integrable procedures, t315, 288
interaction environment, 14
interaction-environment, 15, 325
interactive top level, 14
interactive?, 387
internal definitions, t81
internal state, t49
internal-defines-as-letrec*, 114
interpret, t404, 328, 329
interpreter, t4
interrupts, 321
intraline whitespace, t455
iota, 135

iptr, 62, 66
irritants-condition?, t368
isqrt, 208
iteration, t120

kernel, 24
keyboard-interrupt-handler, 322
keyword definition, 113
keywords, t61

l (long), t169
lambda, 33, t26, t92
lambda*, t94
last-pair, 134
latin-1, t257
latin-1-codec, t259
lazy, t51
lazy evaluation, t51
lcm, t179
least-fixnum, t193
length, t42, t159
let, 34, t28, t95, 432
let*, t64, t96, 432
let*-values, t134, t99
let-bound variables, t23
let-syntax, t314, t293, 113
let-values, t134, t99
letrec, t310, t97
letrec*, t98
letrec-syntax, t291, t293, 113
lexical scoping, t4
lexical-violation?, t370
libraries, 17, 23, t343, 271
library, 274
library body, t348
library version, t344
library version reference, t347
library-directories, 18, 21, 283
library-exports, 284
library-extensions, 18, 21, 283
library-list, 284
library-object-filename, 20, 284
library-requirements, 20, 284
library-requirements-options, 286
library-version, 284
light-weight threads, t421
line buffering, t258
line ending, t455
Lisp, tix
lisp-cdr, t38
list, t31, t158
list constants, t7
list syntax, t460
list*, 135
list->fxvector, 145
list->string, t223
list->vector, t226
list-copy, t43, 134
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list-head, 134
list-ref, t159
list-sort, t387, t167
list-tail, t160
list?, t56, t158
lists, t155
literal-identifier=?, 294
literals, t294, 289
load, 10, t13, 113, 329, 331
load-library, 274, 330
load-program, 273, 330
load-shared-object, 91
local variable bindings, t95
locate-source, 314
locate-source-object-source, 315
lock-object, 71, 101, 402
locked-object?, 402
LOCKED_DECR, 105
LOCKED_INCR, 105
locks, 421
log, t184
logand, 198
logbit0, 201
logbit1, 201
logbit?, 199
logior, 198
lognot, 199
logor, 198
logtest, 200
logxor, 199
long, 62, 66
long-long, 62, 66
lookahead-char, t275
lookahead-u8, t274
loop, t308
looping, t5

machine-type, 339
macros, t291
magnitude, t178, t183, 197
magnitude-squared, 197, 209
main.c, 24
make-annotation, 309, 311
make-assertion-violation, t366
make-boot-file, 29, 337
make-boot-header, 337
make-bytevector, t228
make-compile-time-value, 294
make-condition, 420
make-continuation-condition, 319
make-cost-center, 382
make-counter, t54
make-custom-binary-input-port, t267
make-custom-binary-input/output-port, t267
make-custom-binary-output-port, t267
make-custom-textual-input-port, t268
make-custom-textual-input/output-port, t268
make-custom-textual-output-port, t268

make-date, 373
make-engine, 127
make-enumeration, t251
make-ephemeron-eq-hashtable, 159
make-ephemeron-eqv-hashtable, 159
make-eq-hashtable, t243
make-eqv-hashtable, t244
make-error, t367
make-format-condition, 318
make-ftype-pointer, 82
make-fxvector, 143
make-guardian, 398
make-hash-table, 429
make-hashtable, t244
make-i/o-decoding-error, t375
make-i/o-encoding-error, t376
make-i/o-error, t371
make-i/o-file-already-exists-error, t374
make-i/o-file-does-not-exist-error, t374
make-i/o-file-is-read-only-error, t374
make-i/o-file-protection-error, t373
make-i/o-filename-error, t373
make-i/o-invalid-position-error, t372
make-i/o-port-error, t375
make-i/o-read-error, t372
make-i/o-write-error, t372
make-implementation-restriction-violation, t369
make-input-port, 217
make-input/output-port, 217
make-irritants-condition, t368
make-lexical-violation, t370
make-list, t94, 135
make-message-condition, t368
make-mutex, 418
make-no-infinities-violation, t376
make-no-nans-violation, t377
make-non-continuable-violation, t369
make-object-finder, 42, 53
make-output-port, 217
make-parameter, 383
make-pare, 437
make-polar, t183
make-promise, t129
make-queue, t54
make-record-constructor-descriptor, t332
make-record-type, 170, 181
make-record-type-descriptor, t331
make-record-type-descriptor, t323, t331
make-rectangular, t182
make-serious-condition, t366
make-source-condition, 318
make-source-file-descriptor, 310, 313
make-source-object, 309, 312
make-sstats, 379
make-stack, t55
make-string, t218
make-syntax-violation, t370
make-thread-parameter, 423
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make-time, 370
make-transcoder, t259
make-undefined-violation, t371
make-variable-transformer, t291, t306
make-vector, t224
make-violation, t366
make-warning, t367
make-weak-eq-hashtable, 158
make-weak-eqv-hashtable, 158
make-who-condition, t369
map, t45, t117
map1, t46
mapping, t118
mark-port-closed!, 220
matrix multiplication, t381
max, t178
maximum-memory-bytes, 378
maybe-compile-file, 333
maybe-compile-library, 333
maybe-compile-program, 333
member, t161
memp, t163
memq, t161
memv, t43, t161
merge, t387, 157
merge!, 157
message-condition?, t368
messages, t408
meta, 113, 305
meta-circular interpreter, t404
meta-cond, 307
method, t317
min, t178
mkdir, 258
mod, t175
mod0, t176
module, 113, 299
modules, 113, 298
modulo, t175
most-negative-fixnum, 189
most-positive-fixnum, 189
mul, t382
multibyte->string, 242
multiple values, t9
multiprocessing, t421, 127
mutable, 177
mutable, t331
mutable boxes, 150, 151
mutable bytevectors, 146, 149
mutable fxvectors, 143, 145
mutable strings, 139, 141
mutable vectors, 141, 142
mutable-box?, 151
mutable-bytevector?, 149
mutable-fxvector?, 145
mutable-string?, 141
mutable-vector?, 142
mutex-acquire, 419

mutex-release, 419
mutex?, 418
mutually recursive procedures, t66
mvlet, 341

named let, t67
naming conventions, t8
nan?, t174
native-endianness, t228
native-eol-style, t260
native-transcoder, t259
negative?, t173
nested engines, t429
nested let expressions, t96
new-cafe, 363
newline, t285
no-infinities-violation?, t376
no-nans-violation?, t377
nodups?, 341
non-continuable-violation?, t369
nondeterministic computations, t424, 127, 130
nongenerative, t324
nongenerative, t331
nongenerative record definitions, 171, 177
nonlocal exits, t124
nonnegative?, 209
nonpositive?, 208
not, t36, t110
null-environment, t137, 305
null?, t37, t151
number syntax, t459
number->string, t191, 210
number?, t38, t151
numbers, t167
numerator, t181

object identity, t144
object->string, t267
object-counts, 54, 381
object-oriented programming, t317
objects, t3
oblist, 155
occur free, t28
octet, t257
odd?, t66, t174
one-shot continuations, 126
only, 304
only import set, t346
opaque, t331
opaque record type, t336
open-bytevector-input-port, t264
open-bytevector-output-port, t265
open-fd-input-port, 229
open-fd-input/output-port, 241
open-fd-output-port, 238
open-file-input-port, t262
open-file-input/output-port, t263
open-file-output-port, t262
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open-input-file, t280, 228
open-input-output-file, 241
open-input-string, 225
open-output-file, t281, 236
open-output-string, 225
open-process-ports, 58
open-source-file, 311, 314
open-string-input-port, t265
open-string-output-port, t266
operating system, t429, 130
operations on objects, t141
operator precedence, t16
optimization, 22
optimize-level, 23, 347
optional arguments, t93
or, t63, t110
order of evaluation, t22
ordinals, 182
ormap, 125
output port, t257
output-port-buffer-mode, t273
output-port?, t270

pair?, t38, t151
pairs, t155
parameterize, 384
parameters, 5
parent, t331
parent type, t325
parent-rtd, t331
pares, 437
pariah, 354
partition, t164
path-absolute?, 260
path-extension, 260
path-first, 260
path-last, 260
path-parent, 260
path-rest, 260
path-root, 260
pattern matching, 431
pattern variable, t294
pattern variables, t61
patterns, t294
peek-char, t284
petite.boot, 24
petite?, 387
Petite Chez Scheme, 1, tix
pointer, 150
pointers, t4
por (parallel-or), t424, 130
port, t257
port-bol?, 221
port-closed?, 220
port-eof?, t278
port-file-compressed!, 224
port-file-descriptor, 227
port-handler, 217

port-has-port-length?, 222
port-has-port-nonblocking??, 223
port-has-port-position?, t271
port-has-set-port-length!?, 222
port-has-set-port-nonblocking!?, 223
port-has-set-port-position!?, t272
port-input-buffer, 217
port-input-count, 218
port-input-empty?, 218
port-input-index, 217
port-input-size, 217
port-length, 222
port-name, 221
port-nonblocking?, 223
port-output-buffer, 219
port-output-count, 220
port-output-full?, 220
port-output-index, 219
port-output-size, 219
port-position, t271
port-transcoder, t271
port?, t270
positive?, t173
predicate, 177
predicates, t143
prefix, 177
prefix import set, t346
prefix notation, t16
pretty-file, 243
pretty-format, 243
pretty-initial-indent, 38, 245
pretty-line-length, 245
pretty-maximum-lines, 246
pretty-one-line-limit, 245
pretty-print, 242, 245, 253
pretty-standard-indent, 245
primitive procedures, t4
print-brackets, 253
print-char-name, 250
print-extended-identifiers, 4, 253
print-gensym, 152, 252
print-graph, 180, 250
print-length, 180, 251
print-level, 5, 251
print-precision, 255
print-radix, 252
print-record, 181
print-unicode, 255
print-vector-length, 4, 254
printf, t401, 248
procedure application, t27, t107
procedure definition, t5
procedure-arity-mask, 186
procedure?, t155
procedures, t26
process, 57, 58
process ports, 266
product, t80
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profile, 359
profile-clear, 359
profile-clear-database, 363
profile-dump, 355, 359
profile-dump-data, 355, 362
profile-dump-html, 355, 360
profile-dump-list, 355, 361
profile-line-number-color, 361
profile-load-data, 355, 362
profile-palette, 360
profile-query-weight, 362
profiling, 23, 354
proper list, t155
property lists, 154
property-list, 155
protocol, t331
protocol for records, t326
ptr, 63, 67
ptrdiff_t, 62, 66
put-bytevector, t279
put-bytevector-some, 239
put-char, t279
put-datum, t397, t279
put-hash-table!, 430
put-registry!, 388
put-string, t279
put-string-some, 239
put-u8, t278
putenv, 388
putprop, 154
putq!, t54

quadratic-formula, t48
quasiquote ( ‘ ), t142
quasisyntax ( #‘ ), t305
question mark ( ? ), t37
queue, t53
quote ( ’ ), t17, t141
quotient, t175

r5rs, 305
r5rs module, 304
r5rs-syntax, 305
r5rs-syntax module, 304
raise, t357
raise-continuable, t357
random, 206
random number generator, 206
random-seed, 206
rational numbers, t167
rational-valued?, t153
rational?, t167, t151
rationalize, t181
ratnum, 187, 188
ratnum?, 189
rcd, t332
read, t284, 251
read-char, t284

read-token, 233
real numbers, t167
real->flonum, t211
real-part, t182
real-time, 377
real-valued?, t153
real?, t167, t151
rec, t311, 115, 431
reciprocal, t39
record equality, 166
record field ordinals, 182
record generativity, t324, 171
record hashing, 166
record inheritance, t325, 171, 173
record uid, t325
record-accessor, t334
record-case, 124
record-constructor, t333, 183
record-constructor descriptor, t332
record-constructor-descriptor, t333
record-constructor-descriptor?, 133
record-equal-procedure, 166, 168
record-field-accessible?, 183
record-field-accessor, 183
record-field-mutable?, t338, 184
record-field-mutator, 183
record-hash-procedure, 166, 169
record-mutator, t334
record-predicate, t333
record-reader, 178
record-rtd, t338
record-type descriptor, t331
record-type-descriptor, t333, 185
record-type-descriptor?, t332
record-type-equal-procedure, 166, 168
record-type-field-decls, 185
record-type-field-names, t337, 184
record-type-generative?, t337
record-type-hash-procedure, 166, 169
record-type-name, t336, 184
record-type-opaque?, t337
record-type-parent, t336
record-type-sealed?, t337
record-type-symbol, 184
record-type-uid, t336
record-writer, 179
record?, t338, 185
records, t323, 124, 170
recursion, t65
recursion step, t41
recursive object, 115
recursive procedure, t41
reference, 150
register-signal-handler, 324
release-minimum-generation, 394
remainder, t175
remove, t163
remove!, 136
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remove-foreign-entry, 93
remove-hash-table!, 430
remove-registry!, 388
remp, t163
remprop, 155
remq, t163
remq!, 136
remv, t44, t163
remv!, 136
rename, 304
rename import set, t346
rename-file, 259
require-nongenerative-clause, 165, 166
reset, 365
reset-cost-center!, 383
reset-handler, 11, 365
reset-maximum-memory-bytes!, 378
retry, t75
reverse, t161
reverse!, 137
Revised Reports, t3
revisit, 331
round, t178
round-robin, t423, 130
rtd, t331
run-cp0, 350
run-time generativity, 171

s (short), t169
s8-list->bytevector, 147
Sactivate_thread, 104
safety, 23
Sbignump, 96
Sboolean, 99
Sboolean_value, 97
Sbooleanp, 96
Sbox, 100
Sboxp, 96
Sbuild_heap, 95
Sbwp_object, 98
Sbwp_objectp, 96
Sbytevector_data, 98
Sbytevector_length, 97
Sbytevector_u8_ref, 98
Sbytevector_u8_set, 98
Sbytevectorp, 96
sc-expand, 339, 339
Scall, 103
Scall0, 102
Scall1, 102
Scall2, 102
Scall3, 102
Scar, 97
Scdr, 97
Schar, 99
Schar_value, 97
Scharp, 96
scheme, 305

scheme module, 304
Scheme shell scripts, 20
Scheme standard, tix
scheme-environment, 325
scheme-object, 60, 63, 64, 66
scheme-program, 367
scheme-report-environment, t137, 305
scheme-script, 273, 367
scheme-start, 27, 366
scheme-version, 387
scheme-version-number, 387
scheme.boot, 24
SCHEMEHEAPDIRS, 31
Scompact_heap, 95, 101, 391
Scons, 100
scope, t25
scripting, 20
Sdeactivate_thread, 104
Sdestroy_thread, 104
sealed, t331
sealed record type, t330
segment-length, t132
segment-slope, t132
semicolon ( ; ), t455
Senable_expeditor, 95
Seof_object, 98
Seof_objectp, 96
sequence, t313
sequencing, t108
serious-condition?, t366
set!, t47, t102, 118
set-binary-port-input-buffer!, 218
set-binary-port-input-index!, 218
set-binary-port-input-size!, 218
set-binary-port-output-buffer!, 219
set-binary-port-output-index!, 219
set-binary-port-output-size!, 219
set-box!, 150
set-car!, t157
set-cdr!, t56, t157
set-of, t389
set-port-bol!, 220
set-port-eof!, 221
set-port-input-buffer!, 218
set-port-input-index!, 218
set-port-input-size!, 218
set-port-length!, 222
set-port-name!, 222
set-port-nonblocking!, 223
set-port-output-buffer!, 219
set-port-output-index!, 219
set-port-output-size!, 219
set-port-position!, t272
set-sstats-bytes!, 380
set-sstats-cpu!, 380
set-sstats-gc-bytes!, 380
set-sstats-gc-count!, 380
set-sstats-gc-cpu!, 380
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set-sstats-gc-real!, 380
set-sstats-real!, 380
set-textual-port-input-buffer!, 218
set-textual-port-input-index!, 218
set-textual-port-input-size!, 218
set-textual-port-output-buffer!, 219
set-textual-port-output-index!, 219
set-textual-port-output-size!, 219
set-time-nanosecond!, 371
set-time-second!, 371
set-time-type!, 371
set-timer, 128, 322
set-top-level-value!, 118
set-virtual-register!, 386
sets, t389
Sexactnump, 96
Sfalse, 98
Sfixnum, 99
Sfixnum_value, 97
Sfixnump, 96
Sflonum, 99
Sflonum_value, 97
Sflonump, 96
Sforeign_callable_code_object, 102
Sforeign_callable_entry_point, 102
Sforeign_symbol, 102
Sfxvector_length, 97
Sfxvector_ref, 98
Sfxvector_set, 98
Sfxvectorp, 96
Sgetenv, 100
shadowing, t31
shhh, t50
short, 62, 65
shorter, t47
shorter?, t47
side effects, t8
simple condition, t362
simple-conditions, t363
sin, t185
Sinexactnump, 96
single-float, 62, 64, 65
sinh, 209
Sinitframe, 103
Sinputportp, 96
sint-list->bytevector, t239
Sinteger, 99
Sinteger32, 100
Sinteger32_value, 97
Sinteger64, 100
Sinteger64_value, 97
Sinteger_value, 97
size_t, 62, 66
Skernel_version, 95
sleep, 376
Slock_object, 101, 402
Smake_bytevector, 100
Smake_fxvector, 100

Smake_string, 100
Smake_uninitialized_string, 100
Smake_vector, 100
Snil, 98
Snullp, 96
sockets, 105, 266
sort, t387, 157
sort!, 157
source objects, 309
source profiling, 354
source-condition-form, 318
source-condition?, 318
source-directories, 18, 330, 331, 346
source-file descriptors, 309
source-file-descriptor, 313
source-file-descriptor-checksum, 313
source-file-descriptor-path, 313
source-file-descriptor?, 313
source-object-bfp, 312
source-object-column, 312
source-object-efp, 312
source-object-line, 312
source-object-sfd, 312
source-object?, 312
Soutputportp, 97
Spairp, 96
special bindings (in Lisp), 116
SPINLOCK, 105
split, t133
Sprocedurep, 96
Sput_arg, 103
sqrt, t183
square, t14
Sratnump, 96
Srecordp, 97
Sregister_boot_file, 95
Sregister_symbol, 102
Sretain_static_relocation, 95
Sscheme_deinit, 95
Sscheme_init, 95
Sscheme_program, 95
Sscheme_script, 95
Sscheme_start, 95
Sset_box, 98
Sset_car, 98
Sset_cdr, 98
Sset_top_level_value, 100
Sset_verbose, 95
ssize_t, 62, 66
sstats-bytes, 380
sstats-cpu, 380
sstats-difference, 380
sstats-gc-bytes, 380
sstats-gc-count, 380
sstats-gc-cpu, 380
sstats-gc-real, 380
sstats-print, 380
sstats-real, 380
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sstats?, 379
Sstring, 99
Sstring_length, 97
Sstring_of_length, 99
Sstring_ref, 98
Sstring_set, 98
Sstring_to_symbol, 100
Sstring_utf8, 99
Sstringp, 96
Ssymbol_to_string, 97
Ssymbolp, 96
stack objects, t52
standard-error-port, t264, 239
standard-input-port, t264, 229
standard-output-port, t264, 238
static generation, 391
statistics, 379
Stop_level_value, 100
storage management, 391
streams, t128
stretch strings, 438
string, t218, 60, 64, 68
string input port, 225
string output port, 225
string streams, 211
string syntax, t458
string->bytevector, t287
string->immutable-string, 139, 141
string->list, t222
string->multibyte, 242
string->number, t191, 210
string->symbol, t242
string->utf16, t287
string->utf32, t287
string->utf8, t287
string-append, t219
string-ci-hash, t245
string-ci<=?, t217, 139
string-ci<?, t217, 139
string-ci=?, t217, 139
string-ci>=?, t217, 139
string-ci>?, t217, 139
string-copy, t219
string-copy!, 139
string-downcase, t221
string-fill!, t220
string-foldcase, t221
string-for-each, t122
string-hash, t245
string-length, t218
string-normalize-nfc, t222
string-normalize-nfd, t222
string-normalize-nfkc, t222
string-normalize-nfkd, t222
string-ref, t218
string-set!, t219
string-titlecase, t221
string-truncate!, 140

string-upcase, t221
string<=?, t216, 139
string<?, t216, 139
string=?, t216, 139
string>=?, t216, 139
string>?, t216, 139
string?, t38, t154
strings, t216
strip-fasl-file, 27, 338
structured forms, t6
structures, t318, 436
Strue, 98
sub1, 207
subset-mode, 389
subst, 136
subst!, 136
substq, 136
substq!, 136
substring, t95, t220
substring-fill!, 140
substv, 136
substv!, 136
subtract-duration, 372
subtract-duration!, 372
sum, t65
Sunbox, 97
Sunlock_object, 101, 402
Sunlocked_objectp, 101
Sunsigned, 99
Sunsigned32, 100
Sunsigned32_value, 97
Sunsigned64, 100
Sunsigned64_value, 97
Sunsigned_value, 97
suppress-greeting, 368
Sutf8_to_wide, 100
Svector_length, 97
Svector_ref, 98
Svector_set, 98
Svectorp, 96
Svoid, 98
Swide_to_utf8, 100
symbol syntax, t458
symbol table, t241
symbol->string, t242
symbol-hash, t245
symbol-hashtable-cell, 164
symbol-hashtable-contains?, 163
symbol-hashtable-delete!, 165
symbol-hashtable-ref, 163
symbol-hashtable-set!, 163
symbol-hashtable-update!, 164
symbol-hashtable?, 163
symbol=?, t242
symbol?, t38, t154
symbols, t241
synonym streams, 211
syntactic extensions, t5
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syntactic forms, t18
syntax, t291
syntax ( #’ ), t300
syntax object, t298
syntax violation, 4, t9
syntax->annotation, 311, 314
syntax->datum, t308
syntax->list, 289
syntax->vector, 290
syntax-case, t291, t299, 439
syntax-error, 293
syntax-object->datum, 290
syntax-rules, t300, t294, 289
syntax-violation, t359
syntax-violation-form, t370
syntax-violation-subform, t370
syntax-violation?, t370
system, 57, 57

tagged lists, 124
tail call, t5
tail recursion, t68
tan, t185
tanh, 209
tconc, t53
tell, t50
templates, t295
textual port, t257
textual-port-input-buffer, 217
textual-port-input-count, 218
textual-port-input-index, 217
textual-port-input-size, 217
textual-port-output-buffer, 219
textual-port-output-count, 220
textual-port-output-index, 219
textual-port-output-size, 219
textual-port?, t270
The Scheme Programming Language, 4th

Edition, 483
The Scheme Programming Language, 4th

Edition, 1, 445
thread-condition?, 420
thread-safe primitives, 417
thread?, 418
threaded?, 387
threads, t421, 417
thunk, t51
ticks, see engines, see engines
time, 376
time-difference, 372
time-difference!, 372
time-nanosecond, 371
time-second, 371
time-type, 371
time-utc->date, 375
time<=?, 371
time<?, 371
time=?, 371

time>=?, 371
time>?, 371
time?, 370
timed preemption, t421, 127
timer interrupts, t425, 322
timer-interrupt-handler, 322
tokens, t455
top-level definitions, t101
top-level programs, 14, 21, t343
top-level values, 117
top-level-bound?, 118
top-level-mutable?, 119
top-level-program, 274, 275
top-level-programs, 17, 23, 271, 275
top-level-syntax, 120
top-level-syntax?, 121
top-level-value, 118
trace, 36, t42
trace-case-lambda, 34
trace-define, 38
trace-define-syntax, 39
trace-do, 35
trace-lambda, 33
trace-let, 34
trace-output-port, 38
trace-print, 38
tracing, t42
transcoded-port, t271
transcoder, t257
transcoder-codec, t259
transcoder-eol-style, t259
transcoder-error-handling-mode, t259
transcoder?, 216
transcript, 368
transcript ports, 263
transcript-cafe, 369
transcript-off, 368
transcript-on, 368
transformer, t61
tree-copy, t44
true, t36
truncate, t177
truncate-file, 240
truncate-port, 240
two-way ports, 262
two-way streams, 211
type predicates, t38
type-descriptor, 178

u16*, 60, 63, 67
u32*, 60, 63
u8*, 60, 63, 67
u8-list->bytevector, t232
uint-list->bytevector, t239
unbox, 150
undefined-variable-warnings, 353
undefined-violation?, t371
underscore ( _ ), t296
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underscore (_), t294
unget-char, 231
unget-u8, 232
unification, t417
unify, t418
uninterned symbols, 153
uninterned-symbol?, 153
Unix, 93
unless, t64, t112
UNLOCK, 105
unlock-object, 101, 402
unquote ( , ), t142
unquote-splicing ( ,@ ), t142
unread-char, 231
unsigned, 62, 65
unsigned long, 62, 66
unsigned short, 62, 65
unsigned-16, 61, 65
unsigned-32, 61, 65
unsigned-64, 61, 65
unsigned-8, 61, 65
unsigned-int, 62, 65
unsigned-long-long, 62, 66
unspecified, 4, t9
unsyntax ( #, ), t305
unsyntax-splicing ( #,@ ), t305
untrace, 37
unwind-protect (in Lisp), t124
uptr, 62, 66
utf-16, t257
utf-16-codec, t259, 215
utf-16be, 60, 64, 67
utf-16be-codec, 215
utf-16le, 60, 64, 67
utf-16le-codec, 215
utf-32be, 60, 64, 67
utf-32le, 60, 64, 67
utf-8, t257
utf-8, 60, 63, 67
utf-8-codec, t259
utf16->string, t288
utf32->string, t288
utf8->string, t287

values, t130, t131
variable binding, t91
variable definition, 113
variable reference, t91
variables, t47
vector, t224
vector printing, 254
vector syntax, t461
vector->immutable-vector, 141, 142
vector->list, t225
vector-copy, 141
vector-fill!, t225
vector-for-each, t122
vector-length, t224

vector-map, t121
vector-ref, t224
vector-set!, t225
vector-set-fixnum!, 142
vector-sort, t226
vector-sort!, t226
vector?, t154
vectors, t223
violation?, t366
virtual-register, 386
virtual-register-count, 386
visit, 330
void, 4, 64, 65, 156
void object, 4
void*, 62, 66

waiter, 363
waiter-prompt-and-read, 364
waiter-prompt-string, 364
waiter-write, 365
warning, 317
warning?, t367
warningf, 318
wchar, 63, 66
wchar_t, 63, 66
weak pairs, 395
weak pointers, 395
weak-cons, 395
weak-pair?, 396
when, t64, t112, 432
whitespace, t455
whitespace characters, t7
who-condition?, t369
winders, see dynamic-wind

with, 433, 435
with-cost-center, 382
with-exception-handler, t360
with-implicit, 291
with-input-from-file, t283, 229
with-input-from-string, 225
with-interrupts-disabled, 323, 393
with-mutex, 419
with-output-to-file, t283, 237
with-output-to-string, 226
with-source-path, 346
with-syntax, t304
write, t397, t284
write-char, t285
wstring, 60

x++, t316

zero?, t173


