Q1) Evaluating a letrec creates an environment/closure, which stores symbols/values (in this case, procedure names) and symbols/values (in this case, closures). The symbols/values need their ___ field to contain the new ___ created by the letrec.
In the one approach to implementing letrec, we did so without mutation, using a new environment type: recursively-extended-env-record. When the ___ of the letrec was evaluated and a variable needed to be looked up, we looked first inside this recursively-extended-env-record. If it was a procedure defined in the letrec’s definitions, we found it. We then made a new ___. However, this caused a small efficiency disadvantage because ___.
We also discussed implementing it via mutation. First, we made a ___ of the names of the procedures defined in the letrec. Then we made an empty ___ of whose length was the same as ___. Next, we made ___ whose symbols field was filled with ___ and vals field was filled with ___. Finally, we used the built-in procedure ___ to set each element in the __ to be a closure. That closure stood for a procedure defined in the letrec. Its enclosing environment was the __.
In the final approach that we discussed, we implemented letrec by making it into a syntax expansion that relied on two core forms we had already implemented: __ and __.
A1) Evaluating a letrec creates an environment, which stores symbols (in this case, procedure names) and values (in this case, closures). The values need their enclosing environment field to contain the new environment created by the letrec.
In the one approach to implementing letrec, we did so without mutation, using a new environment type: recursively-extended-env-record. When the bodies of the letrec was evaluated and a variable needed to be looked up, we looked first inside this recursively-extended-env-record. If it was a procedure defined in the letrec’s definitions, we found it. We then made a new closure. However, this caused a small efficiency disadvantage because couldn’t just find closures that already existed but had to create them every time we needed them.
We also discussed implementing it via mutation. First, we made a list of the names of the procedures defined in the letrec. Then we made an empty vector of whose length was the same as the list of names. Next, we made a new environment whose symbols were the list of names and vals field was filled with the vector. Finally, we used the built-in procedure vector-set! to set each element in the vals vector to be a closure. That closure stood for a procedure defined in the letrec. Its enclosing environment was the the new environment created for the current letrec.
In the final approach that we discussed, we implemented letrec by making it into a syntax expansion that relied on two core forms we had already implemented: set! and let.

Q2) In order to implement set!, we wanted to use references. There were two functions we particularly wanted: (__ ref val), which set the value at which a reference pointed, and (__ ref), which returned the value at which a reference pointed.
We first discussed using the __ abstract datatype to do so. We had to modify extend-env so that envs contained, not raw values, but __ containing those raw values. However, this caused a problem in apply-env: upon looking up a symbol, we would not get its __, but rather ___. Thus, we had to use the ___ function on what we got when we looked it up in order to obtain the value.
[bookmark: _GoBack]Alternatively, we could represent the environment with a “ribcage of __.” A reference to a value was then a __ that stood for the value’s ___ within a “rib”.
A2) In order to implement set!, we wanted to use references. There were two functions we particularly wanted: (set-ref! ref val), which set the value at which a reference pointed, and (deref ref), which returned the value at which a reference pointed.
We first discussed using the cell abstract datatype to do so. We had to modify extend-env so that envs contained, not raw values, but cells containing those raw values. However, this caused a problem in apply-env: upon looking up a symbol, we would not get its value, like we used to, but rather a cell containing its value. Thus, we had to use the deref function on what we got when we looked it up in order to obtain the value.
Alternatively, we could represent the environment with a “ribcage of vectors.” A reference to a value was then a number that stood for the value’s position within a “rib”.
