Problem 1:

(define a
 (call/cc (lambda (k)
	 k)))

What occurs when (a 4) is called?

Answer:

When call/cc is called:

c: (lambda (v) (define a v))

r: (lambda (k) k)

(define a (r c))

(define a (continuation k)) -> No return

(a 4)

(define a (continuation 4)) -> No return

Once (a 4) is called, it will escape any procedure it is currently running and set the value of a to 4. Calling a afterwards will return the value 4.

[bookmark: _GoBack]Problem 2:
What is the result of the let expression below?

(let ([a 'undefined])
 (call/cc (lambda (k)
	 (set! a k)
	 (+ 6 (k 5))))
(a 4))

Answer:

c: (lambda (v) (let ([a ‘undefined])
	v
	(a 4)))

r: (lambda (k)
	(set! a k)
	(+ 6 (k 5)))

(let ([a ‘undefined])
	(r c)
	(a 4))

(let ([a ‘undefined])
	(set! a continuation)
	(continuation 5)
	(a 4))

Now that a has been set to the current continuation, the program will become stuck in a loop that’s constantly calling the continuation. Because a was set to the continuation, it will not resolve the program.
