1. [bookmark: _GoBack]Name a practical application of engines and explain their purpose in this context
Answer: Just as in the use of an if statement, where the test-expression avoids a problem, an engine may be used to safeguard against a case where a procedure will be dangerous if it takes too long.
2. The imperative-form snlist-recur does not make recursive calls to procedures that are not thunks; however, it does apply multiple procedures that are not thunks (excluding the definitions of sum-cps and flatten-cps). What are these procedures? Why is it impossible to avoid using them or a similar substitute in Scheme to achieve snlist-cps in imperative form?
Answer: Every time an ‘object’ of a datatype defined by define-datatype is created, a procedure is called. Assuming simply creating a list containing the same information would be a similar substitute, snlist-recur can’t be accomplished in Scheme in imperative style without storing data, which is to be used in continuations later, using a procedure.
3. (define foo
 (lambda (x y z)
 (+ x (call/cc (lambda (k1)
 (+ y (call/cc (lambda (k2)
 (+ z (k2 x))))))))
What does the above code do? Write code equivalent to this. Then alter the code so that it finds the sum of the three numbers.
Answer: This adds x + 2y.
(define foo
 (lambda (x y z)
 (+ x (* 2 y))))
(define foo
 (lambda (x y z)
 (+ z (call/cc (lambda (k1)
 (+ y (call/cc (lambda (k2)
 (+ z (k2 x))))))))))
