Q1: How would you implement the primitive procedure car without calling car in your implementation?
A1:
(define my-car
 (lamb	da (ls)
 (apply (lambda (a . b) a) ls)))

Q2: What does the following call/cc code return?
(apply (lambda (a b)
 (+ 7 a)
 (+ 8 b))
 (map call/cc
 (list
 (lambda (arg) (+ 6 (arg 5)))
 (lambda (arg) (+ 1 (arg 5))))))
[bookmark: _GoBack]A2:
13
The important calls are in the mapping of call/cc. When mapped, the continuation is the identity, and when the escape procedure is applied to 5 both times, a list of (5 5) is created. The procedure defined by lambda (a b) is then applied to the list of (5 5), producing a predictable result.
