;; Test code for CSSE 304 Assignment 13 (define (test-literals) (let ([correct '( () #t #f "" "test" #(a b c) #5(a) )] [answers (list (eval-one-exp ''()) (eval-one-exp #t) (eval-one-exp #f) (eval-one-exp "") (eval-one-exp "test") (eval-one-exp ''#(a b c)) (eval-one-exp ''#5(a)) )]) (display-results correct answers equal?))) (define (test-quote) (let ([correct '( () a (car (a b)) (lambda (x) (+ 1 x)) )] [answers (list (eval-one-exp '(quote ())) (eval-one-exp '(quote a)) (eval-one-exp '(quote (car (a b)))) (eval-one-exp '(quote (lambda (x) (+ 1 x)))) )]) (display-results correct answers equal?))) (define (test-if) (let ([correct '( 5 4 6 2 10 )] [answers (list (eval-one-exp '(if #t 5 6)) (eval-one-exp '(if 2 (if #f 3 4) 6)) (eval-one-exp '(if #f 5 6)) (eval-one-exp '(if 1 2 3)) (let ([x (if #f 2 3)]) (+ x 7)) )]) (display-results correct answers equal?))) (define (test-primitive-procedures) (let ([correct '( 10 7 48 3 10 #t #f #t (a . b) b (a b c) #t #t #t 5 #(a b c) #f #t (a b c) #t #t (#t #f) a c b (#t #t #f) )] [answers (list (eval-one-exp '(+ (+ 1 2) 3 4)) (eval-one-exp '(- 10 1 (- 5 3))) (eval-one-exp '(* 2 (* 3 4) 2)) (eval-one-exp '(/ 6 2)) (eval-one-exp '(sub1 (add1 10))) (eval-one-exp '(not (zero? 3))) (eval-one-exp '(= 3 4)) (eval-one-exp '(>= 4 3)) (eval-one-exp '(cons 'a 'b)) (eval-one-exp '(car (cdr '(a b c)))) (eval-one-exp '(list 'a 'b 'c)) (eval-one-exp '(null? '())) (eval-one-exp '(eq? 'a 'a)) (eval-one-exp '(equal? 'a 'a)) (eval-one-exp '(length '(a b c d e))) (eval-one-exp '(list->vector '(a b c))) (eval-one-exp '(list? 'a)) (eval-one-exp '(pair? '(a b))) (eval-one-exp '(vector->list '#(a b c))) (eval-one-exp '(vector? '#(a b c))) (eval-one-exp '(number? 5)) (list (eval-one-exp '(symbol? 'a)) (eval-one-exp '(symbol? 5))) (eval-one-exp '(caar '((a b) c))) (eval-one-exp '(cadr '((a b) c))) (eval-one-exp '(cadar '((a b) c))) (eval-one-exp ' (list (procedure? list) (procedure? (lambda (x y) (list (+ x y)))) (procedure? 'list))) )]) (display-results correct answers equal?))) (define (test-let) (let ([correct '( 8 14 24 (2 . 4) )] [answers (list (eval-one-exp ' (let ([a 3][b 5]) (+ a b))) (eval-one-exp ' (let ([a 3]) (let ([b 2] [c (+ a 3)] [a (+ a a)]) (+ a b c)))) (eval-one-exp ' (let ([a 3]) (let ([a (let ([a (+ a a)]) (+ a a))]) (+ a a)))) (eval-one-exp ' (let ([a (list 3 4)]) (set-car! a 2) (set-cdr! a (cadr a)) a)) )]) (display-results correct answers equal?))) (define (test-lambda) (let ([correct '( 6 12 154 720 (#t #t #f) )] [answers (list (eval-one-exp '((lambda (x) (+ 1 x)) 5)) (eval-one-exp '((lambda (x) (+ 1 x) (+ 2 (* 2 x))) 5)) (eval-one-exp ' ((lambda (a b) (let ([a (+ a b)] [b (- a b)]) (let ([f (lambda (a) (+ a b))]) (f (+ 3 a b))))) 56 17)) (eval-one-exp ' (((lambda (f) ((lambda (x) (f (lambda (y) ((x x) y)))) (lambda (x) (f (lambda (y) ((x x) y)))))) (lambda (g) (lambda (n) (if (zero? n) 1 (* n (g (- n 1))))))) 6)) (eval-one-exp ' (let ([Y (lambda (f) ((lambda (x) (f (lambda (y) ((x x) y)))) (lambda (x) (f (lambda (y) ((x x) y))))))] [H (lambda (g) (lambda (x) (if (null? x) '() (cons (procedure? (car x)) (g (cdr x))))))]) ((Y H) (list list (lambda (x) x) 'list)))) )]) (display-results correct answers equal?))) ;----------------------------------------------- (define display-results (lambda (correct results test-procedure?) (display ": ") (pretty-print (if (andmap test-procedure? correct results) 'All-correct `(correct: ,correct yours: ,results))))) (define sequal?-grading (lambda (l1 l2) (cond ((null? l1) (null? l2)) ((null? l2) (null? l1)) ((or (not (set?-grading l1)) (not (set?-grading l2))) #f) ((member (car l1) l2) (sequal?-grading (cdr l1) (rember-grading (car l1) l2))) (else #f)))) (define set?-grading (lambda (s) (cond [(null? s) #t] [(not (list? s)) #f] [(member (car s) (cdr s)) #f] [else (set?-grading (cdr s))]))) (define rember-grading (lambda (a ls) (cond ((null? ls) ls) ((equal? a (car ls)) (cdr ls)) (else (cons (car ls) (rember-grading a (cdr ls))))))) (define set-equals? sequal?-grading) (define find-edges ; e know that this node is in the graph before we do the call (lambda (graph node) (let loop ([graph graph]) (if (eq? (caar graph) node) (cadar graph) (loop (cdr graph)))))) ;; Problem 8 graph? (define set? ;; Is this list a set? If not, it is not a graph. (lambda (list) (if (null? list) ;; it's an empty set. #t (if (member (car list) (cdr list)) #f (set? (cdr list)))))) (define graph? (lambda (obj) (and (list? obj) (let ([syms (map car obj)]) (and (set? syms) (andmap symbol? syms) (andmap (lambda (x) (andmap (lambda (y) (member y (remove (car x) syms))) (cadr x))) obj)))))) (define graph-equal? (lambda (a b) (and (graph? a) (graph? b) (let ([a-nodes (map car a)] [b-nodes (map car b)]) (and (set-equals? a-nodes b-nodes) ; Now See if the edges from each node are equivalent in the two graphs. (let loop ([a-nodes a-nodes]) (if (null? a-nodes) #t (let ([a-edges (find-edges a (car a-nodes))] [b-edges (find-edges b (car a-nodes))]) (and (set-equals? a-edges b-edges) (loop (cdr a-nodes))))))))))) (define (test-graph-equal) (list (graph-equal? '((a (b)) (b (a))) '((b (a)) (a (b)))) (graph-equal? '((a (b c d)) (b (a c d)) (c (a b d)) (d (a b c))) '((b (a c d)) (c (a b d)) (a (b d c)) (d (b a c)))) (graph-equal? '((a ())) '((a ()))) (graph-equal? '((a (b c)) (b (a c)) (c (a b))) '((a (b c)) (b (a c)) (c (a b)))) (graph-equal? '() '()) )) (define g test-graph-equal) ;You can run the tests individually, or run them all ;#by loading this file (and your solution) and typing (r) (define (run-all) (display 'literals) (test-literals) (display 'quote) (test-quote) (display 'if) (test-if) (display 'primitive-procedures) (test-primitive-procedures) (display 'let) (test-let) (display 'lambda) (test-lambda) ) (define r run-all)