
Quicksort algorithm
Average case analysis

After today, you should be able to…
…implement quicksort
…derive the average case runtime of
quick sort and similar algorithms

For any recurrence relation in the form:

𝑇 𝑁 = 𝑎𝑇
𝑁
𝑏 + 	𝜃 𝑁) ,𝑤𝑖𝑡ℎ	𝑎 ≥ 1, 𝑏 > 1

The solution is:

𝑇 𝑁 = 2
𝜃(𝑁45678) 𝑖𝑓	𝑎 > 𝑏)

𝜃(𝑁)𝑙𝑜𝑔𝑁) 𝑖𝑓	𝑎 = 𝑏)

𝜃(𝑁)) 𝑖𝑓	𝑎 < 𝑏)

Theorem 7.5 in Weiss

Q1-3

} Side-by-side animations (now)
www.sorting-algorithms.com

} Others:
◦ Sounds of sorting (we’ll do next class)
◦ https://www.youtube.com/watch?v=kPRA0W1kECg
◦ Color wheel animations (later?)

https://www.youtube.com/watch?v=y9Ecb43qw98

ht
tp

:/
/w

w
w

.x
kc

d.
co

m
/1

18
5/

Stacksort connects to StackOverflow, searches for “sort a list”, and downloads and runs code
snippets until the list is sorted. For real: https://gkoberger.github.io/stacksort/

} Invented by C.A.R. “Tony” Hoare in 1961*
} Very widely used
} Guiding principle:
◦ Like in basketball, it’s all

about planting a good pivot.

Image from http://www.ultimate-youth-basketball-guide.com/pivot-foot.html.

A quote from Tony Hoare:
There are two ways of constructing a
software design: One way is to make it
so simple that there are obviously no
deficiencies, and the other way is to
make it so complicated that there are
no obvious deficiencies. The first
method is far more difficult.

Q4

// Assume min and max indices are low and high
pivot = a[low] // will do better later…
i = low+1, j = high
while (true) {
while (a[i] < pivot) {

i++
}
while (a[j] > pivot) {

j––
}
if (i >= j) break
swap(a, i, j)

}
swap(a, low, j) // moves the pivot to the

// correct place
return j

Q5

} Let T(N) be the average # of comparisons of array
elements needed to quicksort N elements.

} What is T(1)?
} Otherwise T(N) is the sum of
◦ time for partition
◦ time to quicksort left part: T(NL)
◦ time to quicksort right part: T(NR)

} T(N) = N + T(NL) + T(NR)
} What’s the best case? What’s the worst case?
} Write and solve each now!

} Running time for partition of N elements is Q(N)
} Quicksort Running time:
◦ call partition. Get two subarrays of sizes NL and NR

(what is the relationship between NL, NR, and N?)
◦ Then Quicksort the smaller parts
◦ T(N) = N + T(NL) + T(NR)

} Quicksort Best case: write and solve the recurrence
} Quicksort Worst case: write and solve the

recurrence
} average: a little bit trickier
◦ We have to be careful how we measure

Q6-7

} Let T(N) be the average # of comparisons of
array elements needed to quicksort N
elements.

} What is T(0)? T(1)?
} Otherwise T(N) is the sum of
◦ time for partition
◦ average time to quicksort left part: T(NL)
◦ average time to quicksort right part: T(NR)

} T(N) = N + T(NL) + T(NR)

} Harder than just a single case…

} We always need to make some kind of
“distribution” assumptions when we figure out
Average case

} Assume that when we execute
k = partition(pivot, i, j),

all positions i..j are equally likely places for the
pivot to end up

} Thus NL is equally likely to have each of the
values 0, 1, 2, … N-1

} NL+NR = N-1; thus NR is also equally likely to have
each of the values 0, 1, 2, … N-1

} Thus T(NL)= T(NR) =

Q8

} T(N) =
} Multiply both sides by N
} Rewrite, substituting N-1 for N
} Subtract the equations and forget the insignificant

(in terms of big-oh) -1:
◦ NT(N) = (N+1)T(N-1) + 2N

} Can we rearrange so that we can telescope?

Q9-10

} NT(N) = (N+1)T(N-1) + 2N

} Solve using telescoping and iteration:
◦ Divide both sides by N(N+1)
◦ Write formulas for T(N), T(N-1),T(N-2) …T(2).
◦ Add the terms and rearrange.
◦ Notice the familiar series
◦ Multiply both sides by N+1.

Q11-13

} Best, worst, average time for Quicksort
} What causes the worst case?

} We can guarantee we never hit the worst case
◦ How?
◦ But this makes quicksort slower than merge sort in

practice.

} Avoid the worst case
◦ Select pivot from the middle
◦ Randomly select pivot
◦ Median of 3 pivot selection. (You’ll want this.)
◦ Median of k pivot selection

} "Switch over" to a simpler sorting method (insertion)
when the subarray size gets small

Weiss's code does Median of 3 and switchover to
insertion sort at 10.
◦ Linked from schedule page

What does the official Java Quicksort do? See the source code!
(Search for “OpenJDK collections”, “OpenJDK Arrays”, etc.)

The partition code I gave you has 2 bugs:
1. It can walk off the end of the array
2. If the chosen pivot is duplicated, it can go into an infinite

recursion (stack overflow)

// Assume min and max indices are low and high
pivot = a[low] // can do better
i = low+1, j = high
while (true) {
while (a[i] < pivot) i++
while (a[j] > pivot) j--
if (i >= j) break
swap(a, i, j)

}
swap(a, low, j) // moves the pivot to the

// correct place
return j

