Data
Structures
in Pascal

Edward M. Reingold

University of Illinois at Urbana-Champaign

Wilfred J. Hansen

Carnegie-Mellon University

fa Little, Brown and Company

g%/ Boston Toronto













: .




7.2 Binary Search Trees 367

On the last step, f is used as the paste node in concatenating Ty to T'el;, giving
T;eT;fT_-,.

Algorithm 7.12 gives an outline of the procedure in general. Notice that the
algorithm as outlined will work to split any binary tree, not just a height-balanced
tree. For example, using the insertion and concatenation procedures for weight-
balanced trees, Algorithm 7.12 serves to split a weight-balanced tree, resulting in
two weight-balanced trees. The time required by Algorithm 7.12 will be proportional
1o the total required by the insertion and the sequence of concatenations. In height-
or weight-balanced trees these are potentially O(log n), and the concate-
nation process requires O(log n) time, suggesting that the splitting algorithm might
require time proportional to (log n)* in the worst case for such balanced trees. For-
tunately, however, the concatenation algorithm requires logarithmic time only to de-
lete the node that will be used to paste the trees together. If given that node, as is
the case in the concatenations done in the splitting process. the concatenation will
require only time proportional to the difference in height of the two trees being
concatenated. This leads to a logarithmic worsi-case time for splitting balanced trees
(Exercise 34).

procedure SplirTree(var P: PathStack; var S, T: pHbTree);
{P contains the nodes on the path to a split node. Construct two
trees in § and T from those nodes. The split node will be at the end
of §.}
var
current, child: pHbTree:
begin
current : = Pop(P);
8 := current{.LEFT;
T := current.RIGHT;
S := PasteHB(S, current, nil); {insert current in left result tree}
while not /sEmpty(P) do begin
{Assert: P has path from current to root. § and T contain, respec-
tively, the left and right results of splitting the subtree at current in
such a way as to keep the original split node at the end of .}
child := current,
current := Pop(P),
if child = current] RIGHT then
S := PasteHB(curremt.LEFT, current, §)
else
T

1l

PasteHB(T, current, currentT.RIGHT)
end
end

Algorithm 7.12
Splitting a binary tree in two pieces based on the inorder of the nodes






	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7

