We can therefore use weight-balanced: trees or height-balanced trees augmented ;
with S/ZE fields as a compromise between the linked and sequential storage structures :
for representing linear lists. The normal sequential storage structure (Section 4.1) |

s d

could be easily searched by index position but was expensive to modify, while the
normal linked structure (Section 4.2) was easy to modify once the location was |
known but expensive to search. Both searching by index position and inser- :
tions/deletions can be done with height- or weight-balanced trees in logarithmic time.
This compromise is especially useful in implementing a priority queue (see the intro- 4
duction to Section 4.2) which operates in a first-in, highest-priority-out-first order.
As the elements arrive they are inserted into the tree according to their value by
Algorithm 7.7 and the appropriate rebalancing scheme. The element deleted is al-
ways the one with the highest priority. In this case we do not even need the full
power of Algorithm 7.10 to find the element to be deleted (why?).

Using balanced trees as a storage structure for linear lists suggests the need to
be able to concatenate them together and split them apart, just as we can do with
linked lists. Can these operations also be done in logarithmic time? Yes they can for
both height- and weight-balanced trees, although the operations are slightly more
complex for weight-balanced trees (see Exercise 31).

Suppose, first, we want to concatenate height-balanced tree U to the right of
height-balanced tree T and have the result be a height-balanced tree. We proceed as
follows. Compute the heights of T and U in logarithmic time (see Exercise 17).
Assume that heightHB(T) = heightHB(U); the other case is essentially the mirror
image. Delete the leftmost inorder element of U, call it 4, and rename the remaining
tree V. Then use a paste operation to paste everything together:

PasteHB(T, q, V)

This routine constructs a height-balanced tree from node q and trees T and V given
that all nodes of T precede ¢ in inorder and q precedes all nodes of V.

In PasteHB, Algorithm 7.11, we first compute the heights of the two trees and 3
determine the taller so we can insert q and the smaller tree at a place of proper height E
in the taller. By assumption above, T is the taller. We descend within T following :
RIGHT links to a node p at about the same height as the height of V. The computation
begins with the initial height of T and at each node subtracts either 1 or 2 depending 3
on the height-condition code, 1 if the code was = or _ and 2 if it was ~ (why?).
This continues until we find a node p in T such that

0 < heightHB(p) — heightHB(V) < |

(see Exercise 32). The node

(4)
() is replaced by (7 A

ANV AN

7.2 Binary Search Trees 365

function PasteHB(T, q, V: pHbTree): pHbTree;
{Construct a height-balanced tree from trees T and V and node q. If the
result is to be in inorder, we must have the initial inorder condition:
lasiT) < q < firsu(V)}
var
P, parent: pHbTree;
hT, hV, hp: integer; {heights of the subtrees}
S: PathStack;
begin
hT := heightHB(T);
hV .= heightHB(V);
if KT = hV then begin
Empry(S);
p:=T,
hp := AT,
parent : = nil,;
while (hp' — hV) > | do begin
{Assert: S contains the nodes on the path from p to root. p is
right child of parent. hp is height of tree rooted at p.}
Push(p, S);
if p1.CONDITION = ** /" then
hp:= hp — 2
else hp : = np — |;
parent : = p;
p = plRIGHT
end;
q1.LEFT : = p;
q1.RIGHT : = V,
if hp = hV then ¢1.ConDITION : = ** =
else g1.ConpiTion : = **
if parent + nil then parent{.RIGHT : = g;
Push(q, 8),;
PasteHB := RebalanceAfterinsert(S) {Exercise 33}

L]

end
else begin
““this case is a mirror-image of the above '’
end
end

Algorithm 7.11
Concatenate two height-balanced trees by pasting a node between them

366 7 Searching

with the height-condition code of g being either = or depending op
heightHB(p) — heightHB(V). Having stored the nodes encountered along the right
boundary of T on a stack we conclude by going up that boundary beginning at the
original parent of p, correcting height-condition codes and performing a rotation or
double rotation as though we had done an insertion into the subtree rooted q and had
thereby increased its height by one unit.

The problem of splitting a tree in two, corresponding to splitting a linked list
into two pieces, is solved by disconnecting portions of the tree and reassembling
them with PasteHB. To understand the idea, consider the tree of Figure 7.20. The
list represented is the inorder of the tree, S,aS;65¢S,dT €T, fT;, and suppose this is
to be split into two lists $,a8:b85¢S,d and T\eT, fTs; in other words, the list is to be
split after node d, as shown in Figure 7.20 by the dashed line. Assume that in tracing
the path from the root to d the nodes have been stored on a stack, as in the other
height-balanced tree algorithms. We now g0 back up that path toward the root,
breaking the tree apart and concatenating the pieces together to form the desired lists.
First d ig inserted at the extreme right of Sy, to give S,d. S3 and S,d are then concate-
nated using c¢ as the paste node in the concatenation algorithm to form §3¢S.d. The
node e is then used as the paste node in concatenating T, and T, to form T\eT,. The
node b is then used as the paste node in concatenating S, to S¢S,d, giving S,b85c8,d,
which is in turn concatenated to Sy using a as the paste node, giving §1a85,b83¢S,d.

Figure 7.20
An example of splitting a binary tree into two pieces based on the inorder of the
nodes

7.2 Binary Search Trees , 367

On the last step, f is used as the paste node in Concatenating T to TeT,, giving
T,eT>fT;.

Algorithm 7.12 gives an outline of the procedure in general. Notice that the
algorithm as outlined will work to split any binary tree, not just a height-balanced
tree. For example, using the insertion and concatenation procedures for weight-
balanced trees, Algorithm 7.12 serves to split a weight-balanced tree, resulting in
two weight-balanced trees. The time required by Algorithm 7.12 will be proportional
to the total required by the insertion and the sequence of concatenations. In height-
or weight-balanced trees these are potentially O(log n), and the concate-
nation process requires O(log n) time, suggesting that the splitting algorithm might
require time proportional to (log n)’ in the worst case for such balanced trees. For-
tunately, however, the concatenation algorithm requires logarithmic time only to de-
lete the node that will be used to paste the trees together. If given that node, as is
the case in the concatenations done in the splitting process, the concatenation will
require only time proportional to the difference in height of the two trees being
concatenated. This leads to a logarithmic worst-case time for splitting balanced trees
(Exercise 34).

procedure SplitTree(var P: PathStack; var S, T: pHbTree);
{P contains the nodes on the path to a split node. Construct two
trees in S and T from those nodes. The split node will be at the end

of S.}
var
current, child: pHbTree;
begin
current : = Pop(P);
S := current].LEFT;
T .= current!.RIGHT:
S .= PasteHB(S, current, nil); {insert current in left result tree}
while not IsEmpty(P) do begin
{Assert: P has path from current to root. S and T contain, respec-
tively, the left and right results of splitting the subtree at current in
such a way as to keep the original split node at the end of §.}
child : = current;
current : = Pop(P);
if child = current!.RIGHT then
S := PasteHB(current|.LEFT, current, S)
else
T := Pastet{B(T, current, current!.RIGHT)
end
end

Algorithm 7.12
Splitting a binary tree in two pieces based on the inorder of the nodes

368 7 Searching

Two final remarks about representing lists by trees are in order. First, the al-
gorithms described can be used without the rebalancing parts, essentially allowing
the trees to grow randomly. If the insertions, deletions, concatenations, splittings,
and searches were all random, the resulting trees would probably maintain logarith-
mic height on the average. But in most applications it is extremely unlikely that the
sequences of operations would be truly random; rather, biases would occur that
would cause the trees to deteriorate badly. Second, if possible when using binary
trees to represent lists, PARENT pointers should be maintained in the nodes. This wiil
greatly facilitate the algorithms that require retracing the path from a node to the
root: insertion, deletion, concatenation, and splitting. Furthermore, it will allow the
deletion of a node given only a pointer to the node; in this sense PARENT pointers
give something of an analog to doubly linked lists.

Exercises

1. Use elementary integral calculus to show that H, = 3. ,1/i=In n. [Hint: Com-
pare H, to [} dx/x and use the rectangle rule.]

2. This exercise is an alternative way of deriving the result of Equation (7.16),

which gives the external path length of a randomly constructed binary search

tree of n elements. Let U, be the average number of probes in an unsuccessful
search in a given binary search tree T of n nodes. Let U,,, be the average
number of probes in an unsuccessful search after a random insertion has been

made in T.

(a) What is U,?

{b) What is the relationship between U, and the E, of Equation (7.16)?

(¢c) Prove that U,,, = U, + 2/(n + 2). (Hinr: If the insertion is at level i, by
how much does the external path length increase? What is the average level
of a leaf in the tree?]

(d) Use the above results, along with Exercise 1, to obtain (7.16).

{e) Let S, be the average number of probes in a successful search of a randomly
constructed binary search tree of n elements. Prove that §, = | + (U, +
Uy + -+ U,_)in.

3. Prove that if a node X in a binary tree has a non-nil left (right) child, then its
inorder predecessor (successor) has a nil right (left) child.

4. Write out the details of the algorithm to delete an element from a binary search
tree. (See page 340.)

5. Derive a recurrence relation for N,, the number of distinct height-balanced trees
of height h. How fast does N, grow?

