Quicksort algorithm
Average case analysis

After today, you should be able to...
...implement quicksort
...derive the average case runtime of quick sort and similar algorithms

http://upload.wikimedia.org/wikipedia/commons/thumb/8/84/Partition_example.svg/200px-Partition_example.svg.png
Announcements

- Reminder: EditorTrees evals due tonight
- Questions on exam 2? Other things?
For any recurrence relation \textit{in the form:}

\[ T(N) = aT\left(\frac{N}{b}\right) + \theta(N^\kappa), \text{ with } a \geq 1, b > 1 \]

The solution is:

\[
T(N) = \begin{cases} 
\theta(N^{\log_b a}) & \text{if } a > b^k \\
\theta(N^k \log N) & \text{if } a = b^k \\
\theta(N^k) & \text{if } a < b^k 
\end{cases}
\]

\textit{Theorem 7.5 in Weiss}
Stacksort connects to StackOverflow, searches for "sort a list", and downloads and runs code snippets until the list is sorted.
Sorting Demos

- Check out now:
  - [www.sorting-algorithms.com](http://www.sorting-algorithms.com)

- Others:
  - [http://maven.smith.edu/~thiebaut/java/sort/demo.html](http://maven.smith.edu/~thiebaut/java/sort/demo.html)
QuickSort (a.k.a. “partition-exchange sort”)

- Invented by C.A.R. “Tony” Hoare in 1961*
- Very widely used
- Somewhat complex, but fairly easy to understand
  - Like in basketball, it’s all about planting a good pivot.

A quote from Tony Hoare:
There are two ways of constructing a software design: One way is to make it so simple that there are obviously no deficiencies, and the other way is to make it so complicated that there are no obvious deficiencies. The first method is far more difficult.

Partition: split the array into 2 parts: smaller than pivot and greater than pivot.
Quicksort then recursively calls itself on the partitions
Partition: efficiently move small elements to the left of the pivot and greater ones to the right

// Assume min and max indices are low and high
pivot = a[low] // can do better
i = low+1, j = high
while (true) {
    while (a[i] < pivot) i++
    while (a[j] > pivot) j--
    if (i >= j) break
    swap(a, i, j)
}
swap(a, low, j) // moves the pivot to the correct place
return j
QuickSort Average Case

- Running time for **partition of N elements** is \( \Theta(N) \)
- QuickSort Running time:
  - call partition. Get two subarrays of sizes \( N_L \) and \( N_R \)
    (what is the relationship between \( N_L \), \( N_R \), and \( N \)?)
  - Then QuickSort the smaller parts
  - \( T(N) = N + T(N_L) + T(N_R) \)
- QuickSort Best case: write and solve the recurrence
- QuickSort Worst case: write and solve the recurrence
- average: a little bit trickier
  - We have to be careful how we measure
Average time for Quicksort

- Let $T(N)$ be the average number of comparisons of array elements needed to quicksort $N$ elements.

- What is $T(0)$? $T(1)$?

- Otherwise $T(N)$ is the sum of
  - time for partition
  - average time to quicksort left part: $T(N_L)$
  - average time to quicksort right part: $T(N_R)$

- $T(N) = N + T(N_L) + T(N_R)$
Weiss shows how *not* to count it:

What if half of the time we picked the smallest element as the partitioning element and the other half of the time we picked the largest?

Then on the average, $N_L = N/2$ and $N_R = N/2$,

- but that doesn’t give a true picture of these worst-case scenarios.
- In every case, either $N_L = N-1$ or $N_R = N-1$
We assume that all positions for the pivot are equally likely.

- We always need to make some kind of “distribution” assumptions when we figure out the Average case.
- When we execute
  \[ k = \text{partition}(\text{pivot, i, j}), \]
  all positions i..j are equally likely places for the pivot to end up.
- Thus \( N_L \) is equally likely to have each of the values 0, 1, 2, ..., \( N-1 \).
- \( N_L + N_R = N-1 \); thus \( N_R \) is also equally likely to have each of the values 0, 1, 2, ..., \( N-1 \).
- Thus \( T(N_L) = T(N_R) = \)
Continue the calculation

- \( T(N) = \)
- Multiply both sides by \( N \)
- Rewrite, substituting \( N - 1 \) for \( N \)
- Subtract the equations and forget the insignificant (in terms of big-oh) \(-1\):
  - \( NT(N) = (N+1)T(N-1) + 2N \)
- Can we rearrange so that we can telescope?
Continue continuing the calculation

\[ NT(N) = (N+1)T(N-1) + 2N \]

Solve using telescoping and iteration:
- Divide both sides by \(N(N+1)\)
- Write formulas for \(T(N), T(N-1), T(N-2) \ldots T(2)\).
- Add the terms and rearrange.
- Notice the familiar series
- Multiply both sides by \(N+1\).
Recap

- Best, worst, average time for Quicksort
- What causes the worst case?

- We can guarantee we never hit the worst case
  - How?
  - But this makes quicksort slower than merge sort in practice.
Improvements to QuickSort

- Avoid the worst case
  - Select pivot from the middle
  - Randomly select pivot
  - Median of 3 pivot selection. (You’ll want this.)
  - Median of k pivot selection
- "Switch over" to a simpler sorting method (insertion) when the subarray size gets small

Weiss's code does Median of 3 and switchover to insertion sort at 10.
  - Linked from schedule page

What does the official Java Quicksort do? See the source code!
Final notes

The partition code I gave you has 2 bugs:

1. It can walk off the end of the array
2. If the chosen pivot is duplicated, it can go into an infinite recursion (stack overflow)

```c
// Assume min and max indices are low and high
pivot = a[low] // can do better
i = low + 1, j = high
while (true) {
    while (a[i] < pivot) i++
    while (a[j] > pivot) j--
    if (i >= j) break
    swap(a, i, j)
}
swap(a, low, j) // moves the pivot to the
                // correct place
return j
```