CSSE 230 In-class exercise Day 1 Names _______________ ________________ Section (circle one) 01 02 03
Work with a partner. If an odd number of students are present, one group may have three people.

1. This question deals with the overhead of having a "growable" array in the ReadStrings program (Weiss, section 2.4.2, also printed on the back of this page). Let N be the total number of Strings that are actually input when the program is run (N is called itemsRead in the program).

Which statement from the code is responsible for most of the "overhead" time associated with growing the array when it is too small to hold the next String? [Note that all of the array growth originates from calls to resize() in line 23.] Write the line number of that statement here. If you are not sure, check with someone else before going on to the rest of part 1.

 Line number of that statement: ______________________

Let EN be the number of times (altogether, during all of the executions of the while loop in getStrings) that your selected line of code is executed for a given value of N. Fill in the EN column of the following table:

	N
	EN
	Answers for problem 2

	4
	0
	0

	5
	0
	0

	6
	5
	5

	7
	
	

	10
	
	35

	11
	15
	

	20
	
	

	21
	
	

	40
	
	

	41
	
	

In the worst case, find a formula for EN as a function of N. This worst case happens when N=5*2k + 1 (Why? Calculate N for k=0, 1, 2, … to find out), so you should only calculate the formula EN for this case. (Hint: first write EN as a summation involving k. Simplify the sum in terms of k, and then use the formula relating k and N to express it in terms of N. The final expression should be a simple one.)

2. Suppose that in the line 23 call to resize(), we replace length * 2 by length + 1. In the right column of the table, fill in the numbers that would be the answers to the same question (how many times the "largest overhead" statement executes) in this case. You only need to do this for the first 6 rows of the table (up through N=11).

3. Write a formula (a summation in terms of N) for the number of times the same "maximum execution" line of code from the top of this page is executed in the length (length+1 case. Again simplify to get a simple closed-form expression involving N.

4. Which would you recommend: the "doubling" or the "add one" approach? Explain.
[image: image1.png]1
2
3
4
5
6
7
8

0
10
1)
12
18
14
15
16
17
18
19
20
21
22
23
24
25
26
21
28

import java.util.Scanner;

public class Readstrings

{

// Read an unlinited nunber of String; return a String []
7/ The mininal 1/0 details used here are not inportant for
7/ this example and are discussed in Section 2.6.

public static String [] getStrings()

{

Scanner in = new Scanner(System.in);
String [] array = new String[5 1;
int itemsRead = 0;

Systen.out.printIn("Enter strings, one per line;);
Systen.out.printIn(“Terminate with enpty line: *);

while(in.hasNextLine())
{
String oneline = in.nextline();
$F(oneLine.equals(™"))
break;
$F(itenskead == array.length)
array = resize(array, array.length * 2);
array[itensReads+] = oneLine;

}

return resize(array, itensRead);

[image: image2.png]// Resize a String[] array; return new array
public static String [] resize(String [] array,
int newSize)

{
String [] original = array;
int nunToCopy = Hath.min(original.length, newSize);
array = new String[newize 1;
For(int 1 = 0; i < nunToCopy; i++)
array[i 1 = originall 1 1
return array:
}
public static void main(String [] args)
{
String [] array = getStrings();
For(int 3 = 0; i < array.length; i++)
Systen.out printin(array[i 1);
}

