
Priority Queues
Heaps

Heapsort

 Complete the EditorTrees partner(s)
evaluation by tonight.
◦ Use your “individual log” to give them useful

feedback!

 Like 230 and have workstudy funding?
◦ We are looking for CSSE230 graders and lab

assistants for Winter term.
◦ Email Dr. Laxer with your interest

Basic operations
Implementation options

 Each element in the PQ has an associated
priority, which is a value from a comparable
type (in our examples, an integer).

 Operations (may have other names):
◦ findMin()
◦ insert(item, priority)
◦ deleteMin()
◦ isEmpty() …

 How could we implement it using data
structures that we already know about?
◦ Array?
◦ Queue?
◦ List?
◦ BinarySearchTree?

 One efficient approach uses a binary heap
◦ A somewhat-sorted complete binary tree

 Questions we'll ask:
◦ How can we efficiently represent a complete binary

tree?
◦ Can we add and remove items efficiently without

destroying the "heapness" of the structure?

An efficient implementation of
the PriorityQueue ADT

Storage (an array)

Algorithms for insertion and

deleteMin

Figure 21.1
A complete binary tree and its array representation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Array: How to find the children
or the parent of a node?

Notice the
lack of
explicit
pointers in
the array

“complete”
is not a
completely
standard
term

One "wasted"
array position (0)

1

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

A Binary (min) Heap is a
complete Binary Tree (using
the array implementation, as
on the previous slide) that
has the heap-order property
everywhere.

In a binary heap, where do we find
•The smallest element?
•2nd smallest?
•3rd smallest?

2-3

Figure 21.7
Attempt to insert 14, creating the hole and bubbling the hole up

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Create a "hole" where 14 can be inserted.
Percolate up!

Recall that the
actual data
movement is
done by array
manipulation

Figure 21.8
The remaining two steps required to insert 14 in the original heap
shown in Figure 21.7

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Analysis of
insertion …

4-5

Your turn: Insert into an initially empty heap:
6 4 8 1 5 3 2 7

Figure 21.10 Creation of the hole at the root

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

 The min is at the root. Delete it, then use the percolateDown
algorithm to find the correct place for its replacement.

We must decide which child to promote, to make room for 31.

Figure 21.11
The next two steps in the deleteMin operation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.12
The last two steps in the deleteMin operation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Compare node to its children,
moving root down and
promoting the smaller child until
proper place is found.

Analysis

6-7

 Worst case times:
◦ findMin: O(1)
◦ insert: O(log n)
◦ deleteMin O(log n)

 big-oh times for insert/delete are the same
as in the balanced BST implementation, but ..
◦ Heap operations are much simpler,
◦ A heap doesn’t require additional space for pointers

or balance codes.

8

Read SortingRaces > Heaps
instructions

Reminder: EditorTrees evals due
today at midnight.

Use a binary heap to sort an
array.

 Each element in the PQ has an associated
priority, which is a value from a comparable
type (in our examples, an integer).

 Operations (may have other names):
◦ findMin()
◦ insert(item, priority)
◦ deleteMin()

 Start with empty heap
 Insert each array element into heap
 Repeatedly do deleteMin, copying elements back

into array.
 http://nova.umuc.edu/~jarc/idsv/lesson3.html
◦ Can be run in demo mode or practice mode.

 We can save space by doing the whole sort in
place, using a "maxHeap" (i.e. a heap where the
maximum element is at the root instead of the
minimum)

 Analysis?
◦ Next slide …

http://nova.umuc.edu/~jarc/idsv/lesson3.html

 Add the elements to the heap
◦ Repeatedly call insert

 Remove the elements and place into the array
◦ Repeatedly call deleteMin

 Can we do better for the insertion part?
◦ Yes, insert all the items in arbitrary order into the

heap’s internal array and then use BuildHeap (next)

9-start

BuildHeap takes a complete tree that is not a heap and
exchanges elements to get it into heap form

At each stage it takes a root plus two heaps and "percolates
down" the root to restore "heapness" to the entire subtree

Why this starting point?

Figure 21.17 Implementation of the linear-time buildHeap method

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.18
(a) After percolateDown(6);
(b) after percolateDown(5)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.19
(a) After percolateDown(4);
(b) after percolateDown(3)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.20
(a)After percolateDown(2);
(b) after percolateDown(1) and buildHeap terminates

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

 Find a summation that represents the
maximum number of comparisons required
to rearrange an array of N=2H+1-1 elements
into a heap

 Can you find a summation and its value?

 Add the elements to the heap
◦ Insert n elements into heap (call buildHeap, faster)

 Remove the elements and place into the array
◦ Repeatedly call deleteMin

 Total runtime?
◦ θ(n log n)

9-end

	CSSE 230 Day 26
	Reminders
	Priority Queue ADT
	Priority Queue operations
	Priority queue implementation
	Binary Heap
	Slide Number 7
	The (min) heap-order property:� every node’s value is ≤ its childrens’ values
	Insertion algorithm
	Insertion Algorithm continued
	Code for Insertion
	DeleteMin algorithm
	DeleteMin Slide 2
	DeleteMin Slide 3
	Slide Number 15
	Summary: Implementing a Priority Queue as a binary heap
	Binary Heaps worktime
	Heapsort
	Recap: Priority Queue operations
	Using a Heap for sorting
	Analysis of simple heapsort
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Analysis of BuildHeap
	Analysis of better heapsort

