CSSE 230 Day 25

Skip Lists

Figure 8.9: Example of a skip list.



Reminders/Announcements

» Complete the EditorTrees partner evaluation by
Wednesday night
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An alternative to AVL trees

» Indexed lists.
One-level index.

- 2nd-level index.
3rd-level index
log-n-level index.
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PFELY Remember the problem

. : : with keeping trees
» Problem: insertion and deletion. completely balanced”?

» Solution: Randomized node height: Skip lists.
- Pugh, 1990 CACM.

» http://iamwww.unibe.ch/~wenger/DA/SkipList/

Notice that skip lists do not share with binary
trees the problem that threads are designed to

solve.



http://iamwww.unibe.ch/~wenger/DA/SkipList/
http://iamwww.unibe.ch/~wenger/DA/SkipList/

A slightly different skip list
representation

» Uses a bit more space, makes the code
simpler.
» Michael Goodrich and Roberto Tamassia.
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Figure 8.9: Example of a skip list.




Methods in SkipListNode class

after(p):
before( p):
below(p):

above(p):

Return the position following p on the same level.
Return the position preceding p on the same level.
Return the position below p in the same tower,

Return the position above p in the same tower.



Search algorithm

1. I S.below(p) is null, then the search terminates—we are af the bottom and
have located the largest item in S with key less than or equal to the search
key k. Otherwise, we drop down to the next lower level in the present tower
by setting p — S.below(p).

2. Starting at position p. we move p forward until it is at the right-most position

on the present level such that key(p) < k. We call this the scan forward siep.

Note that such a position always exists, since each level contains the special

keys +o0 and —oc. In fact, after we perform the scan forward for this level.

p may remain where it started. In any case. we then repeat the previous step.
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Figure 8.10: Example of a search in a skip list. The positions visited when searching
for key 50 are highlighted in blue.



Insertion diagram
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Insertion algorithm
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Algorithm Skiplnsert{k.e):
Input: Item (k. e)

Output: None
p +— SkipSearch(k)
g — insertAfterAbove( p.null. (k.¢)) {we are at the bottom level }
while random() < | /2 do
while above(p) = null do

p « before(p) Iscan backward }
p — above(p) {jump up to higher level }
g + insertAfterAbove(p.g.(k.e)) {insert new item

Code Fragment 8.5: Insertion in a skip list, assuming random() returns a random
number between 0 and 1, and we never insert past the top level,



Remove algorithm
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(sort of) Analysis of Skip Lists

» No guarantees that we won't get O(N)
behavior.

> The interaction of the random number generator
and the order in which things are inserted/deleted
could lead to a long chain of nodes with the same
height.

- But this is very unlikely.

- Expected time for search, insert, and remove are
O(log n).
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