CSSE 230 Day 25

Skip Lists

Figure 8.9: Example of a skip list.

Reminders/Announcements

» Complete the EditorTrees partner evaluation by
Wednesday night

WE FeReoT To
MoVE TRoSE
SToNES To THE
CTHER SIDE
FoRr mm@:-t-r

ﬁ'
i’j"ﬁ' i

/ “:ff
Jl"fﬁf*’lf : P

1-2
An alternative to AVL trees

» Indexed lists.
One-level index.

- 2nd-level index.
3rd-level index
log-n-level index.

o

o

(¢]

PFELY Remember the problem

. : : with keeping trees
» Problem: insertion and deletion. completely balanced”?

» Solution: Randomized node height: Skip lists.
- Pugh, 1990 CACM.

» http://iamwww.unibe.ch/~wenger/DA/SkipList/

Notice that skip lists do not share with binary
trees the problem that threads are designed to

solve.

http://iamwww.unibe.ch/~wenger/DA/SkipList/
http://iamwww.unibe.ch/~wenger/DA/SkipList/

A slightly different skip list
representation

» Uses a bit more space, makes the code
simpler.
» Michael Goodrich and Roberto Tamassia.

+

|7 i

7 7 e + €

7 25 i1 X3 b oo

17 25 i 8 44 55 o

= T A1 iz 4 18 Ai) 4.4 i} 55 b

Figure 8.9: Example of a skip list.

Methods in SkipListNode class

after(p):
before(p):
below(p):

above(p):

Return the position following p on the same level.
Return the position preceding p on the same level.
Return the position below p in the same tower,

Return the position above p in the same tower.

Search algorithm

1. I S.below(p) is null, then the search terminates—we are af the bottom and
have located the largest item in S with key less than or equal to the search
key k. Otherwise, we drop down to the next lower level in the present tower
by setting p — S.below(p).

2. Starting at position p. we move p forward until it is at the right-most position

on the present level such that key(p) < k. We call this the scan forward siep.

Note that such a position always exists, since each level contains the special

keys +o0 and —oc. In fact, after we perform the scan forward for this level.

p may remain where it started. In any case. we then repeat the previous step.

S5 [C=1 £
s, C——17] =7 e
s» =] —L17] El o El B K
Sy = 12 T——{s {3 s }—TJ T =]

So =27 o {70 38 390 e — w0 5 =]

Figure 8.10: Example of a search in a skip list. The positions visited when searching
for key 50 are highlighted in blue.

Insertion diagram

G T
4] mﬂ

0

il = =]
- oo G G
Sy L=l 7] ::5|—I?|}—|a£ EE =] iy ey
So =127 o5 {3 3 T =]

Insertion algorithm

8 [==] =
§y =] o3
sia i = o]
s, =1 7] =]
S = 12 z 13 55—+ |
ST) e B s I s BT o BT e 39 32 —{ 1 50 55— = |

Algorithm Skiplnsert{k.e):
Input: Item (k. e)

Output: None
p +— SkipSearch(k)
g — insertAfterAbove(p.null. (k.¢)) {we are at the bottom level }
while random() < | /2 do
while above(p) = null do

p « before(p) Iscan backward }
p — above(p) {jump up to higher level }
g + insertAfterAbove(p.g.(k.e)) {insert new item

Code Fragment 8.5: Insertion in a skip list, assuming random() returns a random
number between 0 and 1, and we never insert past the top level,

Remove algorithm

R B, {17]
. s
s, = ~= o}
' o | 5 e
by [22] 25 !
S =02 2% { 42 34]
. T
b
So {20k = 17 13 30

(sort of) Analysis of Skip Lists

» No guarantees that we won't get O(N)
behavior.

> The interaction of the random number generator
and the order in which things are inserted/deleted
could lead to a long chain of nodes with the same
height.

- But this is very unlikely.

- Expected time for search, insert, and remove are
O(log n).

	CSSE 230 Day 25
	Reminders/Announcements
	Skip Lists
	An alternative to AVL trees
	A slightly different skip list representation
	Methods in SkipListNode class
	Search algorithm
	Insertion diagram
	Insertion algorithm
	Remove algorithm
	(sort of) Analysis of Skip Lists

