CSSE 230 Day 25

Sorting Lower Bound
Radix Sort
Skip Lists

Reminders/Announcements

» Exam is Thursday evening

» Complete the EditorTrees partner evaluation
today

» Before the exam, copy your team's
EditorTreesMilestone2 project to your individual
CSSE 230 repository
- Team > Update
- Team > Disconnect

- Before you press the Yes button, choose "Also Delete SVN
metadata”

- Team > Share Project > SVN > Next, choose your repo
> Team>Commit

e Just to be sure everything is there.

Tuesday - Thursday classes

» WA 8 due at 8 AM Tuesday

» I'll take up to one class period to answer your
questions related to the exam

- Same format as the Wednesday Q&A session | did
before the first exam.

» The last programming project will be
introduced, along with some background
material needed to do it.

» Because of the exam Thursday evening,
no class meeting Thursday afternoon.

Questions?

What's the best best case?

» Lower bound for best case?

» A particular algorithm that achieves this?

What'’s the best worst case?

» Want a function f(N)
such that the worst case running time
for all sorting algorithms is Q(f(N))

» How do we get a handle on
“all sorting algorithms™?

What are “all sorting algorithms™?

» We can'’t list all sorting algorithms and
analyze all of them
> Why not?

» But we can find a uniform representation of
any sorting algorithm that is based on
comparing elements of the array to each

other

This "uniform representation”

idea is exploited in a big way in
Theory of Computation, e.g., to

demonstrate the unsolvability of
the "Halting Problem"”

First of all...

» The problem of sorting N elements is at least
as hard as determining their ordering
- e.d., determining thata; <a, <a; <as < a,

» So any lower bound on all "order-
determination” algorithms is also a lower
bound on "all sorting algorithms”

Sort Decision Trees

» Let A be any comparison-based algorithm for
sorting an array of distinct elements

» Note: sorting is asymptotically equivalent to
determining the correct order of the originals

» We can draw an EBT that corresponds to the
comparisons that will be used by A to sort an
array of N elements
> This is called a sort decision tree

> Just a pen-and-paper concept, not actually a data
structure

- Different algorithms will have different trees

Q2-4
So what?

» Minimum number of external nodes in a sort
decision tree? (As a function of N)

» Is this number dependent on the algorithm?

» What’s the height of the shortest EBT with
that many external nodes?

log N!| =~ Nlog N —1.44N = Q(N log N)

No comparison-based sorting algorithm, A
known or not yet discovered, can ever do

better than this!

Can we do better than Nlog A?

» Q(N log N) is the best we can do if we
compare items

» Can we sort without comparing items?

Yes, we can! We can sort if we avoid comparing
items
Q5

» O(N) sort: Bucket sort
- Works if possible values come from limited range
- Example: Exam grades histogram

» A variation: Radix sort

| Q6-8
Radix sort

» A picture is worth 103 words, but an
animation is worth 219 pictures, so we will
look at one.

» http://www.cs.auckland.ac.nz/software/AlgA
nim/radixsort.html

p—

http://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html
http://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html

Radix sort example: card sorter

/r‘ GLETAEE TS AN EFCHITILEN G I j5d TRARTS ol .- AT

e e g0

[e i HETRINTN oo o
waenia pasnraffnnian i eboad s tai st e eas b JTTTT[lanensn] wasfppaensnses
I.i|.i.:|||J1I.I.:I:IiLII'.:"I.I.II.I'II.I.:I:IiL'.:III.I.:I:Iq_rIIi:Ii.l.i.:l'll.l.:l:ll.l.:l:lil.i.:lll.l.l.:l:ll AT REATRET
::

|.|.u|}i||i-.|.-|}||i| IlIIi-|I|ijliilIill}|I|ill}illii|l|iillliill|]]]} iiiiii
AEPEE - EELEEE ::.:-l-|'_|=:: S ELEEE] ::.:1|}'u ££44 ||'_|s::.:1 ssr: LR R PR F PR ERA T |
R O R R A Gl i e [e d R R Rl E R A Rl E R
R ER)RR REER R GEERRLEER & | EERER | EER R | R Rt ih il ¢ EER bR L R]

'Il'l'llrIJ'IIJ'I'HIII:I'HIJ'HI'IIEIHIH‘HIHI‘HE!IHI H-rDﬂﬂﬂ[pﬂunrrﬂmnﬁruﬂl

Used an appropriate
combo of
mechanical, digital,
and human effort to
get the job done.

Type 82 Electric Punched Card Sorting Machine

Q9-11

An alternative to AVL trees

vV Vv VvV VvV Vv Vv V9

Indexed lists.

One-level index.

2nd-level index.

3rd-level index

log-n-level index.

Problem: insertion and deletion.

Solution: Randomized node height: Skip lists.
- Pugh, 1990 CACM.

http://iamwww.unibe.ch/~wenger/DA/SkipList/

Notice that skip lists do not share with binary trees
the problem that threads are designed to solve.

http://iamwww.unibe.ch/~wenger/DA/SkipList/

A slightly different skip list
representation

» Uses a bit more space, makes the code
simpler.
» Michael Goodrich and Roberto Tamassia.

.4:11=|

S = 17

51 - 3

S o 2 il

3 o |7] M 4

an | o= 3 7 2{) 25 L 38) 14 S0}

Figure 8.9: Example of a skip list.

r— -

Methods in SkipListNode class

after(p):
before(p):

below(p):

above(p):

Return the position following p on the same level.
Return the position preceding p on the same level.
Return the position below p in the same tower,

Return the position above p in the same tower.

Search algorithm

=

. It S.below(p) is null, then the search terminates

we are al the bottom and
have located the largest item in S with key less than or equal to the search
key k. Otherwise, we drop down to the next lower level in the present tower
by setting p — S.below/(p).

Starting at position p. we move p forward until it is at the right-most position
on the present level such that key(p) < k. We call this the scan forward siep.
Note that such a position always exists, since each level contains the special
keys o0 and —oc. In fact, after we perform the scan forward for this level,
p may remain where it started. In any case, we then repeat the previous step.

rELI
Gt

;

d

-

G

|
x

| I-";-LI_“'T'|

S =121

T

-]

So =z 17 2 i 38— 9 o 0 {5 =]

Figure 8.10: Example of a search in a skip list. The positions visited when searching
for key 50 are highlighted in blue.

Insertion diagram

$s =] {
s, 23 mea 5}] =]
S, =1 (17] 25 H'R (5] {55 7=
8, =271 (25— ST 3] I s G5+
ST N e I s I e BT o BT e R 39 il o IR 50) 55— == |

Insertion algorithm

g [==] pies
s, =1 [17] R [
5, =1 DE I e BETH 7] {55 =]
8 C= 12 75 {3 |—|_%=-EI—I_| T 7=]

ST N e R o I e T S o BT 4 3 EY 5]

Algorithm Skiplnsert{k.e):
Input: Item (k,e)
Outpui: None
p « SkipSearch(k)
¢ — insertAfterAbove(p. null. (k. ¢)) {we are at the bottom level }
while random() < | /2 do
while above(p) = null do

p « before(p) {scan backward }
p — above(p) {Jump up to higher level}
g + insertAfterAbove(p.qg. (k.e)) {insert new item |

Code Fragment 8.5: Insertion in a skip list, assuming random() returns a random
number between 0 and 1, and we never insert past the top level.

Remove algorithm

(sort of) Analysis of Skip Lists

» No guarantees that we won't get O(N)
behavior.

- The interaction of the RNG and the order in which
things are inserted/deleted cou/d lead to a long
chain of nodes with the same height.

> But this is very unlikely.

- Expected time for search, insert, and remove are
O(log n).

	CSSE 230 Day 25
	Reminders/Announcements
	Tuesday – Thursday classes
	A Lower-Bound�on Sorting Time
	What’s the best best case?
	What’s the best worst case?
	What are “all sorting algorithms”?
	First of all…
	Sort Decision Trees
	So what?
	Can we do better than N log N?
	Yes, we can! We can sort if we avoid comparing items
	Radix sort
	Radix sort example: card sorter
	Skip Lists
	An alternative to AVL trees
	A slightly different skip list representation
	Methods in SkipListNode class
	Search algorithm
	Insertion diagram
	Insertion algorithm
	Remove algorithm
	(sort of) Analysis of Skip Lists

