CSSE 230 Day 25

Sorting Lower Bound Radix Sort Skip Lists

Reminders/Announcements

- Exam is Thursday evening
- Complete the EditorTrees partner evaluation today
- Before the exam, copy your team's EditorTreesMilestone2 project to your individual CSSE 230 repository
 - Team > Update
 - Team > Disconnect
 - Before you press the Yes button, choose "Also Delete SVN metadata"
 - Team > Share Project > SVN > Next, choose your repo
 - Team>Commit
 - Just to be sure everything is there.

Tuesday - Thursday classes

- WA 8 due at 8 AM Tuesday
- I'll take up to one class period to answer your questions related to the exam
 - Same format as the Wednesday Q&A session I did before the first exam.
- The last programming project will be introduced, along with some background material needed to do it.
- Because of the exam Thursday evening, no class meeting Thursday afternoon.

Questions?

A Lower-Bound on Sorting Time

>>> We can't do much better than what we already know how to do.

What's the best best case?

- Lower bound for best case?
- A particular algorithm that achieves this?

What's the best worst case?

- Want a function f(N) such that the worst case running time for all sorting algorithms is Ω(f(N))
- How do we get a handle on "all sorting algorithms"?

What are "all sorting algorithms"?

- We can't list all sorting algorithms and analyze all of them
 - Why not?
- But we can find a uniform representation of any sorting algorithm that is based on comparing elements of the array to each other

This "uniform representation" idea is exploited in a big way in Theory of Computation, e.g., to demonstrate the unsolvability of the "Halting Problem"

First of all...

- The problem of sorting N elements is at least as hard as determining their ordering
 - \circ e.g., determining that $a_3 < a_4 < a_1 < a_5 < a_2$
- So any lower bound on all "orderdetermination" algorithms is also a lower bound on "all sorting algorithms"

Sort Decision Trees

- Let A be any comparison-based algorithm for sorting an array of distinct elements
- Note: sorting is asymptotically equivalent to determining the correct order of the originals
- We can draw an EBT that corresponds to the comparisons that will be used by A to sort an array of N elements
 - This is called a sort decision tree
 - Just a pen-and-paper concept, not actually a data structure
 - Different algorithms will have different trees

So what?

- Minimum number of external nodes in a sort decision tree? (As a function of N)
- Is this number dependent on the algorithm?
- What's the height of the shortest EBT with that many external nodes?

$$\lceil \log N! \rceil \approx N \log N - 1.44N = \Omega(N \log N)$$

No comparison-based sorting algorithm, known or not yet discovered, can **ever** do better than this!

Can we do better than N log N?

- ho $\Omega(N log N)$ is the best we can do if we compare items
- Can we sort without comparing items?

Yes, we can! We can sort if we avoid comparing items

- ▶ O(N) sort: Bucket sort
 - Works if possible values come from limited range
 - Example: Exam grades histogram
- A variation: Radix sort

Radix sort

- A picture is worth 10³ words, but an animation is worth 2¹⁰ pictures, so we will look at one.
- http://www.cs.auckland.ac.nz/software/AlgA nim/radixsort.html

Radix sort example: card sorter

Used an appropriate combo of mechanical, digital, and human effort to get the job done.

Type 82 Electric Punched Card Sorting Machine

Skip Lists

An alternative to balanced trees

An alternative to AVL trees

- Indexed lists.
- One-level index.
- 2nd-level index.
- 3rd-level index
- log-n-level index.
- Problem: insertion and deletion.
- Solution: Randomized node height: Skip lists.
 - Pugh, 1990 CACM.
- http://iamwww.unibe.ch/~wenger/DA/SkipList/
- Notice that skip lists do not share with binary trees the problem that threads are designed to solve.

A slightly different skip list representation

- Uses a bit more space, makes the code simpler.
- Michael Goodrich and Roberto Tamassia.

Figure 8.9: Example of a skip list.

Methods in SkipListNode class

```
after(p): Return the position following p on the same level.
before(p): Return the position preceding p on the same level.
below(p): Return the position below p in the same tower.
above(p): Return the position above p in the same tower.
```

Search algorithm

- If S.below(p) is null, then the search terminates—we are at the bottom and have located the largest item in S with key less than or equal to the search key k. Otherwise, we drop down to the next lower level in the present tower by setting p ← S.below(p).
- 2. Starting at position p, we move p forward until it is at the right-most position on the present level such that key(p) ≤ k. We call this the scan forward step. Note that such a position always exists, since each level contains the special keys +∞ and -∞. In fact, after we perform the scan forward for this level, p may remain where it started. In any case, we then repeat the previous step.

Figure 8.10: Example of a search in a skip list. The positions visited when searching for key 50 are highlighted in blue.

Insertion diagram

Insertion algorithm


```
Algorithm SkipInsert(k,e):

Input: Item (k,e)

Output: None

p \leftarrow \text{SkipSearch}(k)

q \leftarrow \text{insertAfterAbove}(p, \mathbf{null}, (k,e)) {we are at the bottom level}

while random() < 1/2 do

while above(p) = null do

p \leftarrow \text{before}(p) {scan backward}

p \leftarrow \text{above}(p) {jump up to higher level}

q \leftarrow \text{insertAfterAbove}(p,q,(k,e)) {insert new item}
```

Code Fragment 8.5: Insertion in a skip list, assuming random() returns a random number between 0 and 1, and we never insert past the top level.

Remove algorithm

(sort of) Analysis of Skip Lists

- No guarantees that we won't get O(N) behavior.
 - The interaction of the RNG and the order in which things are inserted/deleted could lead to a long chain of nodes with the same height.
 - But this is very unlikely.
 - Expected time for search, insert, and remove are O(log n).