CSSE 230 Day 22

Tree Variations
EditorTrees work time

Day 22 Announcements/Agenda

» WA 7: Due Tomorrow, 8 AM:

» EditorTrees Milestone 2: Due Friday, 8 AM
» WA 8: Due Tuesday Oct 30, 8 AM

» Exam 2: Thursday, Nov 1, 7-9 PM

» Agenda for today:

- Tree variations What questions

- EBT reminder dO YOU have7
« Tries]

> Sorting overview

ditorTrees work time

10/22/2012

10/22/2012

Tree variations

»» Expression Trees

DAGs
Tries

Ql
Expression Trees

» Could be used by a spreadsheet to store formula
» Used extensively by compilers and interpreters

» Each node represents an expression

» Child nodes represent sub-expressions

» Shape of the tree encodes:

> Precedence
o Associativity

» Consider:
o 142
©2+3%4
©4-3-2
o 2A3A4
- IF(A1>1, 0, SUM(B1:G1))

Expression Tree Variation

» Consider a tree that represents this
expression: a+a*(b-c) + (b -¢c)*d

» Expression evaluation: / \

Postorder /\J\/\
o / a
» Notice the),
common / \ /\
sub-expressions: (-)
a and (b - ¢)

> A distinguished root / /*\
> Looks like a tree when doing a
> traversal, but saves space.

/\

B o
\b / \T/

Q2-3
Directed Acyclic Graph (DAG)
» A useful representation for common sub-
expressions: : a+a*(b-c)+ (b- c) *d
» A DAG is like a tree with sharing
> Directed graph / /*\
> No cycles

10/22/2012

10/22/2012

Q4-5
Another approach to search trees
» Digital search tree (trie).
» We store the data digit-by-digit (or letter by
Ietter). EABCDEFGHI JKLMNOPQRSTUVWXY
» How to actually LIl ITITTITT LI TIITITI T[]
o 7\ /
represent nodes?

We can collapse single-branch paths to save space

R
E
D
REDFI ;... F
%H instead of :
NS

H

10/22/2012

We can share a single static "e-node” to save
space

» The epsilon nodes aren’t
null; they just show the end
of a word.

» There can still be null
pointers at each level where
there are missing letters

P

Representing a Trie as a binary tree saves Q6
even more space

For many more details on Tries, see
http://en.wikipedia.org/wiki/Trie

[

10/22/2012

You can trie to create an interesting trie using
this applet

» http://blog.ivank.net/trie-in-as3.html

P

Introduction to
Recurrence Relations

> A technique for analyzing
recursive algorithms

Recap: Maximum Contiguous
Subsequence Sum problem

Problem definition: Given a non-empty
sequence of n (possibly negative) integers
Ay, Ao, ..., A, find the maximum consecutive
subsequence S; ; = Z{_:i Ak, and the
corresponding values of i and ;.

_— U

Q7
Divide and Conquer Approach

» Split the sequence in half
» Where can the maximum subsequence appear?

» Three possibilities :
- entirely in the first half,
- entirely in the second half, or
> begins in the first half and ends in the second half

— "

10/22/2012

Overview of algorithm

1. Using recursion, find the maximum sum of
first half of sequence

2. Using recursion, find the maximum sum of
second half of sequence

3. Compute the max of all sums that begin in
the first half and end in the second half

> (Use a couple of loops for this)
4. Choose the largest of these three numbers

private static int maxSumRec(int [] a, int left, int right) c28"9

{

int maxLeftBorderSum = 0, maxRightBorderfSum = 0;
int leftBorderSum = 0, rightBorderSum = 0;
int center = (left + right) / 2;

-
if(left == right) // Base case
return a[left] > 0 ? a[left] : 0;
int maxLeftSuwn = maxSumRec(a, left, center);
int maxRight8um = maxSumRec(a, <enter + 1, right);

for(int i1 = center; i >= left; i--)
{
leftBorderSwa += a[1];
1f{ leftBorderSum > maxLeftBorderJum)
maxLeftBorder3um = leftBorderSum;

} So, what’s the
e for(int i = center + 1; i <= right; i++) run—time?
{

rightBorderSum += a[1];
if(rightBorderSum > maxRightBorderSum)
maxRightBorderSum = rightBorderSum;

}

return max3(maxLeftSum, maxRightSumn,
maxLeftBorderSum + maxRightBorderSum);

10/22/2012

Q10
Analysis?

» Use a Recurrence Relation
> A function of N, typically
written T(N)
> Gives the run-time as a
function of N
> Two (or more) part definition:
- Base case,
like T(1) = ¢
- Recursive case,
like T(N) = T(N/2)

So, what’s the recurrence relation

for the recursive MCSS algorithm?

private static int maxSumRec(int [] a, int left, int right)Q]]_] 2
{ =

int maxLeftBorderSum = 0, maxRightBorderfSum = 0;

int leftBorderSum = 0, rightBorderSum = 0;

int center = (left + right) / 2;

if(left == right) // Base case
return a[left] > 0 ? a[left] : 0O;

int maxLeftSum
int maxRightSum

max3umRec (a, left, center);
maxSumRec (a, center + 1, right);

\|ff+\\ﬂ

for(int i1 = center; i >= left; i--)

{ 2 i
leftBorderSum += a[1]; What S N In the
if{ leftBorderSum > maxLeftBorderSum) base Case?

maxLeftBorderSun = leftBorderSum;

}

od for(int i = center + 1; i <= right; i++)

{
rightBorderSum += a[1];
if({ rightBorderSum > maxRightBorderSum)
maxRightBorderSum = rightBorderSum;

}

return max3(maxLeftSum, maxRightSumn,
- maxLeftBorderSum + maxRightBorderSum);

10/22/2012

10/22/2012

Recurrence Relation, Formally

» An equation (or inequality) that relates the
nth element of a sequence to certain of its
predecessors (recursive case)

» Includes an initial condition (base case)
» Solution: A function of n.

» Similar to differential equation, but discrete
instead of continuous

» Some solution techniques are similar to

diff. eq. solution techniques

Q14-16: Skip 13 for now
Solve Simple Recurrence Relations

» One strategy: guess and check

» Examples:
> T(0) =0, T(N) = 2 + T(N-1)
> T(0) =1, T(N) = 2 T(N-1)
> T(0) = T(1) = 1, T(N) = T(N-2) + T(N-1)
> T(0) =1, T(N) = NT(N-1)
>TO)=0,T(N)=T(N-1) + N
> T(1)=T1,T(N) =2 T(N/2) + N
(just consider the cases where N=2k)

10

16
Another Strategy

» Substitution
» T(1) =1, T(N) =2 T(N/2) + N
(just consider N=2k)
» Suppose we substitute N/2 for N in the
recursive equation?
> We can plug the result into the original equation!

Solution Strategies for
Recurrence Relations

» Guess and check

» Substitution

» Telescoping and iteration
» The “master” method

10/22/2012

11

Selection Sort

public statiec void selectionSort(int[] a) {
//Sorts a non-empty array of integers.

for (int last = a.length-1; last > 0; last--) {
// find largest, and exchange with last

int largest = a[0];
int largePosition = 0;

for (int j=1; j<=last; j++)
if (largest < al[jl) {
largest = a[jl;
largePosition = j;
}

a[largePosition] = af[last];
a[last] = largest:; What’s N?

A Substitution Example

» Consider:
o T(1) =1
> T(N) = N + T(N/2), where N = 2k for some k

» Substitution:

> Use recurrence relation repeatedly to expand T() on

right-hand side of relation

10/22/2012

12

Editor Trees
Work Time

Slides from Previous

terms

»» Kept in case we want to do
those things again some day

10/22/2012

13

