
Extended Binary Trees 
Recurrence relations 



 Today: 
◦ Extended Binary Trees (basis for much of WA8, which 

includes 3 induction proofs and no programming) 
 
◦ Recurrence relations, part 1 

 
◦ EditorTrees worktime 
 

 
 



Bringing new life to Null 
nodes! 



 Not a single NULL_NODE,  
but many NULL_NODEs  
 

 An Extended Binary tree is either 
◦ an external (null) node, or 
◦ an (internal) root node and two  

EBTs TL and TR. 
 We draw internal nodes as circles and external nodes as 

squares. 
◦ Generic picture and detailed picture. 

 This is simply an alternative way of viewing binary trees, 
in which we view the external nodes as “places” where a 
search can end or an element can be inserted. 
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 Property P(N): For any N>=0, any EBT with N 
internal nodes has _______ external nodes. 

 Proof by strong induction, based on the recursive 
definition. 
◦ A notation for this problem: IN(T), EN(T) 
◦ Note that, like a lot of other simple examples, this one 

can be done without induction.   
◦ But one  purpose of this exercise is practice with strong 

induction, especially on binary trees. 
 What is the crux of any induction proof? 
◦ Finding a way to relate the properties for larger values 

(in this case larger trees) to the property for smaller 
values (smaller trees).  Do the proof now. 
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A technique for analyzing 
recursive algorithms 





 Split the sequence in half 
 Where can the maximum subsequence appear? 

 
 Three possibilities : 
◦ entirely in the first half, 
◦ entirely in the second half, or 
◦ begins in the first half and ends in the second half 
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1. Using recursion, find the maximum sum of  
first half of sequence 

2. Using recursion, find the maximum sum of  
second half of sequence 

3. Compute the max of all sums that begin in 
the first half and end in the second half 
◦ (Use a couple of loops for this) 

4. Choose the largest of these three numbers 



So, what’s the 
run-time? 
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 Use a Recurrence Relation 
◦ Typically written T(N), gives  

the run-time as a function  
of N 
◦ Two (or more) part definition: 
 Base case,  

like T(1) = c 
 Recursive case, 

like T(N) = T(N/2) 

So, what’s the recurrence relation 
for the recursive MCSS algorithm? 
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What’s N in the 
base case? 
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 An equation (or inequality) that relates the  
nth  element of a sequence to certain of its 
predecessors (recursive case) 

 Includes an initial condition (base case) 
 Solution: A function of n. 

 
 

 Similar to differential equation, but discrete 
instead of continuous 

 Some solution techniques are similar to  
diff. eq. solution techniques 



 One strategy: guess and check 
 

 Examples: 
◦ T(0) = 0, T(N) = 2 + T(N-1) 
◦ T(0) = 1, T(N) = 2 T(N-1) 
◦ T(0) = T(1) = 1, T(N) = T(N-2) + T(N-1) 
◦ T(0) = 1, T(N) = N T(N-1) 
◦ T(0) = 0, T(N) = T(N -1) + N 
◦ T(1) = 1, T(N) = 2 T(N/2) + N   

 (just consider the cases where N=2k) 

18-20:  Skip 17 for now 



 Substitution 
 T(1) = 1, T(N) = 2 T(N/2) + N   

 (just consider N=2k) 
 Suppose we substitute N/2 for N in the 

recursive equation? 
◦ We can plug the result into the original equation! 
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 Guess and check 
 Substitution 
 Telescoping and iteration 
 The “master” method 
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