
Extended Binary Trees
Recurrence relations

 Today:
◦ Extended Binary Trees (basis for much of WA8, which

includes 3 induction proofs and no programming)

◦ Recurrence relations, part 1

◦ EditorTrees worktime

Bringing new life to Null
nodes!

 Not a single NULL_NODE,
but many NULL_NODEs

 An Extended Binary tree is either
◦ an external (null) node, or
◦ an (internal) root node and two

EBTs TL and TR.
 We draw internal nodes as circles and external nodes as

squares.
◦ Generic picture and detailed picture.

 This is simply an alternative way of viewing binary trees,
in which we view the external nodes as “places” where a
search can end or an element can be inserted.

1-2

 Property P(N): For any N>=0, any EBT with N
internal nodes has _______ external nodes.

 Proof by strong induction, based on the recursive
definition.
◦ A notation for this problem: IN(T), EN(T)
◦ Note that, like a lot of other simple examples, this one

can be done without induction.
◦ But one purpose of this exercise is practice with strong

induction, especially on binary trees.
 What is the crux of any induction proof?
◦ Finding a way to relate the properties for larger values

(in this case larger trees) to the property for smaller
values (smaller trees). Do the proof now.

3-10

A technique for analyzing
recursive algorithms

 Split the sequence in half
 Where can the maximum subsequence appear?

 Three possibilities :
◦ entirely in the first half,
◦ entirely in the second half, or
◦ begins in the first half and ends in the second half

11

1. Using recursion, find the maximum sum of
first half of sequence

2. Using recursion, find the maximum sum of
second half of sequence

3. Compute the max of all sums that begin in
the first half and end in the second half
◦ (Use a couple of loops for this)

4. Choose the largest of these three numbers

So, what’s the
run-time?

12-13

 Use a Recurrence Relation
◦ Typically written T(N), gives

the run-time as a function
of N
◦ Two (or more) part definition:
 Base case,

like T(1) = c
 Recursive case,

like T(N) = T(N/2)

So, what’s the recurrence relation
for the recursive MCSS algorithm?

14

What’s N in the
base case?

15-16

 An equation (or inequality) that relates the
nth element of a sequence to certain of its
predecessors (recursive case)

 Includes an initial condition (base case)
 Solution: A function of n.

 Similar to differential equation, but discrete
instead of continuous

 Some solution techniques are similar to
diff. eq. solution techniques

 One strategy: guess and check

 Examples:
◦ T(0) = 0, T(N) = 2 + T(N-1)
◦ T(0) = 1, T(N) = 2 T(N-1)
◦ T(0) = T(1) = 1, T(N) = T(N-2) + T(N-1)
◦ T(0) = 1, T(N) = N T(N-1)
◦ T(0) = 0, T(N) = T(N -1) + N
◦ T(1) = 1, T(N) = 2 T(N/2) + N

 (just consider the cases where N=2k)

18-20: Skip 17 for now

 Substitution
 T(1) = 1, T(N) = 2 T(N/2) + N

 (just consider N=2k)
 Suppose we substitute N/2 for N in the

recursive equation?
◦ We can plug the result into the original equation!

 20

 Guess and check
 Substitution
 Telescoping and iteration
 The “master” method

	CSSE 230 Day 20
	Reminders/Announcements
	Extended Binary Trees (EBT’s)
	An Extended Binary Tree (EBT) just has �null external nodes as leaves
	A property of EBTs
	Introduction to Recurrence Relations
	Recap: Maximum Contiguous Subsequence Sum problem
	Divide and Conquer Approach
	This leads to a recursive algorithm
	Slide Number 10
	Analysis?
	Slide Number 12
	Recurrence Relation, Formally
	Solve Simple Recurrence Relations
	Another Strategy
	Solution Strategies for �Recurrence Relations
	Editor Trees�Work Time

