CSSE 230 Day 18

Hash table basics

```
"ate"→ hashCode() → 48594983→ mod → 83 82 83 ate
```

Reminders/Announcements

Reminder from syllabus: EditorTrees worth 10% of term grade

- See schedule page
 - Exam 2 moved to Friday after break.

Short "pop" quiz over AVL rotations now

Exam 2

- Format same as Exam 1
 - One 8.5x11 sheet of paper (2-sided) for written part
 - Same resources as before for programming part
- ▶ Topics: weeks 1–6
 - Reading, programs, in-class, written assignments.
 - Especially
 - Using various data structures (lists, stacks, queues, sets, maps, priority queues)
 - · Binary trees, including BST, AVL, and threaded
 - Traversals and iterators, size vs. height, rank
 - Backtracking / Queens problem
 - Hash tables
 - Algorithm analysis in general

Through day 19, WA6, and EditorTrees milestone 1

Sample exam on Moodle has some good questions (and extras we haven't done, like sorting)

Best practice: written assignments.

F IDK

Questions

Agenda

- Hash table basics
- Collision resolution
- EditorTrees work time

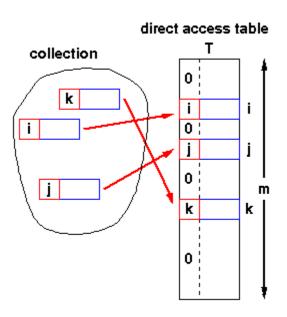
Hashing

Efficiently putting 5 pounds of data in a 20 pound bag

A hash table is a very fast approach to dictionary storage

- Provides rapid insertion, retrieval, and deletion of items by key
- HashMap uses a hash table internally
 - Actual table data is stored in an array
 - HashSet uses a HashMap internally
- Insertion and lookup are constant time!
 - With a good "hash function"
 - And large enough storage array

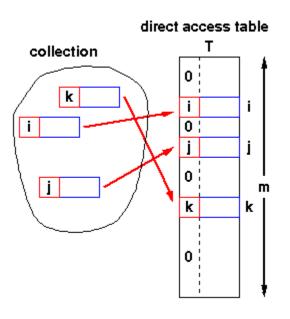
Intro: Direct Address Tables



Contents of this slide are from John Morris, University of Western Australia

- If we have a collection of n elements whose keys are unique integers in the range 0 ... m-1, where m >= n,
- then we can store the items in a direct address table, T[m],
 - where T_i is either empty or contains one of the elements of our collection
 - Searching a direct address table is clearly an O(1) operation:
 - for a key, k, we access T_k ,
 - if it contains an element, return it,
 - if it doesn't, then return a NULL

Intro: Direct Address Tables



Contents of this slide are from John Morris, University of Western Austrailia

- There are two major constraints:
 - 1. the keys must be unique
 - 2. the range of possible keys must be severely bounded

The second constraint is usually impossible to meet

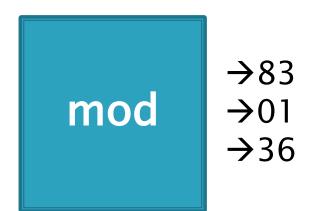
We attempt to create unique keys by applying a hashCode(key) function ...

A good hashCode() distributes the keys, like:

hashCode("ate")= 48594983 hashCode("ape")= 76849201 hashCode("awe") = 14893202 ...and then take it mod the table size (m) to get an index into the array.

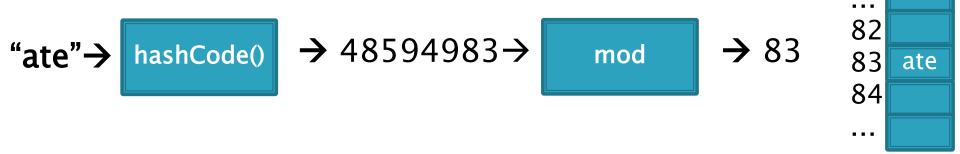
 \blacktriangleright Example: if m = 100:

hashCode("ate")= 48594983 hashCode("ape")= 76849201 hashCode("awe") = 1489036



Index calculated from the object itself, not from 3-4 a comparison with other objects

- Every Java object has a hashCode method that returns an integer H
 - The hash table uses H % m as the index into its internal array



Unless this position is already occupied

a "collision"

Object implements a default **hashCode** method

- Should we inherit it?
- JDK classes override the hashCode() method
 - Like String
- If you plan to use instances of your class as keys in a hash table, you probably should too!

hashCode method

- Should be fast to compute
- Should distribute keys as evenly as possible
- These two goals are often contradictory; we need to achieve a balance

A simple hash function for Strings is a function of every character

```
// This could be in the String class
public static int hash(String s) {
  int total = 0;
  for (int i=0; i<s.length(); i++)
    total = total + s.charAt(i);
  return Math.abs(total);
}</pre>
```

- Advantages?
- Disadvantages?

A better hash function for Strings uses place value

```
// This could be in the String class
public static int hash(String s) {
  int total = 0;
  for (int i=0; i<s.length(); i++)
    total = total*256 + s.charAt(i);
  return Math.abs(total);
}</pre>
```

- Spreads out the values more, and anagrams not an issue.
- What about overflow during computation?

A better hash function for Strings uses place value with a base that's prime

```
// This could be in the String class
public static int hash(String s) {
  int total = 0;
  for (int i=0; i<s.length(); i++)
    total = total*23 + s.charAt(i);
  return Math.abs(total);
}</pre>
```

- Spreads out the values more, and anagrams not an issue.
- We can't entirely avoid collisions. Why?
- What about overflow during computation?
- Note: **String** already has a reasonable **hashCode()** method; we don't have to write it ourselves.

Hash Table Caveats

- Objects that are equal (based on the equals method) MUST have the same hashCode values
- Different objects should have different hashCodes if possible
- Beware of mutable objects!
- Hash tables don't maintain sorted order
 - So what's the big-O cost to find min or max element?

Collisions are Inevitable

- A hash table implementation (like *HashMap*) provides a "collision resolution mechanism"
- There are a variety of approaches to this
- Fewer collisions lead to faster performance

Collision Avoidance

- Just make hashCode unique?
- Impossible! |possible key values| >> capacity of table
 - Example: A key may be an array of 16 characters
 - How many different values could there be?

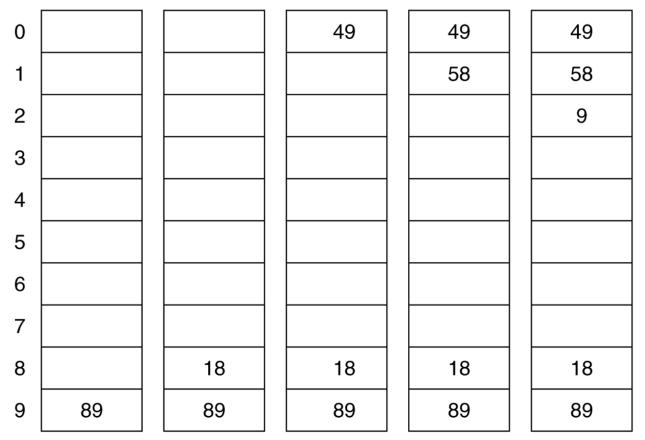
- So we need to deal with collisions:
 - Probing (Linear, Quadratic)
 - Chaining

Collision Resolution: Linear Probing

- Collision? Use the next available space:
 - Try H+1, H+2, H+3, ...
 - Wraparound at the end of the array
- Problem: Clustering
- Animation:
 - http://www.cs.auckland.ac.nz/software/AlgAnim/h ash_tables.html

After insert 89 After insert 18 After insert 49 After insert 58 After insert 9

Figure 20.4
Linear probing hash table after each insertion



Linear Probing Efficiency

- Depends on Load Factor, λ:
 - Ratio of the number of items stored to table size
 - $0 \le \lambda \le 1$.
- For a given λ , what is the expected number of probes before an empty location is found?

Rough Analysis of Linear Probing

- For a given λ , what is the expected number of probes before an empty location is found?
- Assume all locations are equally likely to be occupied, and equally likely to be the next one we look at.
- Then the probability that a given cell is full is λ and probability that a given cell is empty is $1-\lambda$.
- What's the expected number?

$$\sum_{p=1}^{\infty} \lambda^{p-1} (1-\lambda) p = \frac{1}{1-\lambda}$$

Better Analysis of Linear Probing

- "Equally likely" probability is not realistic
- Clustering!
 - Blocks of occupied cells are formed
 - Any collision in a block makes the block bigger
- Two sources of collisions:
 - Identical hash values
 - Hash values that hit a cluster
- Actual average number of probes for large λ :

$$\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^2}\right)$$

Why consider linear probing?

- Easy to implement
- Simple code has fast run time per probe
- Works well when load is low
 - It could be more efficient just to rehash using a bigger table once it starts to fill.
 - And in practice, once $\lambda > 0.5$, we usually **double the** size of the array and rehash

Quadratic Probing

- Linear probing:
 - Collision at H? Try H, H+1, H+2, H+3,...
- Quadratic probing:
 - Collision at H? Try H, H+1². H+2², H+3², ...
 - Eliminates primary clustering. "Secondary clustering" isn't as problematic

Quadratic Probing Tricks (1/2)

- Choose a prime number p for the array size
- Then if $\lambda \leq 0.5$:
 - Guaranteed insertion
 - If there is a "hole", we'll find it
 - No cell is probed twice
- See proof of Theorem 20.4:
 - Suppose that we repeat a probe before trying more than half the slots in the table
 - See that this leads to a contradiction
 - Contradicts fact that the table size is prime

Quadratic Probing Tricks (2/2)

- Use an algebraic trick to calculate next index
 - Difference between successive probes yields:
 - Probe i location, $H_i = (H_{i-1} + 2i 1) \% M$
 - 1. Just use bit shift to multiply i by 2
 - probeLoc = probeLoc + (i << 1) 1;
 - ...faster than multiplication
 - 2. Since i is at most M/2, can just check:
 - if (probeLoc >= M)probeLoc -= M;
 - ...faster than mod

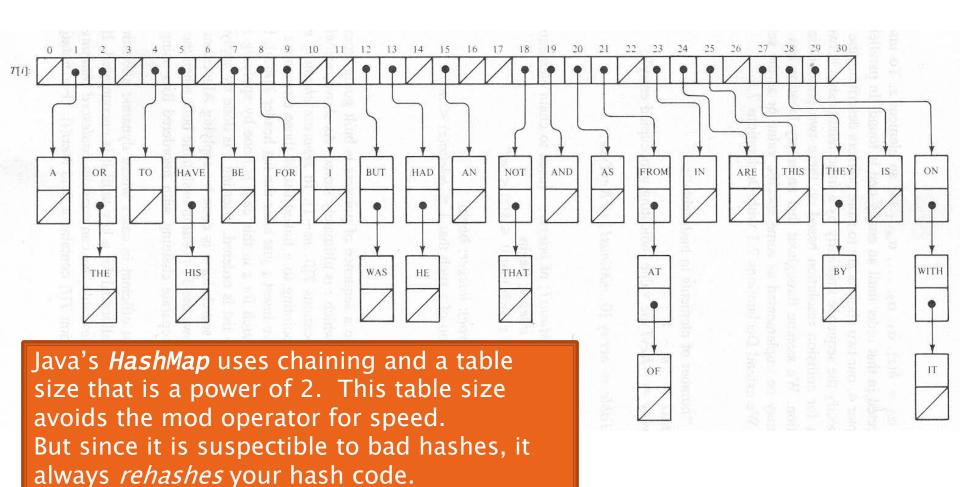
Quadratic probing analysis

- No one has been able to analyze it!
- Experimental data shows that it works well
 - Provided that the array size is prime, and $\lambda < 0.5$

Another Approach: Separate Chaining

- Use an array of linked lists
- How would that help resolve collisions?

Hashing with Chaining



Editor Trees

Immersion in tree manipulation