
Hash table basics

hashCode() “ate” mod  48594983  83 ate

…
82
83
84
…

 Reminder from syllabus: EditorTrees worth 10% of
term grade

 See schedule page
◦ Exam 2 moved to Friday after break.

 Short “pop” quiz over AVL rotations now

 Format same as Exam 1
◦ One 8.5x11 sheet of paper (2-sided) for written part
◦ Same resources as before for programming part

 Topics: weeks 1-6
◦ Reading, programs, in-class, written assignments.
◦ Especially
 Using various data structures

(lists, stacks, queues, sets, maps, priority queues)
 Binary trees, including BST, AVL, and threaded
 Traversals and iterators, size vs. height, rank

 Backtracking / Queens problem
 Hash tables
 Algorithm analysis in general

 Through day 19, WA6, and

EditorTrees milestone 1

Sample exam on
Moodle has some
good questions (and
extras we haven’t
done, like sorting)
Best practice: written
assignments.

T
F
IDK

 Hash table basics
 Collision resolution
 EditorTrees work time

Efficiently putting 5 pounds of
data in a 20 pound bag

 Provides rapid insertion, retrieval, and
deletion of items by key

 HashMap uses a hash table internally
◦ Actual table data is stored in an array
◦ HashSet uses a HashMap internally

 Insertion and lookup are constant time!
◦ With a good “hash function”
◦ And large enough storage array
 On

average

1

 If we have a collection of n elements
whose keys are unique integers in the
range 0 .. m-1, where m >= n,

 then we can store the items in a direct
address table, T[m],
◦ where Ti is either empty or contains one of

the elements of our collection

◦ Searching a direct address table is clearly
an O(1) operation:
 for a key, k, we access Tk,
 if it contains an element, return it,
 if it doesn't, then return a NULL

Contents of this
slide are from
John Morris,
University of
Western
Australia

 There are two major constraints:
1. the keys must be unique
2. the range of possible keys must be

severely bounded

The second constraint is usually
impossible to meet

 Contents of this
slide are from
John Morris,
University of
Western
Austrailia

2

hashCode() key   integer

A good hashCode()
distributes the keys, like:

hashCode(“ate”)= 48594983
hashCode(“ape”)= 76849201
hashCode(“awe”) = 14893202

 Example: if m = 100:

hashCode(“ate”)= 48594983
hashCode(“ape”)= 76849201
hashCode(“awe”) = 1489036

mod
83
01
36

 Every Java object has a hashCode
method that returns an integer H
◦ The hash table uses H % m as the index

into its internal array

◦ Unless this position is already occupied

a “collision”

3-4

hashCode() “ate” mod  48594983  83 ate

…
82
83
84
…

 Should we inherit it?

 JDK classes override the hashCode() method
◦ Like String

 If you plan to use instances of your class as
keys in a hash table, you probably should
too!

 Should be fast to compute

 Should distribute keys as evenly as possible

 These two goals are often contradictory; we
need to achieve a balance

 Advantages?

 Disadvantages?

// This could be in the String class
public static int hash(String s) {
 int total = 0;
 for (int i=0; i<s.length(); i++)
 total = total + s.charAt(i);
 return Math.abs(total);
}

 Spreads out the values more, and anagrams not an issue.
 What about overflow during computation?

// This could be in the String class
public static int hash(String s) {
 int total = 0;
 for (int i=0; i<s.length(); i++)
 total = total*256 + s.charAt(i);
 return Math.abs(total);
}

 Spreads out the values more, and anagrams not an issue.
 We can't entirely avoid collisions. Why?
 What about overflow during computation?
 Note: String already has a reasonable hashCode()

method; we don't have to write it ourselves.

// This could be in the String class
public static int hash(String s) {
 int total = 0;
 for (int i=0; i<s.length(); i++)
 total = total*23 + s.charAt(i);
 return Math.abs(total);
}

 Objects that are equal (based on the equals
method) MUST have the same hashCode
values

 Different objects should have different
hashCodes if possible

 Beware of mutable objects!

 Hash tables don’t maintain sorted order
◦ So what’s the big-O cost to find min or max

element?

5

 A hash table implementation (like HashMap)
provides a “collision resolution mechanism”

 There are a variety of approaches to this

 Fewer collisions lead to faster performance

 Just make hashCode unique?

 Impossible!
|possible key values| >> capacity of table
◦ Example: A key may be an array of 16 characters
◦ How many different values could there be?

 So we need to deal with collisions:
◦ Probing (Linear, Quadratic)
◦ Chaining

6

 Collision? Use the next available space:
◦ Try H+1, H+2, H+3, …
◦ Wraparound at the end of the array

 Problem: Clustering

 Animation:
◦ http://www.cs.auckland.ac.nz/software/AlgAnim/h

ash_tables.html

7

http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html
http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html

Figure 20.4
Linear probing hash
table after each
insertion

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

 Depends on Load Factor, λ:
◦ Ratio of the number of items stored to table size
◦ 0 ≤ λ ≤ 1.

 For a given λ, what is the expected number
of probes before an empty location is found?

8

 For a given λ, what is the expected number
of probes before an empty location is found?

 Assume all locations are equally likely to be
occupied, and equally likely to be the next
one we look at.

 Then the probability that a given cell is full is
λ and probability that a given cell is empty is
1-λ.

 What’s the expected number?

9

 “Equally likely" probability is not realistic
 Clustering!
◦ Blocks of occupied cells are formed
◦ Any collision in a block makes the block bigger

 Two sources of collisions:
◦ Identical hash values
◦ Hash values that hit a cluster

 Actual average number of probes for large λ:

For a proof, see Knuth, The Art of Computer Programming, Vol 3:
Searching Sorting, 2nd ed, Addision-Wesley, Reading, MA, 1998.

10

 Easy to implement
 Simple code has fast run time per probe
 Works well when load is low
◦ It could be more efficient just to rehash using a

bigger table once it starts to fill.
◦ And in practice, once λ > 0.5, we usually double the

size of the array and rehash

 Linear probing:
◦ Collision at H? Try H, H+1, H+2, H+3,...

 Quadratic probing:
◦ Collision at H? Try H, H+12. H+22, H+32, ...
◦ Eliminates primary clustering. “Secondary

clustering” isn’t as problematic

 Choose a prime number p for the array size
 Then if λ ≤ 0.5:
◦ Guaranteed insertion
 If there is a “hole”, we’ll find it
◦ No cell is probed twice

 See proof of Theorem 20.4:
◦ Suppose that we repeat a probe before trying more

than half the slots in the table
◦ See that this leads to a contradiction
 Contradicts fact that the table size is prime

11

 Use an algebraic trick to calculate next index
◦ Difference between successive probes yields:
 Probe i location, Hi = (Hi-1 + 2i – 1) % M

1. Just use bit shift to multiply i by 2
 probeLoc= probeLoc + (i << 1) - 1;
…faster than multiplication

2. Since i is at most M/2, can just check:
 if (probeLoc >= M)

 probeLoc -= M;
…faster than mod

 No one has been able to analyze it!
 Experimental data shows that it works well
◦ Provided that the array size is prime, and λ < 0.5

 Use an array of linked lists
 How would that help resolve collisions?

Java’s HashMap uses chaining and a table
size that is a power of 2. This table size
avoids the mod operator for speed.
But since it is suspectible to bad hashes, it
always rehashes your hash code.

12

Immersion in tree
manipulation

	CSSE 230 Day 18
	Reminders/Announcements
	Exam 2
	Questions
	Agenda
	Hashing
	A hash table is a very fast approach �to dictionary storage
	Intro: Direct Address Tables�
	Intro: Direct Address Tables�
	We attempt to create unique keys �by applying a hashCode(key) function …
	…and then take it mod the table size (m) to get an index into the array.
	Index calculated from the object itself, not from a comparison with other objects
	Object implements a default hashCode method
	hashCode method
	A simple hash function for Strings is a function of every character
	A better hash function for Strings uses place value
	A better hash function for Strings uses place value with a base that’s prime
	Hash Table Caveats
	Collisions are Inevitable
	Collision Avoidance
	Collision Resolution: Linear Probing
	Slide Number 22
	Linear Probing Efficiency
	Rough Analysis of Linear Probing
	Better Analysis of Linear Probing
	Why consider linear probing?
	Quadratic Probing
	Quadratic Probing Tricks (1/2)
	Quadratic Probing Tricks (2/2)
	Quadratic probing analysis
	Another Approach: Separate Chaining
	Hashing with Chaining
	Editor Trees

