CSSE 230 Day 13

Height-Balanced Trees

Announcements

- Doublets Milestone 1 due next Tuesday night
- Exams redux now and Tuesday

Today's Agenda (a lot of it may spill over into Monday)

- Exam 1 review?
- Doublets: what's it all about?
- Finding k-th smallest in BST
- Meet your Doublets partner
- Another induction example
- Recap: The need for balanced trees
- Analysis of worst case for height-balanced (AVL) trees

Doublets: What's it all about?

Welcome to Doublets, a game of "verbal torture."

Enter starting word: *flour* Enter ending word: *bread*

Enter chain manager (s: stack, q: queue, x: exit): s

Chain: [flour, floor, flood, blood, bloom, gloom, groom, broom, brood, broad, bread]

Length: 11

Candidates: 16

Max size: 6

Enter starting word: wet

Enter ending word: *dry*

Enter chain manager (s: stack, q: queue, x: exit): q

Chain: [wet, set, sat, say, day, dry]

Length: 6

Candidates: 82651 Max size: 847047

Enter starting word: whe

Enter ending word: *rye*

The word "oat" is not valid. Please try again.

Enter starting word: owner

Enter ending word: bribe

Enter chain manager (s: stack, q: queue, x: exit): s

No doublet chain exists from owner to bribe.

Enter starting word: C

Enter chain manager (s: stack, q: queue, x: exit): x

Goodbye!

StackChainManager: depth-first search

QueueChainManager: breadth-first search

PriorityQueueChainManager: First extend the chain that ends with a word that is closest to the ending word.

Answers will vary from these!

A Link is the collection of all words that can be reached from a given word in one step. I.e. all words that can be made from the given word by substituting a single letter.

A **Chain** is a sequence of words (no duplicates) such that each word can be made from the one before it by a single letter substitution.

A **ChainManager** stores a collection of chains, and tries to extend one at a time, with a goal of extending to the ending word.

BST with Rank

>>> Explore the concept
How do Find and Insert work?

BSTs are an efficient way to represent ordered lists

- What's the performance of
 - insertion? O(h(T))
 - deletion? O(h(T))
 - find? O(h(T))
 - iteration? O(n) to iterate through all
- What about finding the kth smallest element?

indexing

We can find the kth smallest element easily if we add a *rank* field to BinaryNode

- Gives the in-order position of this node within its own subtree

 0-based
 - i.e., the size of its left subtree

- How would we do $findK_{th}$?
- Insert and delete start similarly

- Recall our definition of the Fibonacci numbers:
 - \circ $F_0 = 0$, $F_1 = 1$, $F_{n+2} = F_{n+1} + F_n$
- An exercise from the textbook
- 7.8 Prove by induction the formula

$$F_N = \frac{1}{\sqrt{5}} \left(\left(\frac{(1+\sqrt{5})}{2} \right)^N - \left(\frac{1-\sqrt{5}}{2} \right)^N \right)$$

Recall: How to show that property P(n) is true for all $n \ge n_0$:

- (1) Show the base case(s) directly
- (2) Show that if P(j) is true for all j with $n_0 \le j < k$, then P(k) is true also

Details of step 2:

- a. Write down the induction assumption for this specific problem
- b. Write down what you need to show
- c. Show it, using the induction assumption

Review: The number of nodes in a tree with height h(T) is bounded

Review: Therefore the height of a tree with N(T) nodes is also bounded

We want to keep trees balanced so that the run run time of BST algorithms is minimized

- BST algorithms are O(h(T))
- Minimum value of h(T) is 「log(N(T)+1)] -1
- Can we rearrange the tree after an insertion to guarantee that h(T) is always minimized?

But keeping complete balance is too expensive!

- Height of the tree can vary from log N to N
- Where would J go in this tree?
- What if we keep the tree perfectly balanced?
 - so height is always proportional to log N
- What does it take to balance that tree?
- Keeping completely balanced is too expensive:
 - O(N) to rebalance after insertion or deletion

Solution: Height Balanced Trees (less is more)

Height-Balanced Trees have subtrees whose heights differ by at most 1

More precisely, a binary tree T is height balanced if

T is empty, or if $| height(T_L) - height(T_R) | \le 1$, and T_L and T_R are both height balanced.

What is the tallest height-balanced tree with N nodes?

Is it taller than a completely balanced tree?

 Consider the dual concept: find the minimum number of nodes for height h.

```
A binary search tree T is height balanced if
```

```
T is empty, or if | height(T_L) - height(T_R) | \le 1, and T_L and T_R are both height balanced.
```

An AVL tree is a height-balanced BST that maintains balance using "rotations"

- Named for authors of original paper, Adelson-Velskii and Landis (1962).
- Max. height of an AVL tree with N nodes is: $H < 1.44 \log (N+2) 1.328 = O(\log N)$

Our goal is to rebalance an AVL tree after insert/delete in O(log n) time

- Why?
- Worst cases for BST operations are O(h(T))
 - find, insert, and delete
- ▶ h(T) can vary from O(log N) to O(N)
- Height of a height-balanced tree is O(log N)
- So if we can rebalance after insert or delete in O(log N), then all operations are O(log N)

AVL nodes are just like BinaryNodes, but also have an extra "balance code"

Different representations for $/ = \setminus$:

- Just two bits in a low-level language
- Enum in a higher-level language

AVL Tree (Re)balancing Act

- Assume tree is height-balanced before insertion
- Insert as usual for a BST
- Move up from the newly inserted node to the lowest "unbalanced" node (if any)
 - Use the balance code to detect unbalance how?
- Do appropriate rotation to balance the sub-tree rooted at this unbalanced node

Four types of rotations are required to remove different cases of tree imbalances

For example, a *single left rotation*:

We'll pick up here next class...