
Height-Balanced Trees

 Doublets Milestone 1 due next Tuesday night
 Exams redux now and Tuesday

 Exam 1 review?
 Doublets: what's it all about?
 Finding k-th smallest in BST
 Meet your Doublets partner
 Another induction example
 Recap: The need for balanced trees
 Analysis of worst case for height-balanced

(AVL) trees

Welcome to Doublets, a game of "verbal torture."
Enter starting word: flour
Enter ending word: bread
Enter chain manager (s: stack, q: queue, x: exit): s
Chain: [flour, floor, flood, blood, bloom, gloom, groom, broom, brood, broad, bread]
Length: 11
Candidates: 16
Max size: 6
Enter starting word: wet
Enter ending word: dry
Enter chain manager (s: stack, q: queue, x: exit): q
Chain: [wet, set, sat, say, day, dry]
Length: 6
Candidates: 82651
Max size: 847047
Enter starting word: whe
Enter ending word: rye
The word "oat" is not valid. Please try again.
Enter starting word: owner
Enter ending word: bribe
Enter chain manager (s: stack, q: queue, x: exit): s
No doublet chain exists from owner to bribe.
Enter starting word: C
Enter chain manager (s: stack, q: queue, x: exit): x
Goodbye!

A Link is the collection of all words that
can be reached from a given word in
one step. I.e. all words that can be
made from the given word by
substituting a single letter.

A Chain is a sequence of words (no
duplicates) such that each word can be
made from the one before it by a single
letter substitution.

A ChainManager stores a collection of
chains, and tries to extend one at a
time, with a goal of extending to the
ending word.

StackChainManager: depth-first search
QueueChainManager: breadth-first search
PriorityQueueChainManager: First extend the chain that ends with a word
that is closest to the ending word.

Answers will vary from
these!

Explore the concept
How do Find and Insert work?

 What’s the performance of
 insertion? O(h(T))
 deletion? O(h(T))
 find? O(h(T))
 iteration? O(n) to iterate through all

 What about finding the kth smallest element?

 Gives the in-order position of this node
within its own subtree
◦ i.e., the size of its left subtree

 How would we do findKth?

 Insert and delete start similarly

0-based
indexing

Old
Q6

 Recall our definition of the Fibonacci
numbers:
◦ F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn

 An exercise from the textbook

Recall: How to show that property P(n) is true for all n≥n0:
(1) Show the base case(s) directly
(2) Show that if P(j) is true for all j with n0≤j<k, then P(k) is true also

Details of step 2:
a. Write down the induction assumption for this specific problem
b. Write down what you need to show
c. Show it, using the induction assumption

Q1

 BST algorithms are O(h(T))

 Minimum value of h(T) is

 Can we rearrange the tree after an insertion
to guarantee that h(T) is always minimized?

Q2

 Height of the tree can vary from log N to N
 Where would J go in this tree?
 What if we keep the tree perfectly balanced?
◦ so height is always proportional to log N

 What does it take to balance that tree?
 Keeping completely balanced is too expensive:
◦ O(N) to rebalance after insertion or deletion

rebalance

Solution: Height Balanced Trees (less is more)

Q3

Q4

More precisely , a binary tree T is height
balanced if

T is empty, or if
 | height(TL) - height(TR) | ≤ 1, and
 TL and TR are both height balanced.

Still height-balanced?

A binary search tree T is height
balanced if

T is empty, or if
 | height(TL) - height(TR) | ≤ 1, and
 TL and TR are both height balanced.

Q5

Is it taller than a completely balanced tree?
◦ Consider the dual concept: find the minimum

number of nodes for height h.

 Named for authors of original paper,
Adelson-Velskii and Landis (1962).

 Max. height of an AVL tree with N nodes is:
H < 1.44 log (N+2) – 1.328 = O(log N)

Q 6-7

 Why?
 Worst cases for BST operations are O(h(T))
◦ find, insert, and delete

 h(T) can vary from O(log N) to O(N)

 Height of a height-balanced tree is O(log N)

 So if we can rebalance after insert or delete in
O(log N), then all operations are O(log N)

Q8

Different representations for / = \ :
 Just two bits in a low-level language
 Enum in a higher-level language

or / = \ or

 Assume tree is height-balanced before
insertion

 Insert as usual for a BST
 Move up from the newly inserted node

to the lowest “unbalanced” node (if any)
◦ Use the balance code to detect unbalance -

how?
 Do appropriate rotation to balance the

sub-tree rooted at this unbalanced node

/

 For example, a single left rotation:

We’ll pick up here next class…

	CSSE 230 Day 13
	Announcements
	Today's Agenda (a lot of it may spill over into Monday)
	Doublets: What's it all about?
	BST with Rank
	BSTs are an efficient way to represent ordered lists
	We can find the kth smallest element easily �if we add a rank field to BinaryNode
	Another induction example (we'll use this result)
	Review: The number of nodes in a tree with height h(T) is bounded
	Review: Therefore the height of a tree with N(T) nodes is also bounded
	We want to keep trees balanced so that the run run time of BST algorithms is minimized
	But keeping complete balance is too expensive!
	Height-Balanced Trees have subtrees �whose heights differ by at most 1
	What is the tallest height-balanced tree �with N nodes?
	An AVL tree is a height-balanced BST that maintains balance using “rotations”
	Our goal is to rebalance an AVL tree �after insert/delete in O(log n) time
	AVL nodes are just like BinaryNodes, �but also have an extra “balance code”
	AVL Tree (Re)balancing Act
	Four types of rotations are required to remove different cases of tree imbalances

