
Height-Balanced Trees 



 Doublets Milestone 1 due next Tuesday night 
 Exams redux now and Tuesday 



 Exam 1 review? 
 Doublets: what's it all about? 
 Finding k-th smallest in BST 
 Meet your Doublets partner 
 Another induction example 
 Recap: The need for balanced trees 
 Analysis of worst case for height-balanced 

(AVL) trees 



Welcome to Doublets, a game of "verbal torture." 
Enter starting word: flour  
Enter ending word: bread  
Enter chain manager (s: stack, q: queue, x: exit): s  
Chain: [flour, floor, flood, blood, bloom, gloom, groom, broom, brood, broad, bread] 
Length: 11 
Candidates: 16 
Max size: 6  
Enter starting word: wet 
Enter ending word: dry 
Enter chain manager (s: stack, q: queue, x: exit): q 
Chain: [wet, set, sat, say, day, dry] 
Length: 6 
Candidates: 82651 
Max size: 847047 
Enter starting word: whe 
Enter ending word: rye 
The word "oat" is not valid. Please try again. 
Enter starting word: owner 
Enter ending word: bribe 
Enter chain manager (s: stack, q: queue, x: exit): s  
No doublet chain exists from owner to bribe. 
Enter starting word: C 
Enter chain manager (s: stack, q: queue, x: exit): x  
Goodbye! 

A Link is the collection of all words that 
can be reached from a given word in 
one step.  I.e. all words that can be 
made from the given word by 
substituting a single letter. 
 
A Chain is a sequence of words (no 
duplicates) such that each word can be 
made from the one before it by a single 
letter substitution. 
 
A ChainManager stores a collection of 
chains, and tries to extend one at a 
time, with a goal of extending to the 
ending word. 

StackChainManager: depth-first search 
QueueChainManager: breadth-first search 
PriorityQueueChainManager: First extend the chain that ends with a word 
that is closest to the ending word. 

Answers will vary from 
these! 



Explore the concept 
How do Find and Insert work? 



  What’s the performance of  
 insertion? O(h(T)) 
 deletion? O(h(T))    
 find?   O(h(T)) 
 iteration? O(n) to iterate through all 

 
 What about finding the kth  smallest element?   



 Gives the in-order position of this node 
within its own subtree 
◦ i.e., the size of its left subtree 

 
 

 How would we do findKth? 
 

 Insert and delete start similarly 

0-based 
indexing 

Old 
Q6 



 Recall our definition of the Fibonacci 
numbers: 
◦ F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn 

 An exercise from the textbook 

Recall:  How to show that property P(n) is true for all n≥n0: 
(1) Show the base case(s) directly 
(2) Show that if P(j) is true for all j with n0≤j<k, then P(k) is true also 

Details of step 2: 
a. Write down the induction assumption for this specific problem 
b. Write down what you need to show 
c. Show it, using the induction assumption 

Q1 







 BST algorithms are O(h(T)) 
 

 Minimum value of h(T) is  
 

 Can we rearrange the tree after an insertion 
to guarantee that h(T) is always minimized? 

Q2 



 Height of the tree can vary from log N to N 
 Where would J go in this tree? 
 What if we keep the tree perfectly balanced? 
◦ so height is always proportional to log N 

 What does it take to balance that tree? 
 Keeping completely balanced is too expensive: 
◦ O(N) to rebalance after insertion or deletion 
 

rebalance 

Solution: Height Balanced Trees (less is more) 

Q3 



Q4 

More precisely , a binary tree T is height 
balanced if  

T is empty, or if 
 | height( TL ) - height( TR ) | ≤ 1, and 
 TL and TR are both height balanced. 

Still height-balanced? 



A binary search tree T is height 
balanced if  

T is empty, or if 
 | height( TL ) - height( TR ) | ≤ 1, and 
 TL and TR are both height balanced. 

Q5 

Is it taller than a completely balanced tree? 
◦ Consider the dual concept: find the minimum 

number of nodes for height h. 
 



 Named for authors of original paper, 
Adelson-Velskii and Landis (1962). 
 

 Max. height of an AVL tree with N nodes is: 
H < 1.44 log (N+2) – 1.328 = O(log N) 

Q 6-7 



 Why? 
 Worst cases for BST operations are O(h(T)) 
◦ find, insert, and delete 

 h(T) can vary from O(log N) to O(N) 
 

 Height of a height-balanced tree is O(log N) 
 

 So if we can rebalance after insert or delete in 
O(log N), then all operations are O(log N) 

Q8 



Different representations for / = \ : 
 Just two bits in a low-level language 
 Enum in a higher-level language 

or / = \ or 



 Assume tree is height-balanced before 
insertion 

 Insert as usual for a BST 
 Move up from the newly inserted node 

to the lowest “unbalanced” node (if any) 
◦ Use the balance code to detect unbalance - 

how? 
 Do appropriate rotation to balance the 

sub-tree rooted at this unbalanced node 

/ 



 For example, a single left rotation: 

We’ll pick up here next class… 
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