
Binary Search Tree intro
BST with order properties

Check out BSTNullNode project
from SVN

 Hardy/Colorize Partner Evaluation
 Doublets Partner Preference survey

Displayable, WA4, …

 Notation:
◦ Let T be a tree
◦ Write h(T) for the height of the tree, and
◦ N(T) for the size (i.e., number of nodes) of the tree

 Given h(T), what are the bounds on N(T)?

 Given N(T), what are the bounds on h(T)?

Last quiz: Q5-6

 A tree with the maximum number of nodes for
its height is a full tree.
◦ Its height is O(log N)

 A tree with the minimum number of nodes for
its height is essentially a .
◦ Its height is O(N)

 Height matters!
◦ We will see that the algorithms for search, insertion,

and deletion in a Binary search tree are O(h(T))

Q7-8

 Want to prove some properties about trees
 Weak induction isn’t enough
 Need strong induction instead: The former

governor of
California

 To prove that p(n) is true for all n >= n0:
◦ Prove that p(n0) is true, and
◦ For all k > n0, prove that if we assume

p(j) is true for n0 ≤ j < k, then p(k) is also true

 Weak induction uses the previous domino to
knock down the next

 Strong induction uses a whole box of
dominoes to knock down the rest!

Q9-11,
hand in

Binary Trees that store
elements in increasing
order

 A BST is a Binary Tree T with these properties:
1. Elements are Comparable, and non-null
2. No duplicate elements
3. All elements in T’s left subtree are less than the

root element
4. All elements in T’s right subtree are greater than

the root element
5. Both subtrees are BSTs

 Advantage: Lookup of items is O(height(T))
 What does the inorder traversal of a BST yield?

Q1

Draw a "birthday BST"

public class BinarySearchTree<T extends Comparable<T>> {

 private BinaryNode<T> root;

 public BinarySearchTree() {
 this.root = null;
 }

 // insert obj, if not already there
 public void insert(T obj)

 // Does this tree contain obj?
 public boolean contains(T obj)

 // delete obj, if it's there
 public void delete(T obj)

Q2-5

Explore the concept
How do Find and Insert work?

 What’s the performance of
 insertion?
 deletion?
 find?
 iteration?

 What about finding the kth smallest element?

 Gives the in-order position of this node
within its own subtree
◦ i.e., the size of its left subtree

 How would we do findKth?

 Insert and delete start similarly

0-based
indexing

Q6-8

	CSSE 230 Day 12
	Announcements
	Questions?
	Size and Height of Binary Trees
	Extreme Trees
	Time out for math!
	Strong Induction
	Binary Search Trees
	A Binary Search Tree (BST) allows easy and fast lookup of its items because it keeps them ordered
	BST insert, contains, and delete are different �than in a regular binary tree
	BST with Rank
	BSTs are an efficient way to represent ordered lists
	We can find the kth smallest element easily �if we add a rank field to BinaryNode

