

## **CSSE 230 Day 12**

Binary Search Tree intro BST with order properties

Check out BSTNullNode project from SVN

#### **Announcements**

- Hardy/Colorize Partner Evaluation
- Doublets Partner Preference survey

## Questions?

Displayable, WA4, ...



Last quiz: Q5-6

### Size and Height of Binary Trees

- Notation:
  - Let T be a tree
  - Write h(T) for the height of the tree, and
  - N(T) for the size (i.e., number of nodes) of the tree
- Given h(T), what are the bounds on N(T)?
- Given N(T), what are the bounds on h(T)?

### **Extreme Trees**

- A tree with the maximum number of nodes for its height is a full tree.
  - Its height is O(log N)
- A tree with the minimum number of nodes for its height is essentially a \_\_\_\_\_
  - Its height is O(N)
- Height matters!
  - We will see that the algorithms for search, insertion, and deletion in a Binary search tree are O(h(T))

### Time out for math!

- Want to prove some properties about trees
- Weak induction isn't enough

Need strong induction instead:



The former governor of California

## Strong Induction

- ▶ To prove that p(n) is true for all  $n >= n_0$ :
  - Prove that p(n<sub>0</sub>) is true, and
  - For all  $k > n_0$ , prove that if we assume p(j) is true for  $n_0 \le j < k$ , then p(k) is also true
- Weak induction uses the previous domino to knock down the next
- Strong induction uses a whole box of dominoes to knock down the rest!

# Binary Search Trees



Binary Trees that store elements in increasing order

A Binary Search Tree (BST) allows easy and fast lookup of its items because it keeps them ordered

#### Draw a "birthday BST"

- A BST is a Binary Tree T with these properties:
  - 1. Elements are Comparable, and non-null
  - 2. No duplicate elements
  - 3. All elements in T's left subtree are less than the root element
  - 4. All elements in T's right subtree are greater than the root element
  - 5. Both subtrees are BSTs
- Advantage: Lookup of items is O(height(T))
- What does the inorder traversal of a BST yield?

# BST insert, contains, and delete are different than in a regular binary tree

```
public class BinarySearchTree<T extends Comparable<T>> {
private BinaryNode<T> root;
public BinarySearchTree() {
  this.root = null;
// insert obj, if not already there
public void insert(T obj)
// Does this tree contain obj?
public boolean contains(T obj)
// delete obj, if it's there
public void delete(T obj)
```

### BST with Rank

Explore the concept How do Find and Insert work?



# BSTs are an efficient way to represent ordered lists

- What's the performance of
  - insertion?
  - deletion?
  - find?
  - iteration?

What about finding the k<sup>th</sup> smallest element?

indexing

# We can find the kth smallest element easily if we add a *rank* field to BinaryNode

- Gives the in-order position of this node within its own subtree
  - i.e., the size of its left subtree

• How would we do  $findK_{th}$ ?

Insert and delete start similarly