
Recursion Again (and again …)

Check out from SVN: Recursion and Trees projects
http://www.math.ucla.edu/~wittman/10a.1.10w/ccc/ch14/images/fib_tree.png

 Student questions about anything!

 Hardy/Evaluator
 Recursion review
 Recursion programming exercise

 Note: The next seven days are likely to be the busiest of

the term in this course. Two medium-sized programs to
write, and challenging written problems. Start early
(especially on the programming projects).

 Do a slightly different Hardy calculation
 With certain space constraints
 Make it as fast as you can without violating

the problem constraints
◦ Mainly, that you can make no pre-assumptions

about the sizes of the numbers other than that they
are smaller than Java's longest long integer

 Carefully select data structures to use
 When you can correctly find nth Hardy

numbers, you are probably halfway done
◦ Then comes efficiency

An exercise in writing cool algorithms that
evaluate mathematical expressions:

 Infix: 6 + 7 * 8
 Postfix: 6 7 8 * +

Both using stacks.

 Plan when you'll be working
 Pair programming, but I suggest that each of

you take the "research lead" for one of the
programs

 Begin thinking about both

1. Base Case: Always have at least one case
that can be solved without recursion.

2. Make Progress: Every recursive call must
progress toward some base case.

3. “You gotta believe”: Always assume that the
recursive call does what it is supposed to
do.

◦ Use that result in building the “higher-level”
solution

Q1-3

public class ListNode<T> {
 T element;
 ListNode<T> next;

 public ListNode(T e,
 ListNode<T> n) {
 this.element = e;
 this.next = n;
 }

 public ListNode(T e) {
 this(e, null);
 }

 public ListNode() {
 this(null, null);
 }
}

public class LinkedList<T> {
private ListNode<T> head,
private ListNode<T> tail;

// lots of other stuff.
// Write a size() method.

}

Q4

 Each Fibonacci number (except the first two)
is the sum of the previous two Fibonacci
numbers.

 F0=0, F1=1, Fi+2 = Fi + Fi+1

i 0 1 2 3 4 5 6 7 8
Fi 0 1 1 2 3 5 8 13 21

 public static int fib(int n) {
 if (n < 2)
 return n;
 return fib(n-2) + fib(n-1);
 }

Easy to program!
Expensive!

public static int fib(int n) {
 if (n < 2)
 return n;
 return fib(n-2) + fib(n-1);
}

 Compound Interest rule: Don’t recursively
recompute the same things over and over in
separate recursive calls.

 Alternatives:
◦ Cache previously computed values in an array

(memoization)
◦ Use a loop

 This is a reminder from 220/221.

Q5, Q6

 Input: an array of integers and an element for
which to search.

 Output: the index where it was found.
◦ -1 if not found

 Big-Oh runtime of binary search?

Q7

 Read assignment linked from schedule, WA3
 Check out Trees project from individual SVN

repository
 Work on it if you haven’t

	CSSE 230 Day 7
	Agenda
	Hardy Part 2
	Evaluator
	Meet your partner
	Weiss’s Recursion Principles
	Recursive List Size
	Fibonacci Numbers
	The Trouble with Fib
	Weiss’s Fourth Recursion Principle
	Recursive binary search is elegant
	Trees

