
Maximum Contiguous Subsequence Sum

Check out from SVN: MCSSRaces

Q0

 Good comments:
◦ Javadoc comments for public fields and methods.
◦ Explanations of anything else that is not obvious.

 Good variable and method names:
◦ Eclipse has name completion (ALT /), so the “typing

cost” of using long names is small
 Use local variables and static methods (instead of

fields and non-static methods) where appropriate
◦ “where appropriate” includes any place where you

can’t explicitly justify creating instance fields
 No super-long lines of code
 No super-long methods: use top down design
 Consistent indentation (ctrl-shift f)
 Blank lines between methods, space after punctuation

 In {-2, 11, -4, 13, -5, 2}, MCSS is S2,4 = ?
 In {1, -3, 4, -2, -1, 6}, what is MCSS?

Q1

We can do
even better
than this!

A linear algorithm.

{-3, 4, 2, 1, -8, -6, 4, 5, -2}

 Consider {-3, 4, 2, 1, -8, -6, 4, 5, -2}

 Any subsequences you can safely ignore?
◦ Discuss with another student (2 minutes)

Q2

 We noted that a max-sum sequence Ai,j
cannot begin with a negative number.

 Generalizing this, it cannot begin with a
prefix (Ai,k with k<j) whose sum is negative.
◦ Proof: If Si,k is negative, then Sk+1,j > Si,j ,

so Ai,j would not be a sequence that produces the
maximum sum.

Q3

 All contiguous subsequences that border the
maximum contiguous subsequence must
have negative (or zero) sums.
◦ Proof: If one of them had a positive sum, we could

simply append (or “prepend”) it to get a sum that is
larger than the maximum. Impossible!

Q4-5

 If we find that Si,j is negative, we can skip all sums
that begin with any of Ai, Ai+1, …, Aj.

 There is no new MCS that starts anywhere between
Ai and Aj.

 So we can “skip i ahead” to be j+1.

Observation
3 again:

Q6

Si,j is negative. So,
skip ahead per
Observation 3

Running time is is Θ (?)
How do we know?

Q7

 From SVN, checkout MCSSRaces

 Study code in MCSS.main()

 For each algorithm, how large a sequence can
you process on your machine in less than 1
second?

 The first algorithm we think of may be a lot
worse than the best one for a problem

 Sometimes we need clever ideas to improve it

 Showing that the faster code is correct can
require some serious thinking

 Programming is more about careful
consideration than fast typing!

Q9-10

A cheezy, helpful video

http://www.youtube.com/watch?v=rG_U12uqRhE&feature=plcp

http://www.youtube.com/watch?v=rG_U12uqRhE&feature=plcp

Also known as
Deterministic Finite Automata

 A finite set of states,
◦ One is the start state
◦ Some are final, a.k.a accepting,states

 A finite alphabet (input symbols)
 A transition function
 How it works:
◦ Begin in start state
◦ Read an input symbol
◦ Go to the next state according to transition function
◦ More input?
 Yes, then repeat
 No, then if in accept state, return true, else return false.

 Draw a FSM to determine whether a lowercase
sequence of characters contains each of the 5
regular vowels once in order
◦ Example: facetious

 In some versions of FSMs, each transition

generates output.

A

D

C

B

 Indicate the Start State and final (accepting) states
 FSM1:
◦ Input alphabet {0, 1}
◦ Accepts (ends in an accepting state) all input strings that do

NOT contain 010 as a substring
 FSM2: (only if you get the first one done quickly)
◦ Input alphabet {0, 1}
◦ Accepts (ends in an accepting state)

all input strings that are
binary representations
of numbers that are
divisible by 3

x binary x binary
0 0 7 111
1 1 8 1000
2 10 9 1001
3 11 10 1010
4 100 11 1011
5 101 12 1100
6 110 13 1101

Hints: Use 4 states, a start state plus
1 state each for x%3==0, x%3==1,

and x%3==2.
What does the arrival of a 0 do to

the current value? (doubles it) What
about a 1?

 A pair programming assignment.
 Due (along with Hardy, Part 2) on Class Day

10.

 Input: legal Java source code
 Output: colorized HTML
◦ Keywords in blue, strings in red, comments in

green, everything else in black
◦ Layout just like original Java input file

We can use an FSM for
this!

FSM representations

 2-Dimensional array:
◦ Rows indexed by state, Columns by input character.
◦ Each array entry is a pair object (as in DS Section 3.7):
 [next state, what to print]

 Monolithic controller with nested switch
statements

 The first choice may be more efficient and have
shorter code

 The second choice is probably easier to write and
modify
◦ Can be made more modular by having a method for each

state

Diagrams
on the

whiteboard

Q8-10

	CSSE 230 Day 6
	Reminder of good code style
	Recap: MCSS
	Recap: Eliminate the most obvious inefficiency, get Θ(N2)
	Maximum Contiguous Subsequence Sum
	Observations?
	Observation 1
	Observation 2
	Observation 3
	Proof of Observation 3
	So What!?
	New, improved code!
	Time Trials!
	MCSS Conclusions
	Pair programming
	Finite State Machines
	A Finite State Machine (FSM)
	Example
	Another FSM Example
	Draw state diagrams for these FSMs
	Colorize
	Colorize program assignment
	More About Colorize
	Possible Representations of the Finite State Machine

