CSSE 230 Day 5

Maximum Contiguous Subsequence Sum

Questions?

I HAVE A COMPLAINT! SOMETIMES WHEN
PEOPLE TALK ABOUT TECHNOLOGY YOU
INSULT ME AND MY FRIENDS!

WE DESERVE MORE RESPECTI
I MYSELF AM AN
ACCOMPLISHED WEE

DESIGNER!

A TECHIE

IF SOFTWARE HAS A GLITCH,
YOU $AY IT HAS A "BuG”!

THAT WAS INCREDIELE!

DON'T $AY

Program Grading

» Correctness usually graded using JUnit tests
- Exception: when we ask you to add your own tests

» Style
- No warnings remaining (per our preference file)
- Reasonable documentation
- Explanatory variable and method names
> You should format using Ctrl-Shift-F in Eclipse

» Efficiency
- Usually reasonable efficiency will suffice
- (e.q., no apparently infinite loops)
> Occasionally (like next week) we might give a
minimum big-Oh efficiency for you to achieve

Between two implementations with the same big-Oh
efficiency, favor the more concise solution, unless you
have data showing that the difference matters.

Agenda

» Finish Comparators

» Maximum Contiguous Subsequence Sum
Problem

» Worktime for WAQ2 or Pascal?

-

Finish RectangleSorte
class

Uses an |
object” exa

Comparator

Also add a second anonymous
Comparator for semiperimeters

Sorting Arrays and Collections

» Java.util.Arrays and
java.util.Collections are your friends!

You can sort by any means you like: just pass your
Comparator as a second argument to Arrays.sort() or
Collections.sort().

On the CountMatches problem,
create and use function objects...

...but not Comparators

See written assignment 2

Questions?

THE - WE JUST FILLED THE LAST SPOT---TAKE A
(i SEAT ON THE

{//{\{\//{//{{{/////Z/ WALL, MR.

"l.,__,.-..ri'l.

: fi G.EUIH-F' F

- e

3] e A 1S S SEAVEY | BOOPS

LAHEY |0 { EHIG AT | R

HORSES AND
- MENT YOU
7 CALL THAT A

/ HEHLTHCJ‘IFE
LG 5?5TE’M1F

E ELA] R

- ':- © Ay A s o sBAEy) BO0Z0

oy IO OB (B AT SR] SR

- TI-I .bh"r"f.- j-'

" H Twr " - s § = =

{_31412!]1_81_1 y 1_2}

Why do we look at this problem?

» It’s interesting
» Analyzing the obvious solution is instructive:

» We can make the program more efficient

A Nice Algorithm Analysis Example

» Problem: Given a sequence of numbers, find
the maximum sum of a contiguous

subsequence.

» Consider:
- What if all the numbers were positive?
- What if they all were negative?
- What if we left out “contiguous™

Formal Definition: Maximum Q2-4

Contiguous Subsequence Sum

Problem definition: Given a non-empty
sequence of n (possibly negative) integers
Ay, As, ..., A, ind the maximum consecutive
subsequence §; ; = J;::I. A, and the
corresponding values of i and ;.

»In{-2,11,-4,13,-5,2} S, , =7
» In{1, -3, 4, -2, -1, 6}, what is MCSS?
» If every element is negative, what’s the MCSS?

1-based indexing

Q5
A quick-and-dirty algorithm

» Design one right now.
- Efficiency doesn’t matter.

> |t has to be easy to understand.
> 3 minutes

» Examples to consider:
O{_3!4121]1_8! _6! 41 51_2}
0{5161 _312181 41_]21 71 2}

First Algorithm Find the sums of
all subsequences

public final class MaxSubTest {
private static int segStart = 0;
private static int seqgEnd = 0;
/* First maximum contiguous subsequence sum algorithm.
* segStart and segkEnd represent the actual best sequence.

*/
public static int maxSubSuml(int [] a) {
i: beginning of .| int maxSum = 0; Where
subseauence w;aualysis we use "n" as a shorthand for "a.length - -
9 for(in® i = 0; i < a.length; i++) " will this
j: end of B for{iinﬁﬂizsi;;l i ;:.a.length; J++) | a|gorithm
subsequence spend the
for(int k = i; k <= J; k++) most
k: steps through /ﬂfsEsUm += al[k 1; ﬁ\tlme?
each element of i i1f(thisSum > maxSum) { :
subsequence maxSum = thisSum;
seqgStart = 1i; _
seqEnd = j; How many times
} } (exactly, as a function of
return maxsum: N = a.length) will that
} statement execute?

Analysis of this Algorithm

» What statement is executed the most often?

» How many times?

» How many triples, (7,7, k) with 1<i<k<j<n ?

//In the analysis we use "n" as a shorthand for "a.length "
for(int 1 = 0; 1 < a.length,; i++)
for(int 3 = 1; jJ < a.length; j++)
int thisSum = 0;

for(int k = 1; k <= 3; k++)
thisSum += a[k];

Outer numbers could be 0 and n - 1,

and we'd still get the same answer.

{

Three ways to find the sum

» By hand
» Using Maple

» A tangent (Related to urns and probabilities?)

Q6, Q7

Counting is (surprisingly) hard!

» How many triples, (7,7,k) with 1<1<k<j<n?

» What is that as a summation?

H

N

£

-
i=]

"IHH
T

’

]

4

J
N

\J=i A\ k=i

AR

.

» Let’s solve it by hand to practice with sums

Hidden: One part of the process
V\Ii“ ha

n -1 N
Z J — Z J + Z J }c/}/\?shiil\éeasbeeefgre
]=1]=1]=I

Then we can solve for the last term to get a
formula that we need on the next slide:

= n(n +1) (i-Di
ZJ—ZJ—ZJ— 5

)=

Hidden

WY

" 0 [x \ -
DD Y DIVEESIIES S DS Y‘HW\
zl'\js'\kz;‘j i=1_j=i J —la“i's J=i j=i)
+1 -1
E‘ H(?:)_G .) —i(n—i+D+(n—-i+1) ‘
=1\ = =
n A / n
E‘ H(H-I—l:}+”+1_5(H+%)+%12 ‘: ‘ H(H‘FD ++1 ‘T‘l (”_|_ E)T‘I_I_%ZI-E
i=1 M\ 2 = A=l i=1 i=1
/ \
357472
_ ‘ nt+3n+2 ”_(”JFE)H(HJrI) %H{:H—I—lj}{: 2n+1)
\ 2) 2 6

Simplify the sum

A A EERY
S|
JJ

i=1 A\ j=i \ k=i

» When it gets down to “just Algebra”, Maple is
our friend

Help from Maple, part 1

Sumplhifving the last step ot the monster sum
> simplify((n"2+3*n+2) /2*n
-(n+3/2)*n* (n+l) /2+1/2*n* (n+l1) *(2*n+1) /6) ;
I, 1 1

—n 4+ —n+—n
0 2 3

> factor (%) ;
|

—(n+2)n(n+1)
6

Help from Maple, part 2

Letting Maple do the whole thing tor us:
sum(sum(sum(l, k=1i..73), J=1i..n), 1=1..n);
1 1 5

—(n+ D) +2nm+Dn+—n+———nn+1)Y—(n+1)°
2 ’ ' 3 6 2 ’ ’

1 1

, 3 5
+—(n+1)y ——n
6 (- .-}

> factor (simplify (%))

1
—(n+2)n(n+1)
6

We get same answer if we sum from O
to n-1, instead of 1 to n

factor(simplifv(sum{sum(sum{(l k=i. .3}, J=i..n},
i=1. .n})));

Rin+21n+1)
&

factor(simplifv(sum{sum{(sum{(l k=i..3},3J=1i. .n-1},
i=0. . n-1))})}

Rin+21in+1)
#

Interlude

» If GM had kept up with technology like the
computer industry has, we would all be driving
$25 cars that got 1000 miles to the gallon.

- Bill Gates

» If the automobile had followed the same
development cycle as the computer, a Rolls-
Royce would today cost $100, get a million miles
per gallon, and explode once a year, killing
everyone inside.

- Robert X. Cringely

“Magic” Tangent:
Another (clever) way to count it
» How many triples, (7, 7,k) with 1<i<k<j<n ?

» The trick:

> Find a set that’s easier to count that has a
one-to-one correspondence with the original

. n Q8
The "equivalent count” set

» We want to count the number of triples,
(1,7,k) with 1<si<k<j<n

» First get an urn
> Put in n white balls labeled 1,2,...,n
> Put in one red ball and one blue one

» Choose 3 balls

> If red drawn, = min of other 2
> If blue drawn, = max of other 2

——

» What numbers do we get?

http://www.talaveraandmore.com, for all your urn needs!

The Correspondence with
1 <i<k=<j=n
» Choose 3 balls

> If red drawn, = min of other 2
> If blue drawn, = max of other 2

Triple of balls Corresponding triple of numbers

(i, k, J) (i, k, j)
(red, i, j) (i, i, J)
(blue i, j) (i, j, J)

(red, blue, i) (i, i, i)

How does this help?!?

» There’s a formula!

» It counts the ways to choose M items from a
set of P items “without replacement’

P
» "P choose M" written ,C,, or M]
1S: P\ P
M| M!(P- M)

» 50 (3 s (H+2) (n+2)! nn+1)(n+2)

3 | "3 m=-1! 6

What is the main source of the simple
algorithm’s inefficiency?

//In the analysis we use "n" as a shorthand for "a.length "
for{(int 1 = 0; 1 < a.length; i++)
for(int J = 1i; j < a.length; j++) {
int thisSum = 0;

for(int k = 1; k <= j3; k++)
thisSum += a[k];

» The performance is bad!

Eliminate the most obvious
inefficiency...

for({ int i = 0; 1 < a.length; 1++) {
int this5um = 0;
for{ int j =i; 3 < a.length; j++ y [
thisS5um += a[j];

1f{ this5um > maxSum } {
maxsum = thisSum;
segstart 1;
segEnd 1

o This is O(?)

- s

http://www.etsu.edu/math/gardner/batman

	CSSE 230 Day 5
	Questions?
	Program Grading
	Agenda
	Finish RectangleSorter from last class
	Sorting Arrays and Collections
	On the CountMatches problem, create and use function objects…
	Questions?
	Maximum Contiguous Subsequence Sum
	Why do we look at this problem?
	A Nice Algorithm Analysis Example
	Formal Definition: Maximum Contiguous Subsequence Sum
	A quick-and-dirty algorithm
	First Algorithm
	Analysis of this Algorithm
	Three ways to find the sum
	Counting is (surprisingly) hard!
	Hidden: One part of the process will be
	Hidden
	Simplify the sum
	Help from Maple, part 1
	Help from Maple, part 2
	We get same answer if we sum from 0 to n-1, instead of 1 to n
	Interlude
	“Magic” Tangent:�Another (clever) way to count it
	The "equivalent count" set
	The Correspondence with �1≤i≤k≤j≤n
	How does this help?!?
	What is the main source of the simple algorithm’s inefficiency?
	Eliminate the most obvious inefficiency…
	Can we do even better?

