
Maximum Contiguous Subsequence Sum

 Correctness usually graded using JUnit tests
◦ Exception: when we ask you to add your own tests

 Style
◦ No warnings remaining (per our preference file)
◦ Reasonable documentation
◦ Explanatory variable and method names
◦ You should format using Ctrl-Shift-F in Eclipse

 Efficiency
◦ Usually reasonable efficiency will suffice
 (e.q., no apparently infinite loops)
◦ Occasionally (like next week) we might give a

minimum big-Oh efficiency for you to achieve
Between two implementations with the same big-Oh
efficiency, favor the more concise solution, unless you
have data showing that the difference matters.

 Finish Comparators

 Maximum Contiguous Subsequence Sum
Problem

 Worktime for WA02 or Pascal?

Uses an important “function
object” example:in Java:
Comparator

 Also add a second anonymous
 Comparator for semiperimeters

 java.util.Arrays and
java.util.Collections are your friends!

You can sort by any means you like: just pass your
Comparator as a second argument to Arrays.sort() or
Collections.sort().

…but not Comparators

See written assignment 2

A deceptively deep problem
with a surprising solution.

{-3, 4, 2, 1, -8, -6, 4, 5, -2}

Q1

 It’s interesting

 Analyzing the obvious solution is instructive:

 We can make the program more efficient

 Problem: Given a sequence of numbers, find
the maximum sum of a contiguous
subsequence.

 Consider:
◦ What if all the numbers were positive?
◦ What if they all were negative?
◦ What if we left out “contiguous”?

 In {-2, 11, -4, 13, -5, 2}, S2,4 = ?
 In {1, -3, 4, -2, -1, 6}, what is MCSS?
 If every element is negative, what’s the MCSS?

1-based indexing

Q2-4

 Design one right now.
◦ Efficiency doesn’t matter.
◦ It has to be easy to understand.
◦ 3 minutes

 Examples to consider:
◦ {-3, 4, 2, 1, -8, -6, 4, 5, -2}
◦ {5, 6, -3, 2, 8, 4, -12, 7, 2}

Q5

 Where
will this
algorithm
spend the
most
time?

 How many times
(exactly, as a function of
N = a.length) will that
statement execute?

i: beginning of
subsequence

j: end of
subsequence

k: steps through
each element of
subsequence

Find the sums of
all subsequences

 What statement is executed the most often?
 How many times?
 How many triples, (i,j,k) with 1≤i≤k≤j≤n ?

Outer numbers could be 0 and n – 1,
and we'd still get the same answer.

 By hand

 Using Maple

 A tangent (Related to urns and probabilities?)

 How many triples, (i,j,k) with 1≤i≤k≤j≤n ?

 What is that as a summation?

 Let’s solve it by hand to practice with sums

Q6, Q7

2
)1(

2
)1(

1

1

1

iinnjjj
n

j

i

j

n

ij

−
−

+
=−=∑ ∑∑

=

−

==

∑ ∑ ∑
=

−

= =

+=
n

j

i

j

n

ij
jjj

1

1

1
Then we can solve for the last term to get a
formula that we need on the next slide:

We have seen
this idea before

 When it gets down to “just Algebra”, Maple is
our friend

 If GM had kept up with technology like the
computer industry has, we would all be driving
$25 cars that got 1000 miles to the gallon.
 - Bill Gates

 If the automobile had followed the same
development cycle as the computer, a Rolls-
Royce would today cost $100, get a million miles
per gallon, and explode once a year, killing
everyone inside.
 - Robert X. Cringely

 How many triples, (i,j,k) with 1≤i≤k≤j≤n ?

 The trick:
◦ Find a set that’s easier to count that has a

one-to-one correspondence with the original

 We want to count the number of triples,
(i,j,k) with 1≤i≤k≤j≤n

 First get an urn
◦ Put in n white balls labeled 1,2,…,n
◦ Put in one red ball and one blue one

 Choose 3 balls
◦ If red drawn, = min of other 2
◦ If blue drawn, = max of other 2

 What numbers do we get?
http://www.talaveraandmore.com, for all your urn needs!

Q8

 Choose 3 balls
◦ If red drawn, = min of other 2
◦ If blue drawn, = max of other 2

Triple of balls Corresponding triple of numbers

(i, k, j) (i, k, j)
(red, i, j) (i, i, j)
(blue i, j) (i, j, j)

(red, blue, i) (i, i, i)

 There’s a formula!
 It counts the ways to choose M items from a

set of P items “without replacement”

 "P choose M" written PCM or
is:

 So n+2C3 is

 The performance is bad!

This is Θ(?)

Tune in next time for the
exciting conclusion!

http://www.etsu.edu/math/gardner/batman

Q9, Q10

	CSSE 230 Day 5
	Questions?
	Program Grading
	Agenda
	Finish RectangleSorter from last class
	Sorting Arrays and Collections
	On the CountMatches problem, create and use function objects…
	Questions?
	Maximum Contiguous Subsequence Sum
	Why do we look at this problem?
	A Nice Algorithm Analysis Example
	Formal Definition: Maximum Contiguous Subsequence Sum
	A quick-and-dirty algorithm
	First Algorithm
	Analysis of this Algorithm
	Three ways to find the sum
	Counting is (surprisingly) hard!
	Hidden: One part of the process will be
	Hidden
	Simplify the sum
	Help from Maple, part 1
	Help from Maple, part 2
	We get same answer if we sum from 0 to n-1, instead of 1 to n
	Interlude
	“Magic” Tangent:�Another (clever) way to count it
	The "equivalent count" set
	The Correspondence with �1≤i≤k≤j≤n
	How does this help?!?
	What is the main source of the simple algorithm’s inefficiency?
	Eliminate the most obvious inefficiency…
	Can we do even better?

