
COMMUNICATIONS OF THE ACM September 2003/Vol. 46, No. 9 45

THE ENGINEERING PROFESSION IS A

BRIDGE BETWEEN SCIENCE AND

MATHEMATICS AND THE TECHNOLOG-
ICAL NEEDS OF ALL PEOPLE. ALL

ENGINEERING DISCIPLINES ARE FUN-
DAMENTALLY BASED ON MATHEMAT-

ICS AND PROBLEM SOLVING. TRADITIONAL

ENGINEERING DISCIPLINES, INCLUDING CHEMICAL,
CIVIL, ELECTRICAL AND MECHANICAL, RELY ON CON-
TINUOUS RATHER THAN DISCRETE MATHEMATICAL

FOUNDATIONS. SOFTWARE ENGINEERING IS AN EMERG-
ING DISCIPLINE THAT APPLIES MATHEMATICAL AND

COMPUTER SCIENCE PRINCIPLES TO THE DEVELOPMENT

AND MAINTENANCE OF SOFTWARE SYSTEMS, RELYING

PRIMARILY ON THE PRINCIPLES OF DISCRETE MATHE-
MATICS, ESPECIALLY LOGIC.

BY

PETER B. HENDERSON

Illustration by Jean-François Podevin

Discrete mathematics,

especially logic, plays

an implicit role in

software engineering

similar to the role

of continuous

mathematics in

traditional physically

based engineering

disciplines.

REASONING IN
SOFTWARE ENGINEERING

EDUCATION

What role does mathematics
play in software engineering?
Consider the following two state-
ments: Software practitioners do
not use mathematics; and Soft-
ware practitioners need to think
logically and precisely. They rep-
resent an apparent contradiction
in light of the similarity of the
reasoning underlying software

engineering and mathematics [3].
Perhaps software practitioners
who say, I don’t use mathematics,
really mean, I don’t use mathe-
matics explicitly or formally.
Many practicing engineers don’t
explicitly use calculus on a daily
basis but do implicitly use mathe-
matical reasoning all the time.
Similarly, software engineers

MATHEMATICAL

46 September 2003/Vol. 46, No. 9 COMMUNICATIONS OF THE ACM

should learn to use foundational discrete mathemat-
ics concepts and logical reasoning at all times.

Ask traditional engineers if calculus should be
eliminated from undergraduate engineering curricula;
the answer would be no. In contrast, practicing soft-
ware engineers have argued that mathematics is not
that important in software engineering education
since practitioners don’t use it explicitly [4]. Was it
continuous or discrete mathematics (or both) that
software engineers considered less important? The
answer was unclear. The role of discrete mathematics
and logic in software engineering today is not well
understood by either academic researchers or indus-

trial practitioners. This lack of understanding will
change as the discipline matures and academics and
practitioners work together to develop that role, mak-
ing it similar to the role of continuous mathematics in
traditional engineering disciplines.

Physical vs. Software Engineering
Recent articles by software engineering educators
have described the similarities and differences
between traditional engineering disciplines and soft-
ware engineering; for example, see [9]. One major
difference is that traditional engineers construct real,
physical artifacts, while software engineers construct
non-real, abstract artifacts. The foundations of tra-
ditional engineering disciplines are mature physical
sciences and continuous mathematics, whereas those
of software engineering are less mature abstract com-
puter science and discrete mathematics. In physical
engineering, two main concerns for designing any
product are cost of production and reliability mea-
sured by time to failure. In software engineering,
two main concerns are cost of development and reli-
ability measured by number of errors per thousand
lines of source code. Both traditional and software
engineering disciplines require maintenance but in
different ways.

All engineering disciplines involve developing and
analyzing models of the desired artifact. However, the
methods, tools, and degree of precision differ between
traditional and software engineering. Abstract model-
ing and analysis are mathematical in nature. They are
very mature in traditional engineering and maturing
slowly in software engineering. An example discussed
in the following paragraphs demonstrates how math-
ematical reasoning is used in both traditional and
software engineering.

In electrical engineering, the voltage decay as a
function of time t of a resistor-capacitor (RC) circuit
is specified by the function V(t) = Vo e(�t/RC), where
R is the resistance, C the capacitance, and Vo the ini-
tial capacitor voltage. This model of the behavior of
RC circuits is derived from principles of mathemati-
cal circuit design using foundational calculus and dif-
ferential equations. Electrical engineering students
learn this derivation in their electronic circuits course
after studying calculus and differential equations.
Here, mathematics-based reasoning is used to derive
and understand a fundamental concept.

Iteration invariants represent a foundational con-
cept few computer science or software engineering
graduates understand, appreciate, or use effectively,
even though they are important for deriving, under-
standing, debugging, and documenting algorithms.
Every iteration has a predicate I(S) (S represents the

� WHICH HUMAN

ENDEAVOR WAS

DEVELOPED TO DEAL

WITH ABSTRACTION?

MATHEMATICS.

current state of the computation) called the itera-
tion/loop invariant, that captures the underlying
meaning of the iteration (such as sum the values in a
list, search a tree structure, and compute the tax due
by all taxpayers). Mathematical logic can be used to
argue that the predicate I(S) satisfies logical con-
straints, as in Figure 1 for the while-do iteration;
here, the red stuff in brackets represents logical asser-
tions, and C(S) is a side-effect free Boolean condition.
Upon termination, another
mathematical issue, { I(S)
and not C(S) are true },
must logically imply (=>) the
desired post-condition. The
use of this approach for lin-
ear search is discussed later.

Software engineering stu-
dents can learn to use math-
ematical reasoning to
model, derive, understand,
debug, and document software systems. With enough
practice, the underlying mathematical concepts
become intrinsic to their
thought processes, support-
ing rather than hindering
their thinking.

Mathematics and
Software Engineering
Key reasons for wanting to
learn and use mathematical
reasoning include:

Abstract software. Constructing non-real (abstract)
artifacts requires abstract reasoning. Which human
endeavor was developed to deal with abstraction?
Mathematics. Hence one view of a software system is
as a mathematically precise model of some desired
process or computation. Mathematics is one tool for
reasoning about software systems, as well as for prac-
titioners’ rigorous reasoning and analysis.

Notations, symbols, abstractions, precision. The
expression y = ax + b is familiar from algebra,
and count == 0 is familiar from programming.
Each uses notations and symbols and is precise, given
the types of data and semantics of the operations,
specified mathematically. Learning a formal notation
is no more difficult than learning a programming lan-
guage. Indeed, it is often easier, as the syntax and
semantics are cleaner. Programming appeals to our
innately process/imperative-oriented minds, and pro-
gramming tools breathe life into programs. Mathe-
matics tends to be declarative and static, though such
tools as Axiom, Mathematica, and Maple help miti-
gate this perception.

Modeling software systems. A model, even a mental
one, must be created before construction of any arti-
fact can begin. Most software development is like cre-
ating art whereby an initial vision slowly takes form.
Planned evolution, along with maintenance issues, is
often ignored. This process may be acceptable for
some software projects, but with many such projects
the more the software engineer can learn and under-
stand early, the better. Modeling is one vehicle for

achieving this under-
standing, and mathe-
matics is an important
tool for building, check-
ing, analyzing, and
experimenting with
models [2]. Moreover,
developing precise mod-
els using specification
languages, including (in
order of popularity) Z,
Larch, and Alloy, is
important for identify-
ing specification errors,
which are very costly to
correct once a software
system is implemented
[6].

Application domains.
Software practitioners
can use mathematics to
communicate with their
colleagues, including
engineers, scientists,
mathematicians, statisti-
cians, actuaries, and econ-

omists. Mathematics is a rich, comprehensive, universal
language for communication between such diverse
groups.

Mathematical reasoning. One definition of mathe-
matical reasoning, attributed to an informal working
group of computer science and math educators
(www.math-in-cs.org) [5] is: “Applying mathematical
techniques, concepts, and processes, either explicitly
or implicitly, in the solution of problems; in other
words, mathematical modes of thought that help us
solve problems in any domain.” In the most general
interpretation, every problem-solving activity is an
application of mathematical reasoning. For example,
consider the benefits of exercises requiring students to
translate English statements into prepositional or
predicate logic form; these “modeling” exercises help
them be more precise and inquisitive about the inter-
pretation of English statements. When clients or col-
leagues say, “A or B,” do they mean “inclusive or” or

COMMUNICATIONS OF THE ACM September 2003/Vol. 46, No. 9 47

{pre-condition}
Initialization code
{I(S) is true}
while C(S) is true do

 {I(S) and C(S) are true}
 <code for body of iteration>
 {I(S) is true}

{I(S) and not C(S) are true post-condition}

(a)

(b)

. ??= list of items

1 2 3 . . . location

1 2 3 . . . location

. ??? list of items

� � � �

� � � �

�
�

Figure 1. Logic of a while-do
iteration.

Figure 2. (a) Post condition
and (b) potential iteration
invariant.

“exclusive or”? When they say, “for all ...,” do they
mean universal quantification? What is the intended
meaning of “for all ...” when there are no elements
over which to quantify?

Mathematics in Software Engineering
The article “Why Math?” by Bruce et al. in this sec-
tion describes several example applications of math-
ematics in computer science. The following simple
linear search problem illustrates the use of logical

reasoning to derive an algorithm. The problem
statement is: Find the location of the first instance
of a specified item in a list of items; the specified
item is known to be in the list. Develop an algorithm
for this problem. Think about the following ques-
tions (hopefully the ones students would be asking
themselves): How many items are in the list?; Can the
list be empty?; What happens if the specified item
appears more than once?; and What is meant by “first
instance” and by “location”? Addressing these ques-
tions and using the given problem information
enables software engineers to formulate representative
pre and post conditions required to ensure the prob-
lem is well defined.

Most undergraduate students would love to see
such a problem on a comprehensive exit exam.1

Applying a familiar pattern, or template, leads to a
few lines of code (simple). When developing com-
puter programs, do students simply pattern-match to
get an approximate program, then use extensive test-
ing to refine it? Or do they really understand the
underlying logic?

To understand the relevance of this issue, consider
a variant of the problem as it was presented to profes-
sional programmers in a tutorial session [1]. They had
to compose a program for binary search, a search
strategy that iteratively divides the list in half. Approx-
imately 90% of them got it wrong, unable to identify
proper pre and post conditions, apply a familiar pat-
tern, compose a correct algorithm, or express it in a
programming language.

Returning to the linear search problem, consider a
solution strategy based on the foundational concepts
of logic and iteration invariants. First, the algorithm
developer identifies the pre and post conditions to
clearly specify the problem. They can be presented
formally using predicate logic; for this discussion, I
offer a picture of the post condition (see Figure 2a).
That is, the desired item is not found (≠) in the list
before location and the desired item is found (=)
at location of the list. As the algorithm iterates,
the not found (≠), knowledge accumulates by
advancing the value of location from 1, 2, 3, …;
the iteration terminates once the item is found (=).
These factors lead to a potential iteration invariant
(see Figure 2b) and a potential iteration termination
condition, that is, iterate as long as the desired item
≠ item in location of the list.

Figure 3 outlines a partially complete linear search
algorithm with logical assertions and iteration invari-
ants; the color blue denotes the item referenced by the
variable location. Note that the iteration invari-

48 September 2003/Vol. 46, No. 9 COMMUNICATIONS OF THE ACM

1
Few colleges and universities give such exams.

� IN THE MOST

GENERAL INTERPRETATION,
EVERY PROBLEM-SOLVING

ACTIVITY IS AN

APPLICATION OF

MATHEMATICAL

REASONING.

ant is true prior to entering the iteration when loca-
tion = 1, that is, it is vacuously true.2 Indeed, this is
often the case for iterations, another reason students
must understand the logical concept of vacuous. (You
may complete the algorithm using the red stuff to
derive the body of the iteration.)

One may argue that the red stuff is useless clutter.

Perhaps, but it captures the natural
reasoning our minds use. It is

explicit here. This is the type of reasoning—from first
principles—software engineering students should be
able to perform. However, this does not mean they
must use it all the time but be ready to apply it as
needed, when, for example, a derived software system
must be correct or when understanding, debugging,
or documenting software systems.

What is an iteration invariant for binary search?
Understood intuitively, it is that the location of the
desired item is constrained between two other loca-
tions—low and high—and the algorithm adjusts to
converge on the potential location of the desired item;
the desired item may not even be on the list. This
“intuitive” invariant is useful to software engineers for
deriving a correct algorithm. What percentage of the
programmers described in [1] would have solved the
problem correctly if they had reasoned more mathe-
matically?

Which Mathematics for
Software Engineers?
Educational foundations are being identified as
computer science and software engineering mature.
For example, the ACM/IEEE Computing Curricula

2001: Computer Science [10], a guideline for under-
graduate computer science programs required dis-
crete mathematics in its core, recommending it be
taken early in the undergraduate curriculum. Mean-
while the ACM/IEEE Computing Curricula 2001:
Software Engineering [7] for undergraduate software
engineering programs adopted and extended this

foundational model. Included in
its two-course mathematical foun-
dations core (E = essential, D =
desirable, and O = optional) are
the following topics:

Functions, Relations, and Sets
(E);

Basic Logic (prepositional and
predicate) (E);

Proof Techniques (direct, contra-
diction, inductive) (E);

Basic Counting (E);
Graphs and Trees (E);
Discrete Probability (E);
Finite State Machines, regular

expressions (E);
Grammars (E);

Algorithm Analysis (E);
Number Theory (D); and
Algebraic Structures (O).

Foundational core material included:

Abstraction:
- Generalization;
- Levels of abstraction and viewpoints;
- Data types, class abstractions, generics/templates;

and
- Composition;
Modeling:
- Principles of modeling;
- Pre and post conditions, invariants;
- Mathematical models and specification languages;
- Model development tools and model

checking/validation;
- Modeling/design languages (such as UML, OOD,

and functional);
- Syntax vs. semantics (including understanding

model representations); and
- Explicitness (make no assumptions or state all

assumptions)

Though not explicitly in the core, a year of calculus
was also required to: enhance mathematical maturity
and thinking; provide a contrast with discrete math-
ematics concepts; and ensure sufficient background

COMMUNICATIONS OF THE ACM September 2003/Vol. 46, No. 9 49

{ there exists location 'loc' such that }

<body of the iteration>

location

{ }
location 1 loc

while desired item item in location of the list do

. ?? ? ? ?=

.

.?

?

? ? ?

? ?

. . .? ? ?

? ? ? ? ?

.? ? ?

. . .

? ? ? = ? ?. . .

. . .{ and

{ }

.= ? ?{ }

 }

.{ and }

2
There is nothing to make it false, so it must be true “vacuously.”

Figure 3. Linear
search algorithm.

for various client and application disciplines. Statis-
tics and empirical methods were also recommended;
personally, I would also add linear algebra.
Advanced mathematical courses, including graph
theory, combinatorics, theory of computing, proba-
bility theory, operations research, and abstract alge-
bra, might also be required, depending on the goals
of the program and the needs of individual students.

Mathematically oriented software engineering
courses today cover formal specifications, formal
methods, mathematically rigorous software design,
software verification and validation, and software
models and model checking. As software engineering
matures, the word “formal” will disappear; it is rarely
used in traditional engineering where formal
approaches are the norm.

Specific material varies by degree program. How-
ever, an important goal is to ensure foundational
mathematical concepts are introduced early and used
and reinforced in computer science and software
engineering courses in the same way continuous
mathematics is used and reinforced in traditional
engineering courses. It will, however, take time, dedi-
cation, and rethinking the current software engineer-
ing curricula.

Conclusion
Mathematical reasoning is intrinsic to both tradi-
tional engineering and software engineering, though
each discipline uses different foundational mathe-
matics. Traditional engineers use continuous mathe-
matics primarily in a calculational mode for
modeling, design, and analysis, including to calcu-
late, say, load on a bridge component, compute the
wattage of a resistor, or determine the optimum
weight of an automobile suspension system. Soft-
ware engineers usually use discrete mathematics and
logic in a declarative mode for specifying and verify-
ing system behaviors and for analyzing system fea-
tures.

The RC circuit and iteration invariants described
earlier illustrate basic mathematical reasoning. How-
ever, engineering is significantly deeper and broader
than these examples indicate. Engineers are systems
architects who understand and apply the founda-
tional principles of the discipline. Software engineers
must therefore learn to use mathematics to: construct,
analyze, and check models of software systems; com-
pose systems from components; develop correct, effi-
cient system components; specify (precisely) the
behavior of systems and components; and analyze,
test, and evaluate systems and components. They
must therefore understand the theoretical and practi-
cal principles of programming and be able to learn

and use new languages and tools.
One area where traditional engineering has an

advantage is the number, variety, and maturity of
tools for mathematical modeling, design, analysis,
and implementation, including standard languages
for communication in blueprints and schematic cir-
cuit diagrams and computer-aided prototyping,
design, and analysis tools. Comparable software engi-
neering tools are emerging as the discipline matures.

Evidence supporting the importance of mathemat-
ics in software engineering practice is sparse. This nat-
urally leads to claims that software practitioners don’t
need to learn or use mathematics [4]. Surveys of cur-
rent practices [8] reflect reality; many software engi-
neers have not been taught to use discrete
mathematics and logic as effective tools. Education is
the key to ensuring future software engineers are able
to use mathematics and logic as power{ful} tools for
reasoning and thinking.

References
1. Bentley, J. Programming pearls: Writing correct programs. Commun.

ACM 26, 12 (Dec. 1983), 1040–1045.
2. Clark, E., Grumberg, O., and Peled, D. Model Checking. MIT Press,

Cambridge, MA, 1999.
3. Devlin, K. The real reason why software engineers need math. Com-

mun. ACM 44, 10 (Oct. 2001), 21–22.
4. Glass, R. A new answer to ‘How important is mathematics to the soft-

ware practitioner?’ IEEE Software 17, 6 (Nov./Dec. 2000), 135–136.
5. Henderson, P. et al. Striving for mathematical thinking. SIGCSE Bul-

letin (Inroads) 33, 4 (Dec. 2001), 114–124.
6. Hinchey, M. and Bowen, J., Eds. Applications of Formal Methods. Pren-

tice-Hall, London, U.K., 1995.
7. LeBlanc, R. and Sobel, A., Eds. Computing Curricula 2001: Software

Engineering Volume (1st Draft), June 25, 2003; see
sites.computer.org/ccse/volume/FirstDraft.pdf.

8. Lethbridge, T. What knowledge is important to a software profes-
sional? IEEE Comput. 33, 5 (May 2000), 44–50.

9. Parnas, D. Software engineering programmes are not computer science
programmes. Annals Software Engin. 6, 1–4 (1998), 19–37.

10. Roberts, E., Ed. Computing Curricula 2001: Computer Science Final
Report. IEEE Computer Society, New York, April 2002.

Peter B. Henderson (phenders@butler.edu) is a professor in
and head of the Department of Computer Science and Software
Engineering at Butler University, Indianapolis, IN.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2003 ACM 0002-0782/03/0900 $5.00

c

50 September 2003/Vol. 46, No. 9 COMMUNICATIONS OF THE ACM

