Page 2

Slide 1
Recall that a sequence is a collection of things indexed by non-negative integers. For example:
· [Click. List] Here is a list that contains three strings representing colors.
· [Click. String] Strings themselves are sequences containing characters, as in this one that contains “C”, “h”, “e”, “c”, “k” and so forth.
· [Click. Tuple] Tuples are another kind of sequence – we’ll talk more about them later.
Recall that sequences are powerful because they let you refer to an entire collection, as well as the items in the collection, using a single name.
For example, [Click. colors = …] here the variable colors refers to a collection of 3 strings that represent colors. You can still get to the items of the collection by indexing, like this:
· [Click. colors[0]] colors open-bracket 0 close-bracket refers to the beginning item of the sequence, here, the string ‘red’.
· [Click. colors[1]] colors 1 refers to the next item of the sequence, here, the string ‘white’.
· [Click. colors[1]] And colors 2 refers to the item after that, here the string ‘blue’.
[Click. Indexing starts…] Note that indexing starts at zero, not at one.
Also recall that there is a special function called len (“l” “e” “n”) [Click The len function…] that gives the length of a sequence, that is, the number of items in the sequence.

Slide 2
[Click the animation to run it IF it did not already run by itself.]
Recall that the power of sequences comes into play when we loop, or iterate through them, as in the example that you just saw.
The key to such a loop is to have a variable that takes on values 0 [Click. Circle 0] as the index to the sequence, then 1 [Click. Circle 1] as the index, then 2 [Click. Circle 2] as the index, and so forth.
To that end, when we iterate through a sequence, we use a for loop [Click. for …], where the loop variable ranges from 0 to (but not including) the length [Click. len …] of the sequence.
Inside the loop [Click. circle…], we reference the sequence with the loop variable [Click. circle k], here k, as the index. [Click. k]
[bookmark: _GoBack][Click. Pattern in blue.] So our pattern for looping, or iterating, through a sequence is as shown here in blue: We have a for loop [Click. circle for] that has the length of the sequence [Click. circle len] as the argument for its range expression [Click. circle range], and we use the loop variable [Click. circle k]as the index [Click. circle k] inside the body of the loop.
Be absolutely sure that you understand the use of the index k in this example. It is NOT a “magic” symbol; it is just an ordinary variable that goes 0, 1, 2, and so forth, per the range statement. It just so happens that that is exactly what we want to refer to the items in the sequence, one after the other.
If you are not completely clear on the pattern shown here in blue, rewind the video and watch it again to this point before continuing.

Slide 3
The basic iterate-though-a-sequence pattern iterates through the entire sequence from beginning to end. For example, in a sequence with 7 items, it would examine item 0, then item 1, then item 2, and so forth through and including item 6 (which is the last item of a 7-item sequence).
One set of variations on the pattern is to examine only part of the sequence, or to iterate through the sequence backwards. All such variations require only a simple change to the range statement in the basic pattern.
For example, [Click. First half…] suppose that you want to iterate through the first half of a sequence. Here is the basic pattern. [Click. Pattern, with blacked-out range expression.] What range expression would you use to iterate only through the first half of the sequence?
Pause the video briefly to think through your answer. [Pause 5 seconds.]
Perhaps you saw that a range expression like this one [Click. Reveal the range expression.] will do the trick. I used the double-slash operator for division because that does INTEGER division, and a range expression requires an integer. This particular expression does not include the middle element of a sequence with an odd number of elements – just add one to the expression if you want the middle element included.
Here is another example. [Click. Second half…] Suppose that you want to iterate through the second half of a sequence. Here is the basic pattern again. [Click. Pattern, with blacked-out range expression.] What range expression would you use to iterate only through the second half of the sequence?
Pause the video briefly to think through your answer. [Pause 5 seconds.]
Perhaps you saw that a range expression like this one [Click. Reveal the range expression.] will do the trick. We start in the middle (again using the double-slash operator for division) and go to the end (using the length of the sequence as usual to go to the end).
Yet another example. [Click. Backwards…] Suppose that you want to iterate through the sequence, but backwards. So here we want to examine item 6, then item 5, then item 4, and so forth. [Click. Pattern, with blacked-out range expression.] What range expression would you use to iterate through the sequence, backwards?
Again pause the video briefly to think through your answer. [Pause 5 seconds.]
This time we need a range expression [Click. Reveal the range expression.] that starts at the LAST element (whose index is the length of the sequence MINUS ONE), and goes DOWN by 1 [Click. Down.] at each iteration of the loop, stopping when it reaches -1 [Click. Stop.] (and hence including 0 but not -1). Here I used the 3-argument form of range: There are other ways to solve this problem too.
One last example of such variations. [Click. even-numbered…] Suppose that you want to iterate through the even-numbered items in the sequence, that is, through items 0, 2, 4, 6, etc. [Click. Pattern, with blacked-out range expression.] What range expression would you use to iterate through the even-numbered items in the sequence?
Again pause the video briefly to think through your answer. [Pause 5 seconds.]
This time we need a range expression [Click. Reveal the range expression.] that goes up by 2 each time through the loop, as shown in this 3-argument range expression here. Again, there are other ways to solve this problem, but this is perhaps the simplest solution.

Slide 4
Keep the basic pattern in mind, as shown here. If ever you need to go through part of the sequence or in an order other than forwards, all you have to do is modify the range expression as in the examples that we just saw, for:
· [Click.] Iterating through the first half of the sequence,
· [Click.] Or through the second half,
· [Click.] Or through the sequence backwards,
· [Click.] Or through the even-numbered items in the sequence.
One more variation, that can be combined with any of the above variations. Often we want to examine various items in the sequence, but to process only items that meet a certain condition. Here is an example:
[Click. Spec.] Suppose that we want to implement a function that counts and returns the number of even integers in a sequence of integers. For example, if the sequence were as shown, our function should return 3, since the sequence has 3 even integers – 8, 6 and 6.
By the way, note that this is a completely different problem from the one we did previously that identified the items at even indices in the sequence.
Let’s develop this function, line by line.
[Click. def] We start with our def statement, where I have chosen the variable name numbers as the name for the sequence that the function is given.
This is a counting problem, so as usual we bring in a variable for counting [Click. count] and initialize that variable to zero.
Next we loop [Click. for] through our sequence, using the general pattern above, with a range expression [Click. circle range…] that uses the length of the sequence, per the len function. Note that we are using the parameter numbers [Click. circle numbers] in this expression.
Next, as usual in a counting problem, we look to see if the item on this iteration of the loop is to be counted. That is, we bring in an IF statement [Click. if…]. Here we check if the item in the sequence, numbers[k], is even. To check whether it is even, we use the percent operator, which does division (here, division by 2) and returns the remainder from that division. If the remainder when we divide by 2 is zero, well, that means that the number is even!
Take a moment to think about that: Dividing by 2, and taking the remainder, and seeing if that remainder is zero, is how you check whether an integer is even. For example, consider 8 – divide it by 2, and the remainder is zero – yes, 8 is even. Or consider 13 – divide it by 2, and the remainder is one, not zero – no, 13 is NOT even. Just do a few more examples if you are not yet convinced.
When the IF statement fires, meaning that the item in the sequence is even, we increment our count [Click. count = …], as usual.
Note that we used our parameter, numbers [Click. circle numbers], in our IF statement [Click. circle numbers], and we use the loop variable k [Click. circle k] as the index of the sequence in our IF statement [Click. circle k]. That’s what makes our counting code use the items in the sequence, one after the other – first item 0, then item 1, then item 2, and so forth.
Finally [Click. return], we return our count variable after the loop ends, as usual.
We will see other variations of the iterate-though-a-sequence pattern, but the above will take you a long way. To summarize:
· The basic pattern is a FOR statement with a RANGE expression that uses the LEN function applied to the sequence. Inside the loop, you reference the sequence using the loop variable as the index.
· You can vary the range expression to go through part of the sequence or to go through the sequence in orders other than forwards.
· And you can use an IF statement in the body of the loop to process items in the sequence selectively, as in the above example that processes (in that example, counts) only the items that are even.
