Page 5

Slide 1
This lesson introduces sequences and how to access them using indexing.
A sequence is a type of thing that represents a finite, ordered collection of things indexed by non-negative integers.
For example:
· [Click. List] Here is a list that contains three strings representing colors.
· [Click. String] Strings themselves are sequences containing characters, as in this one that contains “C”, “h”, “e”, “c”, “k” and so forth.
· [Click. Tuple] Tuples are another kind of sequence – we’ll talk more about them later.
There are also types in Python for UN-ordered collections.

Slide 2
Sequences are powerful because they let you refer to an entire collection, as well as the items in the collection, using a single name.
For example, [Click. colors = …] here the variable colors refers to a collection of 3 strings that represent colors. You can still get to the items of the collection by indexing, like this:
· [Click. colors[0]] colors open-bracket 0 close-bracket refers to the beginning item of the sequence, here, the string ‘red’.
· [Click. colors[1]] colors 1 refers to the next item of the sequence, here, the string ‘white’.
· [Click. colors[1]] And colors 2 refers to the item after that, here the string ‘blue’.
[Click. Bring back colors[0] and colors[1].]
The notation is:
· [Click. colors] the sequence name, here colors,
· [Click. bracket] followed by an open-square-bracket symbol,
· [Click. index] followed by a non-negative integer, called the index, that specifies which item of the sequence is being referenced,
· [Click. bracket] followed by a close-square-bracket symbol.
[Click. Indexing starts…] Note that indexing starts at zero, not at one – it works that way for historical reasons that go back to the underlying hardware.
[Click. The number…] Again, the number in the square brackets is called the index, and the things in the sequence are called the items or (equivalently) the elements of the sequence – we use the words items and elements interchangeably.

Slide 3
We’ve seen that sequences allow you to refer to the entire sequence, by using the name of the sequence, and also to the items in the sequence, by using the square-bracket notation for indexing. When we add the power of loops, something really cool happens.
[Click the animation to run it IF it did not already run by itself.]
For example, suppose we want to make a zellegraphics circle loop (or, we use the word iterate) through a sequence of colors, as in the example you just saw.
 [Click. circle = …] We would start by constructing a zg.Circle, in the usual way.
[Click. colors = …] We would also have a list (or other sequence) of colors, as here.
[Click. setfill 0 =] We then set the fill of the circle to colors 0, using the square-bracket notation that we have seen. Here, that makes the circle turn red.
[Click. setfill 1 =] We then set the fill of the circle to colors 1, again using the square-bracket notation. Here, that makes the circle turn white.
[Click. setfill 1 =] We then set the fill of the circle to colors 2, once again using the square-bracket notation. Here, that makes the circle turn blue.
[Click. dot dot dot] And so forth.
But I hope that you see that this approach, writing one line for every color in the list, is silly. Instead, we want a loop.

Slide 4
So let’s solve the problem again, this time using a loop.
In the upper right we have the code that we just wrote. In our new approach:
[Click. Teeter circle, …] We construct a zg.Circle, as before.
[Click. Teeter colors, …] We make a list of colors, as before.
[Click. Teeter setFills, …] But instead of a long sequence of setFill statements, we make a single loop, using a for statement as usual. The loop should go as many times as we have colors in the list – let’s come back to that shortly.
[Click. Teeter setFills, one by one …] Inside the loop, we have a single statement that is very similar to the setFill statements that we had in our previous attempt.
Now the question is: What do we want inside the square-brackets?
Pause for a moment to think about this key question. [Pause 3 seconds].
· [Click. Circle 0] The first time through the loop, we want a 0 inside the square brackets.
· [Click. Circle 1] The next time through the loop, we want a 1 inside the square brackets.
· [Click. Circle 1] The next time after that through the loop, we want a 2 inside the square brackets.
· And so forth.
What variable do we already have in the code that is going 0, 1, 2, etc, as we iterate through the loop? Pause the video now and decide for yourself. [Pause 5 seconds.]
[Click. circle k] I hope you saw that the variable that we want, that is going 0, 1, 2, etc., is our for loop variable, k!
[Click. k] That is, our code contains the expression colors bracket k inside the loop.
[Click. Caution] Be absolutely sure that you understand the use of the index k in this example. It is NOT a “magic” symbol; it is just an ordinary variable that goes 0, 1, 2, and so forth, per the range statement. It just so happens that that is exactly what we want to refer to the items in the sequence, one after the other. By the way, do you see now why the range statement is defined to start at 0?
Speaking of that range statement, let’s return to it. We want the loop to go as many times as there are items in the list. There is a special function called len (“l” “e” “n”) [Click The len function…] that gives the length of a sequence, that is, the number of items in the sequence. So that’s what we want in our range statement. [Click. len…]
Finally, I’ll comment that there is an alternative notation [Click. alternative…] that you can use to iterate through a sequence when you don’t need the indices. But you can always use the form on the left with the range expression, so I’ll always use that form.

Slide 5
To summarize, here is an example that combines the pattern of iterating through a sequence with the summing pattern.
This example will be a function that returns the sum of the numbers in the sequence that it is given. For example, if the sequence is the one shown here, then the function would add 8 plus 13, getting 21, then add in 7 to get 28, then add in 5 to get 33, and return that value (33).
[bookmark: _GoBack][Click. code] Here is the code.
[Click. Teeter def…] The sum_all function here takes a sequence as its parameter. [Click. circle sequence]. So it is not surprising that the variable name sequence appears in body of the function. The actual sequence will be whatever sequences is passed to the function, for example the 4-element sequence shown to the right.
We are summing up numbers in this problem, so as usual [Click. Teeter total…] we initialize a variable, that I have chosen to call total, to zero.
Now we loop, or iterate, through the sequence. [Click. Teeter for…] Note the pattern: We use a for loop with range expression that uses the len function applied to the sequence of interest.
Inside the loop, we see the usual summing pattern: total becomes what it was + something. [Click. Teeter total …] Here the something brings in the iterating-through-a-sequence pattern: We put the sequence name with the loop variable (here, k) inside the square brackets. This makes our summing add up sequence 0 the first time through the loop, then sequence 1, then sequence 2, and so forth, until all the items in the sequence have been accumulated into the total.
The function ends by returning its computed value [Click. Teeter return …] as expected.

