The following are taken from Chapter 5 of How to Think Like a Computer Scientist: Learning with Python 3 by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers. From the Open Book Project.

[image:]

[image:][image:]

[image:]
[image:]

Continues on the next page …

[image:]

Continues on the next page …

[image:]
[image:]

[image:]

[image:]

[bookmark: _GoBack]
image4.png
The syntax for an i statement looks like this:

if BOOLEAN EXPRESSION:

STATEMENTS_1 # Executed if condition evaluates to True
else:
STATEMENTS_2 # Executed if condition evaluates to False

As with the function definition from the last chapter and other compound statements like for, the if statement
consists of a header line and a body. The header line begins with the keyword if followed by a Boolean
expression and ends with a colon ().

The indented statements that follow are called a block. The first unindented statement marks the end of the
block.

Each of the statements inside the first block of statements are executed in order if the Boolean expression
evaluates to True. The entire first block of statements is skipped if the Boolean expression evaluates to False,
and instead all the statements indented under the else clause are executed.

There is no limit on the number of statements that can appear under the two clauses of an i statement, but
there has to be at least one statement in each block. Occasionally, it is useful to have a section with no
statements (usually as a place keeper, or scaffolding, for code we haven't written yet). In that case, we can use
the pass statement, which does nothing except act as a placeholder.

if True: # This is always True,
pass # 5o this is always executed, but it does nothing
els:

pass

image5.png
5.6. Omitting the else clause

Flowchart of an if statement with no else clause

True
conditon

e |

Y

Another form of the if statement is one in which the else clause is omitted entirely. In this case, when the condition
evaluates to True, the statements are executed, otherwise the flow of execution continues to the statement after the if.

if x < 0:

print(“The negative number “, x, " is not valid here.")
X = 42

print("I've decided to use the number 42 instead.")

print("The square root of ", x, "is”, math.sqrt(x))

In this case, the print function that outputs the square root is the one after the if — not because we left a blank line, but
because of the way the code is indented. Note too that the function call nath. sqrt(x) will give an error unless we have an
inport math statement, usually placed near the top of our script.

Python documentation sometimes uses the term suite of statements to mean what we have called a block here. They mean the
same thing, and since most other languages and computer scientists use the word block, we'll stick with that.

Notice too that else is not a statement. The if statement has two clauses, one of which s the (optional) else clause.

image6.png
5.7. Chained conditionals

Sometimes there are more than two possibilities and we need more than two branches. One way to express a computation
like that is a chained conditional.

1 ifxcy:

2 STATEMENTS_A
3 elif x> y:

4 STATEMENTS_B
5 else:

6

STATEMENTS_C

Flowchart of this chained conditional

elif is an abbreviation of else if. Again, exactly one branch will be executed. There is no limit of the number of e1if
statements but only a single (and optional) final else statement is allowed and it must be the last branch in the statement:

if choice == "a":
Function_one()

elif choice == "b":
function_two()

elif choice == "c':
function_three()

else:
print(*Invalid choice.")

Each condition is checked in order. If the first is false, the next is checked, and so on. If one of them is true, the
corresponding branch executes, and the statement ends. Even if more than one con
executes.

ion is true, only the first true branch

image7.png
5.8. Nested conditionals

One conditional can also be nested within another. (It is the same theme of composibility, again!) We could have written
the previous example as follows:

image8.png
Flowchart of this nested conditional

Faiso

T

image9.png
ifx <y
STATEMENTS_A
else:
if x> y:
STATEMENTS_B
else:
STATEMENTS_C

image10.png
The outer conditional contains two branches. The second branch contains another if statement, which has two branches
of its own. Those two branches could contain conditional statements as well.

Although the indentation of the statements makes the structure apparent, nested conditionals very quickly become
difficult to read. In general, it is a good idea to avoid them when we can.

Logical operators often provide a way to simplify nested conditional statements. For example, we can rewrite the following
code using a single conditional:

if 0 < x: # Assume x is an int here
if x < 10:
print("x is a positive single digit

The print function is called only if we make it past both the conditionals, so instead of the above which uses two if
statements each with a simple condition, we could make a more complex condition using the and operator. Now we only
need a single if statement:

10 < x and x < 10:
print("x is a positive single digit.")

image1.png
5. Conditionals

Programs get really interesting when we can test conditions and change the program behaviour depending on the
outcome of the tests. That's what this chapter s about.

5.1. Boolean values and expressions

A Boolean value is either true or false. It is named after the British mathematician, George Boole, who first formulated
Boolean algebra — some rules for reasoning about and combining these values. This is the basis of all modern computer
logic.

In Python, the two Boolean values are True and False (the capitalization must be exactly as shown), and the Python type is
bool.

55> type(True)

<class 'bool'>

53> type(true)

Traceback (most recent call last):
File "<interactive input>", line 1, in <module>

NameError: name ‘true’ is not defined

A Boolean expression is an expression that evaluates to produce a result which is a Boolean value. For example, the

operator == tests if two values are equal. It produces (or yields) a Boolean value:
5> 5 == (3 +2) #Is five equal 5 to the result of 3 + 22
True
5> 526
False
5> j = "hel”
>>> 3 + "1o" == "hello"
True

In the first statement, the two operands evaluate to equal values, 5o the expression evaluates to True; in the second
statement, 5 is not equal to 6, so we get False.

The == operator is one of six common comparison operators which all produce a bool result; here are all six

Produce True if ... x is equal to y
. x is not equal to y

is greater than y

is Less than y

is greater than or equal to y

#
#
.
.
#
is Less than or equal to y

x
x
x
x

Although these operations are probably familiar, the Python symbols are different from the mathematical symbols. A
common error is to use a single equal sign (=) instead of a double equal sign (==). Remember that = is an assignment
operator and == is a comparison operator. Also, there is no such thing as =< or =>.

Like any other types we've seen so far, Boolean values can be assigned to variables, printed, etc.

>>> age = 18
>>> old_enough_to_get_driving licence = age >= 17
>»> print(old_enough_to_get_driving_licence)

True

55> type(old_enough_to_get_driving_licence)
<class 'bool™>

image2.png
Flowchart of an if statement with an else cla

image3.png
5.5. Conditional execution
In order to write useful programs, we almost always need the ability to check conditions and change the
behavior of the program accordingly. Conditional statements give us this ability. The simplest form is the if

statement:

iFx %2
print(x, * is even.")
print("Did you know that 2 is the only even number that is prime?")
else:
print(x, " is odd.")

print("Did you know that multiplying two odd numbers
“always gives an odd result?")

‘The Boolean expression after the if statement is called the condition. If it is true, then all the indented
statements get executed. If not, then all the statements indented under the else clause get executed.

etk r e ot o i T ompti kit Lo i on 10y
e, e A . o 88 b o o S S e
5. Condtionals

[T —

