Documentation version 2.1: 2009 June 16

Pycreate Library API

This document explains the pycreate library used to control the iRobot Creates in Rose-Hulman Institute of Technology’s
CSSE-120R course. It contains classes, variables, and methods used to develop software for the course and to access
additional functionality available on the Create.

CREATE

A Create object is an abstraction for the robot. Its methods are used to communicate with the robot via a serial port.
Initializing:

The code robot eate(port) where port is the number of the Bluetooth com port to which the robot is

connected, will make a Create object called robot. Once a Create object is instantiated, the program will control
access to that serial port. This means that programs using a Create object should properly disconnect from the port at
completion. Should code using a Create object crash, the port may still be controlled by the program which may cause
problems with running other code attempting to use the same port.

Methods
This table describes the methods that allow you to interact with the Create robot.
Name Description
reconnect(comPort) Closes and reopens the connection to the Create. Helpful if the sensors don’t
initialize properly.
Arguments: | comPort —port number to which the Create is connected
_6] Return: n/a
;rnu%down() Stops the Create, places it into PASSIVE_MODE, and closes the serial connection
Arguments: | n/a
Return: n/a
go(cmPerSec, degPerSec) Moves the Create forward/reverse at the requested speed while rotating
CW/CCW at the requested speed.
Arguments: | cmPerSec — velocity with which to translate the Create. Range is -
50 to 50. Negative moves it backward.
degPerSec — velocity with which to rotate the Create. Positive is
CCW, negative is CW.
Return: n/a
driveDirect(leftCmSec, rightCmSec) Sets the robot’s wheel velocities to the given values
Arguments: leftCm Sec — velocity for left wheel
rightCmSec — velocity for right wheel
Return: n/a
drive(roombaMmSec, Instructs the robot to drive in an arc of the requested radius at the requested
roombaRadiusMm, turnDir = ‘CCW’) | speed. Use a positive radius to drive a CW arc (and negative to drive CCW).
Optionally, if radius = 0, specify whether the spin should be CCW or CW using
turnDir. Note that the parameters for this function are in millimeters.
Arguments: | roombaMmSec — speed at which to move
roombaRadiusMm — Radius of arc to move in (+ CW, - CCW)
turnDir — If radius = 0, use turnDir to determine direction the
robot should turn (optional argument, defaults to CCW)
Return: n/a
stop() Stops the Create’s wheel motors
Arguments: | n/a
Return: n/a

mutchler
Sticky Note
import create

...

 robot = create.Create(port)

The port must be either an integer or the string 'sim' (for the simulator).

mutchler
Highlight

mutchler
Highlight

mutchler
Sticky Note
It is CRITICAL that you call shutdown before the program stops. Otherwise, the physical robot and/or the serial connection may be in a funky state that makes it hard to re-run.

mutchler
Highlight

mutchler
Highlight

mutchler
Highlight

Documentation version 2.1: 2009 June 16

All wait commands do not allow new commands to run while the robot waits; but queue them for later execution.

wait@nce(centimeters) Waits until the Create has traveled the requested distance before executing the
next command
Arguments: centimeters — Distance to travel
Return: n/a
wait@(degrees) Waits until the Create has rotated the requested number of degrees before

executing the next command

Arguments: | degrees —angle to rotate

Return: n/a
setLEDs(powerColor, Turns the play and advance LEDs on or off (1 or 0, respectively). Sets the power
powerlntensity, play, advance) LED to the requested brightness (0 to 255) and the requested color, ranging from
0 (Green) to 255 (Red).
Arguments: powerColor — Color for power LED
powerlntensity — Brightness for power LED
play — play LED on/off
advance — advance LED on/off
Q Return: n/a
Song(notelist) Plays the notes from notelist sequentially. The list consists of (noteNumber,
duration) tuples.
Arguments: notelist — list of notes to play
@ Return: n/a
Note(noteNumber, duration, Plays a single note for the requested duration.
songNumber) Arguments: noteNumber — index of the note to play (0
duration — how long to play the note(0 to ZST,J
measured in 64ths of a second)
songNumber — number of song to play the note as
Return: n/a
setSong(songNumber, notelList) Stores the list of notes from notelList (up to 16 notes per song) into the robot’s
memory as the song number given by songNumber (0 to 15).
Arguments: songNumber — song number to store song as
notelList — list of notes in the song
Return: n/a
playSongNumber(songNumber) Plays the song stored in the robot’s memory with the requested song number.
Arguments: songNumber — number of song in memory to play
Return: n/a
getSensor(sensorToRead) Queries the requested sensor and returns its interpreted value. The argument

should be a String containing the name of one of the sensor mappings from the
table in the “Sensor Access” section below.

Arguments: | sensorToRead — String name of the requested sensor

Return: The interpreted data for the requested sensor mapping: an
integer or an array if successful or None if the sensor cannot be
successfully queried.

startIR(byte_value) Starts broadcasting the given IR signal.
Arguments: | byte —integer (0-254) to broadcast. 255 is “no signal”.
Return: n/a

stoplR() Stop broadcasting the IR signal being sent as a result of startIR().

Arguments: | n/a

Return: n/a

mutchler
Sticky Note
DO NOT USE any of the waitBlah methods. They do NOT do what you might think that they would.

mutchler
Sticky Note
DO NOT USE any of the waitBlah methods. They do NOT do what you might think that they would.

mutchler
Highlight

mutchler
Highlight

mutchler
Highlight

mutchler
Highlight

mutchler
Highlight

mutchler
Highlight

mutchler
Sticky Note
The noteList is restricted to at most 16 notes.

This command does not block, so attempting to play a second song without waiting for the first to complete will clip the first song. You can use the SONG_PLAYING sensor reading to tell whether a song has finished playing -- trying to "time" it is unreliable.

mutchler
Sticky Note
The third argument is optional and usually omitted.

mutchler
Highlight

mutchler
Sticky Note
WRONG. Note numbers are from 31 to 127 (your ear may not be able to hear all of those notes, however). See the NoteCodesForCreateRobots document from the Robotics section of the course web site for details.

Documentation version 2.1: 2009 June 16
SENSOR ACCESS

This section contains important information on the available sensors, and how to properly access them. Examples of

using getSensor():
angle = robot.getSensor(“ANGLE™) # create’s current angle relative to its start

leftBumper = robot.getSensor(“BUMPS_AND WHEEL DROPS)[3] # or use BUMP_LEFT for 3
it (leftBumper == 1):
print “Hit something on the left!”

34 different sensors are available:

Name Description

BUMPS_AND_WHEEL DROPS The values of the bumper and wheel drop sensors (0 = no bump, 1 =bumpor0 =
wheel raised, 1 = wheel dropped). Interpreted as an array of 5 values:
[WHEELDROP_CASTER, WHEELDROP_LEFT, WHEELDROP_RIGHT, BUMP_LEFT,

BUMP_RIGHT]
CLIFF_LEFT_SIGNAL The strength of the left cliff sensor’s signal (0-4095). Interpreted as an int.
CLIFF_FRONT_LEFT_SIGNAL The strength of the front left cliff sensor’s signal (0-4095). Interpreted as an int.
CLIFF_FRONT_RIGHT _SIGNAL The strength of the front right cliff sensor’s signal (0-4095). Interpreted as an int.
CLIFF_RIGHT_SIGNAL The strength of the right cliff sensor’s signal (0-4095). Interpreted as an int.
WALL_SIGNAL The strength of the wall sensor’s signal (0-4095). Interpreted as an int.
BUTTONS The state of the Play and Advance buttons on the Create (0 = button not pressed,

1 = button pressed). Interpreted as an array of 2 values:
[BUTTON_ADVANCE, BUTTON_PLAY]

DISTANCE The distance in millimeters the Create has traveled since the last distance request
(-32768 to 32767). Positive values indicate forward travel and negative values
indicate reverse travel. Interpreted as an int.

ANGLE The angle in degrees the Create has turned since the last angle request (-32768 to
32767). Positive values are CCW and negative are CW. Interpreted as an int.

IR_BYTE The byte received by the IR sensor (255=no signal detected, 0-244 = specific IR
value received) Interpreted as an int.

VOLTAGE Voltage in millivolts of the Create’s battery (0-65535). Interpreted as an int.

Ol_MODE The current mode the Create isin (0, 1, 2, 3). Interpreted as an int.

SONG_PLAYING

State of whether or not a song is playing (0 = no song playing, 1 = song playing).
Interpreted as an int.

SONG_NUMBER

The current song being played (0 to 15). Interpreted as an int.

VIRTUAL_WALL

State of the virtual wall sensor (0 = no virtual wall detected, 1 = virtual wall
detected). Interpreted as an int.

OVERCURRENTS

State of the two wheel and three Low Side Driver overcurrent sensors (0 = no
overcurrent, 1 = overcurrent). Interpreted as an array of 5 values:
[LEFT_WHEEL, RIGHT_WHEEL, LD_2, LD_0, LD_1]

CHARGING_STATE

Indicated the current charging state of the Create. Interpreted as an int.
Possible values:
0 Not charging
Reconditioning Charging
Full Charging
Trickle Charging
Waiting
5 Charging Fault Condition

A WN PR

CURRENT

The current in milliamps flowing into or out of the Create’s battery (-32768 to
32767). Negative currents are discharging and positive currents are charging.
Interpreted as an int.

BATTERY_TEMPERATURE

Temperature in Celsius of the Create’s battery (-128 to 127). Interpreted as int.

mutchler
Highlight

mutchler
Highlight

mutchler
Highlight

mutchler
Highlight

mutchler
Highlight

mutchler
Highlight

mutchler
Highlight

mutchler
Highlight

mutchler
Highlight

mutchler
Highlight

mutchler
Highlight

Documentation version 2.1: 2009 June 16

BATTERY_CHARGE

The current charge of the Create’s battery in milliamp-hours (0-65535).
Interpreted as an int.

BATTERY_CAPACITY

The estimated charge capacity of the Create’s battery in milliamp-hours (0-
65535). Interpreted as an int.

NUMBER_OF_STREAM_PACKETS

Number of data stream packets (0 to 43). Interpreted as an int.

USER_DIGITAL_INPUTS

The values of the digital input pins from the cargo bay connector (each is 0 or 1).
Interpreted as an array of 5 values:

[BAUD_RATE_CHANGE, DIGITAL_INPUT_3, DIGITAL_INPUT_2, DIGITAL_INPUT_1,
DIGITAL_INPUT_0]

USER_ANALOG_INPUT

The value of the analog input pin from the cargo bay connector (0 to 1023).
Interpreted as an int.

CHARGING_SOURCES_AVAILABLE

The state of the Create’s connection to a charging course (each is 0 or 1).
Interpreted as an array of 2 values: [HOME_BASE, INTERNAL CHARGER]

WALL

State of the wall sensor (0 = no wall, 1 = wall seen). Interpreted as an int.

CLIFF_LEFT

State of the left cliff sensor (0 = no cliff, 1 = cliff). Interpreted as an int.

CLIFF_FRONT_LEFT

State of the front left cliff sensor (0 = no cliff, 1 = cliff). Interpreted as an int.

CLIFF_FRONT_RIGHT

State of the front right cliff sensor (0 = no cliff, 1 = cliff). Interpreted as an int.

CLIFF_RIGHT State of the right cliff sensor (0 = no cliff, 1 = cliff). Interpreted as an int.
VELOCITY The velocity most recently requested in mm/s (-500 to 500). Interpreted as int.
RADIUS The radius most recently requested in mm (-32768 to 32767). Interpreted as int.

RIGHT_VELOCITY

The velocity of the right wheel in mm/s (-500 to 500). Interpreted as an int.

LEFT_VELOCITY

The velocity of the left wheel in mm/s (-500 to 500). Interpreted as an int.

For more information on the USER_DIGITAL_INPUTS and USER_ANALOG_INPUT sensors, see the “User 10" section

Documentation version 2.1: 2009 June 16
ADVANCED FEATURES

You should be able to complete all the assignments for this course without anything else in this document. They are
included for the sake of completeness and the adventuresome.

OTHER METHODS OF THE CREATE CLASS

Name Description
setDigitalOutputs(digOut2, digOut1, Sets the digital output pins to the requested values (each 0 or 1).
digOut0) Arguments: digOut2 — Value for digital output pin 2
digOutl — Value for digital output pin 1
digOut0 — Value for digital output pin 0
Return: n/a
setLowSideDrivers(driver2, driverl, Sets the low side driver pins to fully on (1) or fully off (0).
driver0) Arguments: driver2 — Value for low side driver pin 2
driverl — Value for low side driver pin 1
driver0 — Value for low side driver pin 0
Return: n/a
setPWMLowSideDrivers(dutyCycle2, Sets the low side driver pins to the requested duty cycle (0 to 255).
dutyCyclel, dutyCycle0) Arguments: dutyCycle2 — Duty cycle for low side
driver pin 2
dutyCyclel — Duty cycle for low side
driver pin 1
dutyCycleO — Duty cycle for low side
driver pin O
Return: n/a
seekDock() Instructs the robot to begin looking for the home base and dock with it.
Arguments: n/a
Return: n/a
demo(demoNumber) Instructs the robot to run the requested demo. The possible values are as
follows:

-1 stop current demo
0 wander the surrounding area
1 wander and dock, when the docking station is seen
2 wander a more local area
3 wander to a wall and then follow along it
4 figure 8
5 "wimp" demo: when pushed, move forward
when bumped, move back and away
6 home: will home in on a virtual wall, as
long as the back and sides of the IR receiver
are covered with tape
7 tag: homes in on sequential virtual walls
8 pachelbel: plays the first few notes of the Canon in D
9 banjo: plays chord notes according to its cliff sensors
chord key is selected via the bumper

Arguments: demoNumber — index of the demo to run
Return: n/a
toSafeMode() Puts the robot into Safe Mode

Arguments: ‘ n/a

mutchler
Highlight

Documentation version 2.1: 2009 June 16

Return: ‘ n/a
toFullMode() Puts the robot into Full Mode
Arguments: n/a
Return: n/a
getMode() Returns the numerical value of the last known mode of the robot.
Arguments: n/a
Return: Mode number

All wait commands do not allow new commands to run while the robot waits; but queue them for later execution.

wait@(seconds)

Instructs the robot to wait the
requested number of seconds
before executing the next

command.
Arguments: seconds — Number of seconds to wait
Return: n/a
wait@t(eventNumber) Waits for the specified event to
happen before executing the next
command
Arguments: eventNumber — ID number of the event to
wait for
Return: n/a
ADDITIONAL CLASSES

These are classes are used by the main Create class for exception and data handling.

Name

Description

CommunicationError

Used as an exception for failures in serial communication with the Create robot

SensorModule

Used to define the properties for a sensor, for querying the robot and storing the returned
value. See the following “Sensor Access” section for more information.

Fields: | ID —the packet ID used for querying the robot

interpret — How the raw sensor data will be interpreted before being returned
size — The number of bytes the returned sensor data should be

Data — the interpreted value of the sensor

PERTINENT MODULE LEVEL VARIABLES

This table describes the pertinent variables used in the library. Variables used internally are omitted.

Name Value Description

RADIUS 115 Radius of the Create robot in millimeters

OFF_MODE 0 Mapping for value returned by getMode()

PASSIVE_MODE | 1 Mapping for value returned by getMode()

SAFE_MODE 2 Mapping for value returned by getMode()

FULL_MODE 3 Mapping for value returned by getMode()

SENSORS - List of SensorModule objects used to access the sensors on the Create (See the “Sensor
Access” section for more information)

mutchler
Sticky Note
DO NOT USE any of the waitBlah methods. They do NOT do what you might think that they would.

mutchler
Sticky Note
DO NOT USE any of the waitBlah methods. They do NOT do what you might think that they would.

mutchler
Highlight

Documentation version 2.1: 2009 June 16

MODULE LEVEL FUNCTIONS
This table describes the create library’s module-level functions.
Name Description
bytesOfR(r) Prints the bytes of data in a sensor reply.
Arguments: | r—raw (binary) data from a sensor reply
Return: n/a
bitOfByte(bit, byte) Returns the specified bit of a byte
Arguments: | bit — The index of the bit to return (0 to 7)
byte — The byte from which to read the specified bit
Return: The specified bit (0 or 1), 0 if the request is out of range

toBinary(val,numBits)

Prints the specified number of bits of the given value in binary, starting with the

least significa

nt bit.

Arguments: | val — The value to print in binary
numBits — The number of bits of the binary value to print
Return: n/a

fromBinary(s)

Creates a value from the given string of 0’s and 1's

Arguments:

s — String consisting of 0’s and 1's

Return:

The value represented by the “binary” string passed in

twosComplementlbyte(byte)

Returns the two’s complement value of byte

Arguments:

byte — 1 byte value to use (0 to 255)

Return:

byte value in two’s complement (-128 to 127)

twosComplementint2bytes(highByte,

lowByte)

Returns the two’s complement of the 2-byte value given

Arguments: | highByte — The upper byte of the two-byte value
lowByte — The lower byte of the two-byte value
Return: Returns two’s complement of given value (-32768 to 32767)

toTwosComplement2Bytes(value)

Returns the upper and lower bytes of the given value (interpreted in two’s

complement)

Arguments:

value — The value to read the 2 bytes of

Return:

(upperByte, lowerByte), a tuple consisting of the bytes formed
from the given value

USER IO

This section is intended for further information on the user 1/0O pins on the cargo bay connector of the Create.
Documentation is not yet created for this, so please refer to the Create manual and the SCI manual for the time being.
For more information on these documents and the use of the I/0, ask your professor. Improper connection to any of the
10 pins can cause damage to the connected circuitry or to the robot itself (think sparks, smoke, and S$S out of your

pocket: don’t use this feature yet!)

