
Getting Input From the User by Using scanf Page 1

Discussion: The most common way to get input from the user is by using the scanf

function.

 But use getchar or getc to get input character by character, and use fgets to get
input line by line, and use fscanf, fgetc or fgets to get input from a file.

The scanf function takes as its arguments:

1. A format string that consists of format specifiers of the form %blah, separated by
spaces, where %blah is typically one of:

 %i – to input an int (i.e., signed integer); equivalently, you can use %d for this

 %f – to input a float (i.e., single-precision floating-point number)

 %lf – to input a double (i.e., double-precision floating-point number)

 %s – to input a char* (i.e., string of non-white-space characters)

 %u – to input an unsigned int (i.e., an integer whose value is always

treated as a non-negative integer)

 %li – to input a long (i.e., long integer – but in the environment that we use
for CSSE 120, a long is no longer than an int)

 %c – to input a char (but getchar is a better choice for character input)

For example, the format string for inputting an integer, single-precision floating-point
number, and a double-precision floating-point number, in that order, would be:

 "%i %f %lf"

2. Exactly as many addresses of variables as there are format specifiers in the format
string.

 Each variable must have type that matches the corresponding format specifier.

 These arguments must be addresses of variables (instead of the variables
themselves) so that scanf can put values into those variables.

 See Using Pointers to Send Information Back From a Function for further
discussion about why the arguments to scanf must be addresses of
variables instead of the variables themselves.

Continuing the above example in which the user will input an integer, a single-precision
floating-point number, and a double-precision floating-point number, in that order, the
scanf statement would be:

 scanf("%i %f %lf", &a, &x, &y);

where a would have previously been declared to be an int and x and y would
previously have been declared to be double’s.

../UsingPointersToSendInfoBackFromAFunction/index.html

Getting Input From the User by Using scanf Page 2

Example: The following code declares variables whose values the user will input, prompts

the user to do the input, and then captures the input values in the variables by using scanf.

In response to this scanf, the user might enter:

 45.3 -12 8790 4.9999 HelloHowAreYou?

Notes:

1. The user can enter the values separated by any white-space, that is, separated by
spaces, tabs or newlines, as desired, in any mix. The scanf function skips over (and
ignores) white-space except when doing a %c format specifier.

2. If the user enters malformed data (for example, enters “four” in response to a %i), the
program generally continues without an error message but puts garbage data in that
variable and in variables subsequently input from the user.

3. Here is why the fflush is necessary: When you print something using printf, the
characters to be printed are stored temporarily in a “buffer”; later, they are sent a
bunch at a time to the output device (here, the console). This is done for efficiency –
you usually don’t want to see the characters appear one by one, and it is faster to send
them in a burst rather than one by one. A newline character normally flushes the
buffer. When you want to force a flush, as here, use the fflush function.

4. Note that there are 5 format specifiers and 5 addresses of variables that match the
format specifiers. Mismatches in number or type will either put garbage values into
variables or crash the program when the scanf executes.

5. Use & to get addresses of non-pointer variables. An array is, by definition, a pointer
(whose value is an address), so we use the array name itself (blah in the above example)
to input a string. (Equivalently, we could have used &blah[0].)

double x;

int a, b;

float y;

char blah[100];

printf("Enter 4 numbers (float, int, int, float), then a word: ");

fflush(stdout);

scanf("%lf %i %i %f %s", &x, &a, &b, &y, blah);

This printf just prints a string that tells the user that
she is expected to enter some input now – we call
such a string a “prompt”.

See the Notes below for why the fflush is necessary.

Here is the scanf statement that
actually does the input.

Note that x, which is of type
double, needs %lf, not %f.

An array is, by definition, a pointer
(whose value is an address), so we use
the array name itself (blah in the above
example) to input a string.

Getting Input From the User by Using scanf Page 3

Gotcha’s: The scanf function is easily abused, often resulting in hard-to-debug errors:

1. Wrong number of arguments: If there are not exactly as many addresses of variables as
there are format specifiers in the format string, most compilers give no warning. Instead,
the program will put garbage values into the variables or crash when the scanf executes.

 Example errors: scanf("%i %f", a);
 // Two format specifiers, but only one variable

 scanf("%i", a, b, c);
 // One format specifier, but three variables

2. Wrong type of variable/format specifier: If any variable whose address is given does not
match its corresponding format specifier, most compilers give no warning. Instead, the
program will put garbage values into the variables or crash when the scanf executes.

 Example error: using %f instead of %lf to input into a variable of type double:

 double blah;

 scanf("%f", &blah); // Need %lf here

3. Malformed data: If the user enters malformed data (for example, enters “four” in

response to a %i), the program generally continues without an error message but puts
garbage data in that variable and in variables subsequently input from the user.

4. String overflow: When entering a string (format specifier %s), if the user enters more
characters than the character array has allocated, the extra characters overflow the array
without any warning, wiping out whatever happens to be stored in memory after the
character array. The result can be an immediate crash, mysterious changes in values of
other variables, or a delayed crash – all hard to debug.

 Example error: int age = 12;

 char name[5];

 scanf("%s", name);

If the user enters a word longer than 4 characters for the name, the program may crash

or corrupt the age variable (or some other variable in the program).

The input word must be at most 4 (not 5) characters long, to leave space for the ‘\n’
that denotes the end of a C string – scanf inserts that ‘\n’ automatically.

Note that the program MAY crash or corrupt variables if the input word is too long, but
it also might work correctly until changes to the program move the placement of
variables in memory. So if your program suddenly stops working correctly, consider the
possibility that in code you previously wrote, you went past the end of an array.

5. Other characters in the format string: The first argument to scanf, that is, its format string,
can be more elaborate than described above. However, until you know more about the
format string for scanf, stick to the form in the above example: a sequence of %blah format
specifiers, each of which is as described above, separated by spaces.

 Example error: scanf("%i, %f, %i", a, x, b);

// Avoid commas in the format string – doing so requires

// that the user put commas in their input.

Getting Input From the User by Using scanf Page 4

Another example: The following code has two functions, each of which gets a

floating-point number from the user using scanf. Note the two different ways by which the
functions send back the input number to the caller.

In response to this scanf, the user might enter:

 45.3 -12 8790 4.9999 HelloHowAreYou?

#include <stdio.h>

#include <stdlib.h>

float getInputOneWay();

void getInputAnotherWay(float* b);

int main() {

 float x, y;

 x = getInputOneWay();

 getInputAnotherWay(&y);

 printf("%f %f\n", x, y); // Demonstrates that the function calls worked

 return EXIT_SUCCESS;

}

// Prompt for and input a floating-point number from the user

// and return the number that was inputted.

float getInputOneWay() {

 float a;

 printf("Enter a floating-point number: ");

 fflush(stdout);

 scanf("%f", &a);

 return a;

}

// Prompt for and input a floating-point number from the user and use

// the pointer parameter to send the input number back to the caller.

void getInputAnotherWay(float* b) {

 printf("Enter a floating-point number: ");

 fflush(stdout);

 scanf("%f", b);

}

Test your understanding: Do you see why there MUST be an
ampersand in the scanf in getInputOneWay but MUST NOT
be an ampersand in the scanf in getInputAnotherWay?

If not, you might want to reexamine
Using Pointers to Send Information Back From a Function.

../UsingPointersToSendInfoBackFromAFunction/index.html

