
Page 1 of 19

Exam 2 – Practice Problems for the Paper-and-Pencil portion
Exam 2 will assess material covered in Sessions 1
through 14. The paper-and-pencil part will draw
problems especially from the following concepts.
The numbers in the brackets at the beginning of
the item are problems that let you practice that
concept.

Problems may include tracing or writing code (as
well as questions of other forms, like True/False
and multiple choice).

• [1, 2, 4, 23, 37] Scope, especially scope
inside a method.

• [1, 4, 5, 37] Flow of control through
function calls and returns. Including calls
within expressions, e.g.

 print(foo1(...), foo2(...)) or

 z = foo1(...) + foo2(...) + foo1(...) or

 w = foo1(foo3(...) + foo4(...) + ...)

Especially problems that assess the above by
tracing code by hand.

• [3, 6, 19, 20 - 22] Range expressions:
All 3 forms.

• [5, 7 - 12, 17, 18, 33, 36] Indexing into a
sequence, especially for the 1st and last items
in the sequence. Lists, tuples and strings.
Out of bounds errors, including (failed)
attempts to accumulate by statements like
this WRONG code:

s = []

for k in range(...):

 x[k] = ...

• [19, 20 – 22, 42] Code that loops using a
range statement and sums, counts, or
accesses items in a sequence. Especially
problems that assess the above by tracing
code by hand.

• [13 - 18, 21] Concatenating items to a
sequence. Doing so by using the + operator
for strings and tuples and the append method
for lists.

• [19 - 22] Writing simple functions that loop
through a sequence and:

o access (e.g. sum/count),
doing all or part of the sequence,
forwards or backwards

o find

o accumulate

o get max or min

o access two places in the sequence in
each iteration of the loop

o access two sequences in parallel

as well as combinations of the above.

• [13 - 16, 24 - 32, 38, 39] References and
related concepts.

• [30 - 32, 38, 39] Box and pointer diagrams.

• [27 - 29, 33 - 35] Mutation of a list / object
by a function.

• [10 - 12, 34, 35] Fact that tuples and strings
are immutable. What that means.

• [4, 37, 40, 41] Implementing a class. What
SELF is. How to use it.

• [4, 37] Tracing by hand code that includes
method calls on objects from a class whose
code is given.

The actual exam’s paper-and-pencil part will be
much shorter than this collection of practice
problems. That said, all of these practice
problems are excellent practice for Exam 2.

Pay special attention to Problems:

3 4 5 19 – 22 24 – 26 29 – 32 and
37 – 42

since they summarize many of the concepts and
are in forms that we often use for exams.

Also be sure to review your Exam 1 paper-and-
pencil problems, since you may see similar
questions on some of those concepts.

Page 2 of 19

1. Consider the code snippets defined below. They are contrived examples with poor style but will run
without errors. For each, what does it print when main runs? (Each is an independent problem. Pay
close attention to the order in which the statements are executed.)

Prints: __________________________ Prints: ________________________ Prints: ____________________________

 _____________________________ ____________________________ ________________________________

 _____________________________ ____________________________ ________________________________

 _____________________________ ____________________________ ________________________________

def main():

 x = 5

 y = 3

 print('main 1', x, y)

 foo(x, y)

 print('main 2', x, y)

def foo(a, b):

 print('foo 1', a, b)

 a = 66

 b = 77

 x = 88

 y = 99

 print('foo 2', a, b,

 x, y)

def main():

 x = 5

 y = 3

 print('main 1', x, y)

 foo(x, y)

 print('main 2', x, y)

def foo(x, y):

 print('foo 1', x, y)

 a = 66

 b = 77

 x = 88

 y = 99

 print('foo 2', a, b,

 x, y)

def main():

 x = 5

 y = 3

 print('main 1', x, y)

 foo(y, x)

 print('main 2', x, y)

def foo(x, y):

 print('foo 1', x, y)

 a = 66

 b = 77

 x = 88

 y = 99

 print('foo 2', a, b,

 x, y)

Page 3 of 19

2. Consider the code snippet to the right. Both print statements are wrong.

• Explain why the first print statement (in main) is wrong.

• Explain why the second print statement (in foo) is wrong.

3. Consider the code snippet below. It
is a contrived example with poor
style, but it will run without errors.
What does it print when it runs?

Write your answer in the box to the
right.

def main():

 x = 5

 foo(x)

 print(z)

def foo(a):

 print(x)

 z = 100

 return z

 b = [44]

 a = (50, 30, 60, 77)

 x = 3

 for k in range(len(a)):

 b = b + [a[x - k]]

 print(k, b)

 print('A.', a)

 print('B.', b)

 print('X.', x)

Output:

Page 4 of 19

4. Consider the code on the page to the right of this page. It is a contrived example with poor style but
will run without errors. In this problem, you will trace the execution of the code. As each location is
encountered during the run, in the table below:

• CIRCLE each variable that is defined at that location.

• WRITE the VALUE of each variable that you circled directly BELOW the circle.

For example, the run defines the functions and then calls main, as usual. The first of the eleven locations to be
encountered is Location 8. At Location 8, the only variable defined is a, with value 44 at that point of the program’s
run. So, on the row for Location 8, you would circle a and write 44 directly below it.

Note that you fill out the table in the order that the locations are encountered, NOT from top to bottom. ASK
FOR HELP IF YOU DO NOT UNDERSTAND WHAT THIS PROBLEM ASKS YOU TO DO.

When Location 1
is encountered

the 1st time

a m m1.a m1.m m2.a m2.m self.a self.m

When Location 2
is encountered

the 1st time

a m m1.a m1.m m2.a m2.m self.a self.m

When Location 1
is encountered

the 2nd time

a m m1.a m1.m m2.a m2.m self.a self.m

When Location 2
is encountered

the 2nd time

a m m1.a m1.m m2.a m2.m self.a self.m

Location

3

a m m1.a m1.m m2.a m2.m self.a self.m

Location

4

a m m1.a m1.m m2.a m2.m self.a self.m

Location

5

a m m1.a m1.m m2.a m2.m self.a self.m

Location
6

a m m1.a m1.m m2.a m2.m self.a self.m

Location

7

a m m1.a m1.m m2.a m2.m self.a self.m

Location

8

a m m1.a m1.m m2.a m2.m self.a self.m

Location

9
a m m1.a m1.m m2.a m2.m self.a self.m

Location

10
a m m1.a m1.m m2.a m2.m self.a self.m

Location 11 a m m1.a m1.m m2.a m2.m self.a self.m

Page 5 of 19

Showing your work (by marking up the code, drawing a box-and-pointer diagram, or any other way
you wish) is the best way to allow for partial credit.

Feel free to use a separate blank sheet of paper if you like.

ASK FOR HELP IF YOU DO NOT UNDERSTAND
WHAT THIS PROBLEM ASKS YOU TO DO.

class Mini(object):

 def __init__(self, a):

 #### Location 1

 self.a = 3

 self.m = a + 5

 #### Location 2

 def blah(self):

 #### Location 3

 self.a = self.a + 100

 #### Location 4

def foo(a):

 #### Location 5

 a = 6

 m = 31

 #### Location 6

 m1 = Mini(10)

 m2 = Mini(22)

 m1.m = m1.m + m2.m

 # Location 7

 return m1

def main():

 a = 44

 #### Location 8

 m2 = foo(a)

 #### Location 9

 m2.blah()

 #### Location 10

main()

Location 11

Page 6 of 19

5. Consider the code snippet below. It is a contrived example with poor style, but it will run without
errors. What does it print when it runs?

Write your answer in the box to the right of the code.

def main():

 a = alpha(3)

 print()

 b = beta(2)

 print()

 g = gamma(6)

 print()

 c = alpha(beta(10))

 print()

 print("main!", a, b, g, c)

def alpha(x):

 print("Alpha!")

 return x + 7

def beta(y):

 print("Beta!")

 return 5 + alpha(y + 10)

def gamma(z):

 print("Gamma!", alpha(1), beta(1))

 return (alpha(z) + beta(z - 3)

 + alpha(z + 2))

main()

Output:

Page 7 of 19

6. For each of the following range expressions, write the sequence that it generates. Write empty if
the generated sequence is the empty sequence (i.e., has no items in it). We have done the first two
for you as examples.

• range(6) generates the sequence: 0 1 2 3 4 5

• range(6, 6) generates the sequence: empty

• range(3, 6) generates the sequence:

• range(12, 6) generates the sequence:

• range(3, 8, 1) generates the sequence:

• range(3, 8, 2) generates the sequence:

• range(4, 8, 2) generates the sequence:

• range(5, 14, 3) generates the sequence:

• range(5, 15, 3) generates the sequence:

• range(20, 15, -1) generates the sequence:

• range(20, 15) generates the sequence:

• range(15, 20, -1) generates the sequence:

• range(20, 17, -3) generates the sequence:

• range(20, 16, -3) generates the sequence:

• range(20, 20, -3) generates the sequence:

• range(5, 0, -1) generates the sequence:

• range(5, -1, -1) generates the sequence:

• range(5, -1, -3) generates the sequence:

• range(5, -2, -3) generates the sequence:

• range(8) generates the sequence:

• range(100, 100) generates the sequence:

Page 8 of 19

7. Consider the list X = [3, 7, 1, 0, 99, 5].

For each of the following print statements, indicate what would be printed. Write ERROR if the
print statement would generate an exception (error).

• print(len(X)) would print:

• print(X[0]) would print:

• print(X[1]) would print:

• print(X[5]) would print:

• print(X[6]) would print:

• print(X[-1]) would print:

• print(X[-6]) would print:

• print(X[-7]) would print:

• print(X[len(X)]) would print:

• print(X[len(X) - 1]) would print:

8. Consider the tuple T = (4, 10, 3).

For each of the following print statements, indicate what would be printed. Write ERROR if the
print statement would generate an exception (error).

• print(len(T)) would print:

• print(T[0]) would print:

• print(T[2]) would print:

• print(T[3]) would print:

• print(T[-1]) would print:

• print(T[len(T)]) would print:

• print(T[len(T) - 1]) would print:

Page 9 of 19

9. Consider the string s = 'hello'.

For each of the following print statements, indicate what would be printed. Write ERROR if the
print statement would generate an exception (error).

• print(len(s)) would print:

• print(s[0]) would print:

• print(s[4]) would print:

• print(s[5]) would print:

• print(s[len(s)]) would print:

• print(s[len(s) – 1]) would print:

• print(s[-1]) would print:

10. Consider the list X = [3, 7, 1, 0, 99, 5] and the statement:

X[3] = 100

Would the above statement would generate an exception (error)? Yes or No (circle your answer)

11. Consider the tuple T = (3, 7, 1, 0, 99, 5) and the statement:

T[3] = 100

Would the above statement would generate an exception (error)? Yes or No (circle your answer)

12. Consider the string s = 'hello' and the statement:

s[3] = 'y'

Would the above statement would generate an exception (error)? Yes or No (circle your answer)

13. Consider a tuple T. Write a statement that would make T refer to a new tuple with the same items
as it currently has, but also with 74 appended to the end of T.

14. Consider a string s. Write a statement that would make s refer to a new string with the same
characters as it currently has, but also with 'r' appended to the end of s.

15. Consider a list X. Write a statement that would make X refer to a new list with the same items as it
currently has, but also with 'r' appended to the end of X.

16. Consider a list X. Write a statement that would make X refer to the same list, but with that list
having had 'r' appended to the end of X.

Page 10 of 19

17. Consider the following code snippet:

X = []

X[0] = 100

X[1] = 77

X[2] = 88

Would the above statements generate an exception (error)? Yes or No (circle your answer)

18. Consider the following code snippet:

X = []

X.append(100)

X.append(77)

X.append(88)

Would the above statements generate an exception (error)? Yes or No (circle your answer)

If not, what would be the value of the list X after the above statements execute?

19. Consider a sequence named X. Write statements that would:

• Print the first (beginning) item of the sequence:

• Print the last item of the sequence:

• Print all the items of the sequence, one by one, from beginning to end:

Note: in this and the following sub-problems of this problem, the statement inside the loop
should be something like print(X[k]). That is, let the range statement do all the heavy lifting.

Page 11 of 19

• Print all the items of the sequence, one by one, from end to beginning:

• Print all the items at odd indices of the sequence, one by one, beginning to end:

• Print all the items of the sequence that are odd, one by one, beginning to end (for this problem,
assume that the sequence contains only positive integers):

• Starting at the second-to-last item in the sequence and going backwards, print every 4th item in
the sequence:

Page 12 of 19

20. Write a function (including its def line) named count_small that takes a sequence of numbers
and a number Z, and returns the number of items in the sequence that are less than Z. For example:

count_small([8, 2, 7, 10, 20, 1], 7) returns 2 (since 2 and 1 are less than 7)

count_small([8, 2, 7, 10, 20, 1], -4) returns 0

21. Write a function (including its def line) named get_all_at_even_indices that takes a
sequence and returns a list of the items in the sequence at even-numbered indices. For example:

get_all_at_even_indices([8, 2, 7, 10, 20]) returns [8, 7, 20]

get_all_at_even_indices('abcdefgh') returns ['a', 'c', 'e', 'g']

Page 13 of 19

22. Write a function (including its def line) named get_first_even_x that takes a sequence of
rg.Circle objects and returns the radius of the first rg.Circle in the sequence whose
center’s x-coordinate is even, or -999 if there are no such circles in the sequence. For example:

get_first_even_x ([rg.Circle(rg.Point(115, 20), 50),

 rg.Circle(rg.Point(8, 1), 33),

 rg.Circle(rg.Point(12, 2), 22)]) returns 33

get_first_even_x ([rg.Circle(rg.Point(115, 20), 50),

 rg.Circle(rg.Point(37, 22), 33),

 rg.Circle(rg.Point(11, 2), 22)]) returns -999

23. Consider the following two candidate function definitions:

• Which is “better”? Circle the better function.

• Briefly explain why you circled the one you did.

def foo():

 print('hello')

def foo(x):

 print(x)

Page 14 of 19

24. True or false: Variables are REFERENCES to objects. True False (circle your choice)

25. True or false: Assignment (e.g. x = 100)
causes a variable to refer to an object. True False (circle your choice)

26. True or false: Function calls (e.g. foo(54, x))
also cause variables to refer to objects. True False (circle your choice)

27. Give one example of an object that is a container object:

28. Give one example of an object that is NOT a container object:

29. True or false: When an object is mutated, it no longer refers
to the same object to which it referred prior to the mutating. True False
 (circle your choice)

30. Consider the following statements:

c1 = rg.Circle(rg.Point(200, 200), 25)

c2 = c1

At this point, how many rg.Circle objects have been constructed? 1 2
 (circle your choice)

31. Continuing the previous problem, consider an additional statement that follows the preceding two
statements:

c1.radius = 77

After the above statement executes, the variable c1 refers
to the same object to which it referred prior to this statement. True False
 (circle your choice)

32. Continuing the previous problems:

• What is the value of c1’s radius after the
statement in the previous problem executes? 25 77 (circle your choice)

• What is the value of c2’s radius after the
statement in the previous problem executes? 25 77 (circle your choice)

Page 15 of 19

33. Which of the following two statements mutates an object? (Circle your choice.)

numbers1 = numbers2

numbers1[0] = numbers2[0]

34. Mutable objects are good because:

35. Explain briefly why mutable objects are dangerous.

36. What is the difference between the following two expressions?

numbers[3] numbers = [3]

37. Consider the code shown to the right.

When Location 1 is reached the first time:

• What is the value of miles?

• What is the value of self?

When Location 1 is reached the second
time:

• What is the value of miles?

• What is the value of self?

What does the code print when it runs?

class Car(object):

 def __init__(self, m):

 self.mileage = m

 def drive(self, miles):

 #### Location 1

 self.mileage = self.mileage + miles

def cars():

 car1 = Car(10000)

 car2 = Car(500)

 car1.drive(333)

 car2.drive(200)

 print(car1.mileage, car2.mileage)

cars()

Page 16 of 19

38. Consider the following four statements (which use the Point class you wrote in an exercise):

p1 = Point(4, 5)

p2 = Point(p1.x, p1.y)

p3 = p1

p4 = p2

At this point, how many Point objects have been constructed? 1 2 3 4
 (circle your choice)

39. Consider the code snippet to the right. Trace the execution of the code snippet and draw a box-
and-pointer diagram on the page to the right of this page as you trace the code’s execution.

After the code snippet is executed, what are the values of the variables? (Write your answer in the spaces
provided below.)

p1.x = _________________

p1.y = _________________

p2.x = _________________

p2.y = _________________

p3.x = _________________

p3.y = _________________

p4.x = _________________

p4.y = _________________

p1 = rg.Point(4, 5)

p2 = rg.Point(p1.x, p1.y)

p3 = p1

p4 = p2

p3.x = 99

p4.y = 600

p4 = rg.Point(42, 42)

Reminder:

You must draw (on the page
to the right of this page) a

** box-and-pointer **

diagram for this problem.

Page 17 of 19

Draw your box-and-pointer diagram on this page.

Page 18 of 19

40. Assume that there is a class named Elevator whose constructor:

• requires two arguments: the number of floors in the Elevator’s building, and the current floor at
which the Elevator resides.

• and stores those arguments in instance variables named num_floors and current_floor,
respectively.

Assume further that Elevator objects have a go_to_floor method that takes a positive
argument N that is the floor to which the Elevator should move, and moves the Elevator to floor N
unless N is greater than the Elevator’s number of floors (in which case the Elevator remains at its
current floor).

a. Write code that would construct an Elevator object for a building with 12 floors, with the

Elevator starting at floor 5.

b. Write code that would use the go_to_floor method to move the Elevator from part (a)

to the floor that is 3 floors higher than its current floor.

41. Continuing the previous problem, implement the methods in the Elevator class by filling in the
blanks in the following:

class Elevator(object):

 def __init__(self, _____________________________):

 # Write code here that implements the __init__ method.

 def go_to_floor(self, __________________________):

 # Write code here that implements the go_to_floor method.

Page 19 of 19

42. Consider a function named blah that takes a list of numbers as its sole argument. For each of
the following possible specifications for what blah returns:

Circle Yes if the code for blah would require a loop.

Circle No if the code for blah would NOT require a loop.

If blah returns:

a. The smallest number in the list. Yes No

b. The second smallest number in the list. Yes No

c. The second number in the list. Yes No

d. The first positive number in the list, or -1 if there
is no positive number in the list. Yes No

e. True if the first number in the list is positive, else False. Yes No

f. True if the list contains no positive numbers, else False. Yes No

g. The average of the positive numbers in the list. Yes No

h. The number of numbers in the list. Yes No

i. The number of positive numbers in the list. Yes No

j. The number in the middle of the list. Yes No

	Exam 2 – Practice Problems for the Paper-and-Pencil portion
	Pay special attention to Problems:
	3 4 5 19 – 22 24 – 26 29 – 32 and 37 – 42
	since they summarize many of the concepts and are in forms that we often use for exams.
	Also be sure to review your Exam 1 paper-and-pencil problems, since you may see similar questions on some of those concepts.
	X[3] = 100
	T[3] = 100
	X = []
	X[0] = 100
	X[1] = 77
	X[2] = 88
	X = []
	X.append(100)
	X.append(77)
	X.append(88)
	What does the code print when it runs?

