
Page 1

CSSE 120 – Introduction to Software Development

Concept: Functions with Parameters

Defining functions

A function is a chunk of code that
has a name. Here (to the right) is a
portion of an example of the
notation for defining a function.

The name of the function follows the keyword def. The variables in the parentheses after the
name of the function are called parameters. This function returns a value. (Functions that
have no return statement return the special value None.)

Why have functions?

Functions are powerful for 2 reasons:

• They help organize a program into logical chunks. That makes it easier to:

o Test the program (by testing the chunks, called unit testing).

o Modify the program (by focusing your interest on the chunks of interest).

o Write correct code (by understanding the organization of the program).

o Encapsulate (enclose and hide) the behavior of a function inside its definition,
thus separating:

 the specification (what the function accomplishes) of the function

 from its implementation (how it accomplishes its specification).

• You can re-use functions. That is, you can call them over and over again, with different
values for the parameters to achieve different results.

(continues on the next page)

def convert_and_return(celsius):
 fahrenheit = ((9 / 5) * celsius) + 32
 return fahrenheit

Page 2

Calling functions

You call (aka invoke) a function by writing its name followed by parentheses, with the actual
arguments placed inside the parentheses.1

When you call a function:

1. The actual arguments of the function call (the values in the parentheses) are sent into
the formal parameters of the function definition.

2. Execution continues at the beginning of the definition of the called function.

3. When the function’s return statement is executed, the returned value is sent back to
the calling function. Or, if the end of the function is reached without a return
statement, the special value None is sent back to the calling function.

4. Execution continues from the place where the function call appeared, with the returned
value replacing the function call.

Note especially the two-way transfer of information:

• When a function is called, the values of the arguments are sent TO the function, with the
parameters RECEIVING those values.

o So this is how information goes FROM the caller INTO a called function.

• When a function executes a return statement (or reaches its end), its returned value is sent
BACK from the function, with the caller RECEIVING that value.

o So this is how information goes FROM the function BACK TO the caller.

o If there is no explicit return statement, the value None is returned automatically.

o The caller will typically capture the returned value in a variable, using that variable in
subsequent statements, as shown in the diagram above.

1 You MUST have the parentheses even when there are no arguments. It is the parentheses that tell the
interpreter to call the function instead of just referring to it. Avoid this common mistake:

y = blah where you meant y = blah()

Step 3

A function call

def blah():
 ...
 x = number_of_primes(100, 200)
 ...

def number_of_primes(m, n):
 ...
 ...
 ...
 return <the number of primes between m and n>

Step 1
Step 4

Step 2

