
Page 1 of 16

Test 3 – SOLUTION to Practice Problems
for the Paper-and-Pencil portion

Note: These practice problems relate very directly to what you can expect to see
on the Paper-and-Pencil portion of Test 3. Do these problems carefully and
check your answers via the online Solution to these problems.

Many of these problems are similar to problems that you saw on the Paper-and-
Pencil portion of Test 2.

Each problem has a time estimate that indicates how long the problem might
take (at most) for a well-prepared student who had no prior experience in
software development before this course. If you are taking much longer than
the time estimates, work with your instructor to learn techniques to solve them
more quickly.

A well-prepared student should be able to complete problems 1 through 10 in
well under 90 minutes. (The remaining problems are optional.)

Be forewarned that the Paper-and-Pencil portion of Test 3 may not be as
generous regarding partial credit as was Test 2. If you are not 100% clear on ALL
parts of ALL of these problems, meet with your instructor, a course assistant, or
another equally qualified person to become solid in your understanding of the
concepts that these problems assess:

• Problem 1: Scope of variables, flow of control through function calls and
object construction, arguments and parameters.

• Problem 2: Mutation via function calls (when the arguments are mutable),
box-and-pointer diagrams, references, mutation versus reassignment.

• Problem 3: Object construction.

• Problem 4: Tracing function calls by hand, returning values, order of
operations, return really leaves the function.

• Problem 5: Object construction, aliases (two names for the same object).

• Problem 6: Mutation via assignment of the insides of container objects, box-
and-pointer diagrams, references, aliases, mutation versus reassignment.

• Problem 7: Mutation via function calls (when the arguments are mutable),
box-and-pointer diagrams, references, mutation versus reassignment.

• Problems 8 and 9: Tracing loops within loops by hand.

• Problem 10: Tracing while loops by hand.

Page 2 of 16

3 5

90 3

3 4 5

3 4 5

3 4 5

10 7

10 9

10 7

9 10

70

90

70

90 70

1. [A well-prepared student should not require more than about 7 minutes to complete this
problem.]

Consider the code on the next page. Arrange so that you can see both this page and the next
page at the same time. (Un-staple as needed.) On the test, you will receive the code for any
problem like this one on a separate page.

The code is a contrived example with poor style but will run without errors. In this problem,
you will trace the execution of the code. As each location is encountered during the run:

1. CIRCLE each variable that is defined at that location.

2. WRITE the VALUE of each variable that you circled directly BELOW the circle.

For example, the run starts in main, as usual. The first of the seven locations to be
encountered is Location 6. At Location 6, the only variables defined are a and z, with values 5
and 3 at that point of the program’s run. So, on the row for Location 6, I have circled a and z
and written their values at Location 6 directly below them.

Note that you fill out the table in the order that the locations are encountered, NOT from top to
bottom. ASK FOR HELP IF YOU DO NOT UNDERSTAND WHAT THIS PROBLEM ASKS YOU TO DO.

Location 1 the 1st
time that it is
encountered

a w z self.w cat.w dog.w cat.a

Location 1 the 2nd
time that it is
encountered

a w z self.w cat.w dog.w cat.a

Location 2 the 1st
time that it is
encountered

a w z self.w cat.w dog.w cat.a

Location 2 the 2nd
time that it is
encountered

a w z self.w cat.w dog.w cat.a

Location 3
a w z self.w cat.w dog.w cat.a

Location 4
a w z self.w cat.w dog.w cat.a

Location 5
a w z self.w cat.w dog.w cat.a

Location 6
a w z self.w cat.w dog.w cat.a

Location 7
a w z self.w cat.w dog.w cat.a

Page 3 of 16

Code for Problem 1:

Arrange so that you can
see this code and the
problem itself at the
same time. (Un-staple
as needed.)

The arrows are there to
help you see where the
seven Locations are in
the code.

class Animal(object):

 def __init__(self, w):

 a = 10

 #### Location 1

 self.w = a * w # MULTIPLY, not add

 #### Location 2

def make_animals(z, a, w):

 #### Location 3

 dog = Animal(w + a)

 #### Location 4

 cat = Animal(w + z)

 #### Location 5

 return cat.w

def main():

 a = 5

 z = 3

 #### Location 6

 a = make_animals(a, z, z + 1)

 #### Location 7

main()

Page 4 of 16

2. [A well-prepared student should not require more than about 15 minutes to complete this
problem.]

Consider the code on the next page. Arrange so that you can see both this page and the next
page at the same time. (Un-staple as needed.) On the test, you will receive the code for any
problem like this one on a separate page.

The code is a contrived example with poor style but will run without errors. Trace the code’s
execution and draw a box-and-pointer diagram on a separate sheet of paper as you trace the
code’s execution.

As you draw the box-and-pointer diagram, write (in the box below) what gets printed when
main runs. Write Point objects as in this example: (100, 150).

Output: (I have put extra blank lines in this solution to make
it more readable.)

Beta 1: 33

Beta 2: 100

Beta 3: (600, 99)

Beta 4: [100, 200, 300]

Main 1: 70

Main 2: (678, 150)

Main 3: (678, 150)

Main 4: [444, 100, (678, 150), 222]

Main 5: 300

Reminder:

You must draw (on a
separate page) a

** box-and-pointer **

diagram for this problem.

I will add the box-and-
pointer diagram later.

Page 5 of 16

Code for Problem 2:

Arrange so that you can
see this code and the
problem itself at the same
time. (Un-staple as
needed.)

def main():

 radius = 70

 center = Point(100, 150)

 p = center

 seq = [radius, center.x, p, 10]

 ans = beta(radius, center.x, p, seq)

 print('Main 1:', radius)

 print('Main 2:', center)

 print('Main 3:', p)

 print('Main 4:', seq)

 print('Main 5:', ans)

def beta(radius, x, p, seq):

 radius = 33

 p.x = 678

 seq[0] = 444

 seq[3] = 222

 seq = [100, 200, 300]

 p = Point(600, 700)

 p.y = 99

 print('Beta 1:', radius)

 print('Beta 2:', x)

 print('Beta 3:', p)

 print('Beta 4:', seq)

 return seq[2]

main()

Page 6 of 16

3. [A well-prepared student should not require more than about 1 minute to complete this
problem.]

When the code in the previous problem runs: (circle your choice for each of the following)

a. How many Point objects are constructed in main? 0 1 2 3 4

b. How many Point objects are constructed in beta? 0 1 2 3 4

4. [A well-prepared student should not require more than about 7 minutes to complete this

problem.]

Consider the code snippet below. It is a contrived example with poor style, but it will run without
errors. What does it print when it runs?

Write your answer in the box to the right of the code.

def main():

 print('Main:', three())

def three():

 print('Three 1:', one(7))

 return two(10) + (100 * one(5))

 print('Three 2:')

def two(y):

 answer = one(2 * y)

 print('Two:', y, answer)

 return (5 + answer)

def one(x):

 print('One:', x)

 return (3 * x)

main()

Output:

One: 7

Three 1: 21

One: 20

Two: 10 60

One: 5

Main: 1565

Page 7 of 16

5. [A well-prepared student should not require more than about 1 minute to complete this
problem.]

Consider the following four statements:

p1 = rg.Point(4, 5)

p2 = rg.Point(p1.x, p1.y)

p3 = p1

p4 = p2

At this point, how many rg.Point objects have been constructed? 1 2 3 4
 (circle your choice)

6. [A well-prepared student should not require more than about 7 minutes to complete this

problem.]

Consider the code snippet to the right. Trace the execution of the code snippet and draw a
box-and-pointer diagram on a separate sheet of paper as you trace the code’s execution.

After the code snippet is executed, what are the values of the variables? (Write your answer in the
spaces provided below.)

p1.x = ____________ 99

p1.y = ____________ 5

p2.x = ___________ 8

p2.y = ___________ 600

p3.x = ___________ 99

p3.y = ___________ 5

p4.x = ___________ 42

p4.y = ___________ 42

p1 = rg.Point(8, 5)

p2 = rg.Point(p1.x, p1.y)

p3 = p1

p4 = p2

p3.x = 99

p4.y = 600

p4 = rg.Point(42, 42)

Reminder:

You must draw (on a separate page) a

** box-and-pointer **

diagram for this problem.

 I will add the box-and-pointer
diagram later.

Page 8 of 16

7. [A well-prepared student should not require more than about 12 minutes to complete this
problem.]

Recall that our Point class has instance variables x and y for its x and y coordinates.

Consider the code snippets below. They are contrived examples with poor style but will run without
errors. For each code snippet:

1. Trace the code snippet’s execution when main runs and draw a box-and-pointer diagram on a
separate sheet of paper as you trace the code snippet’s execution.

2. Write below what the code snippet prints.

(Each code snippet is an independent problem.)

 Prints: 11 12 Prints: [1, 2, 3]

77 200 [888, 200, 300]

77 0 [22, 200]

def main():

 p1 = Point(11, 12)

 p2 = Point(77, 88)

 p3 = foo(p1, p2)

 print(p1.x, p1.y)

 print(p2.x, p2.y)

 print(p3.x, p3.y)

def foo(p1, p2):

 p1 = Point(0, 0)

 p1.x = 100

 p2.y = 200

 p3 = Point(p2.x, p1.y)

 return p3

def main():

 a = [1, 2, 3]

 b = [100, 200, 300]

 c = foofoo(a, b)

 print(a)

 print(b)

 print(c)

def foofoo(a, b):

 a = [11, 22, 33]

 a[0] = 777

 b[0] = 888

 x = [a[1], b[1]]

 return x

Reminder: You must draw (on a separate page) TWO ** box-and-pointer diagrams **
for this problem. I will add the box-and-pointer diagrams later.

Page 9 of 16

8. [A well-prepared student should not require more than about 10 minutes to complete this
and the next problem, combined.]

Consider the code snippet below. It is a contrived example with poor style, but it will run without
errors. What does it
print when main
runs?

Write your answer
in the box to the
right.

9. Consider the code snippet below. It is a contrived
example with poor style, but it will run without errors. What
does it print when main runs?

Write your answer in the box to the left.

def main():

 for j in range(5):

 for k in range(j):

 print(j, k)

Output: (I have put extra
blank lines in this solution to
make it more readable.)

1 0

2 0

2 1

3 0

3 1

3 2

4 0

4 1

4 2

4 3

def main():

 for j in range(5):

 print('here')

 for k in range(1, j - 1):

 print(j, k)

 print('there')

 for k in range(2, j + 1):

 print(j, k)

Output: (I have put extra blank
lines in this solution to make it
more readable.)

here

there

here

there

here

there

2 2

here

3 1

there

3 2

3 3

here

4 1

4 2

there

4 2

4 3

4 4

Page 10 of 16

10. [A well-prepared student should not require more than about 5 minutes to complete this and
the next problem, combined.]

Consider the code snippet
below. It is a contrived
example with poor style,
but it will run without
errors. What does it print
when it runs?

Write your answer in the
box.

 x = 2

 while x < 9:

 print(x)

 x = x + 3

 print('One', x)

 y = 2

 while True:

 print(y)

 if y > 9:

 break

 y = y + 3

 print('Two', y)

Output:

(I have put extra blank spaces and lines in
this solution to make it more readable.)

2

5

8

One 11

2

5

8

11

Two 11

Note: The expression:

while BLAH:

 ...

makes the body of the while expression keep running “while”
BLAH is true. For example:

while x > 20:

 ...

makes the body (that is, indented part) of the while
expression keep running while x is greater than 20. (And
presumably x is decreasing inside the body of the loop, so
eventually x is less than or equal to 20 and the loop then exits.)

Page 11 of 16

The remaining problems are OPTIONAL. Do them if you want to reinforce further the concepts of
references, box-and-pointer diagrams, mutation, nested loops for sequences and printing.

11. True or false: Variables are REFERENCES to objects. True False (circle your choice)

12. True or false: Assignment (e.g. x = 100)
causes a variable to refer to an object. True False (circle your choice)

13. True or false: Function calls (e.g. foo(54, x))
also cause variables to refer to objects. True False (circle your choice)

14. Give one example of an object that is a container object:

Here are several examples: a list, a tuple, a rg.Circle, a Point,
an rg.RoseWindow.

15. Give one example of an object that is NOT a container object:

Here are several examples: an integer, a float, None, True, False.

16. True or false: When an object is mutated, it no longer refers
to the same object to which it referred prior to the mutating. True False
 (circle your choice)

17. Consider the following statements:

c1 = rg.Circle(rg.Point(200, 200), 25)

c2 = c1

At this point, how many rg.Circle objects have been constructed? 1 2
 (circle your choice)

18. Continuing the previous problem, consider an additional statement that follows the preceding
two statements:

c1.radius = 77

True or False: After the above statement executes, the variable c1
 refers to the same object to which it referred prior to this statement. True False
 (circle your choice)

19. Continuing the previous problems:

• What is the value of c1’s radius after the
statement in the previous problem executes? 25 77 (circle your choice)

• What is the value of c2’s radius after the
statement in the previous problem executes? 25 77 (circle your choice)

Page 12 of 16

20. In Session 9, you implemented a Point class. Recall that a Point object has instance variables x
and y for its x and y coordinates.

Consider the code in the box below. On the next page, draw the box-and-pointer diagram for
what happens when main runs. Also on the next page, show what the code would print when
main runs.

Draw your box-and-pointer diagram on the next page:

def main():

 point1 = Point(8, 10)

 point2 = Point(20, 30)

 x = 405

 y = 33

 print('Before:', point1, point2, x, y)

 z = change(point1, point2, x, y)

 print('After:', point1, point2, x, y, z)

def change(point1, point2, x, a):

 print('Within 1:', point1, point2, x, a)

 point2.x = point1.x

 point2 = Point(5, 6)

 point1.y = point2.y

 x = 99

 point1.x = x

 a = 77

 print('Within 2:', point1, point2, x, a)

 return a

Page 13 of 16

Before: The RED lines reflect the execution of the lines in main before the call to function change.

Therefore, what gets printed BEFORE the call to change is:

Point(8, 10) Point(20, 30) 405 33

Within: The GREEN lines reflect the execution of the call to function change. Thus

what gets printed at Within 1: is Point(8, 10) Point(20, 30) 405 33

The PURPLE lines reflect the execution of the lines in change. Therefore, what gets printed WITHIN

the call to change (at the end of that function, i.e., when Within 2: is printed) is:

Point(99, 6) Point(5, 6) 99 77

After: The BLUE line reflects the execution of the return from change and the assignment to z in

function main. Therefore, what gets printed AFTER the call to change is:

Point(99, 6) Point(8, 30) 405 33 77

From the picture on the previous page, we see that:

405

 x y

 point1

 point2

 x

 y

 z

 point1

 point2

 x

 a

 x y

 x y

33

77

99

20 30

5 6

x x

x

x

x

What prints when main runs?

Assume that Point objects get

printed as per this example:

Point(8, 10).

8 10

x

Page 14 of 16

What prints when main runs?

Assume that Point objects get printed as per this example: Point(8, 10).

Before: Point(8, 10) Point(20, 30) 405 33

Within 1: Point(8, 10) Point(20, 30) 405 33

Within 2: Point(99, 6) Point(5, 6) 99 77

After: Point(99, 6) Point(8, 30) 405 33 77

Page 15 of 16

21. Consider the code snippet in the box below. It is a contrived
example with poor style, but it will run without errors. What
does it print when main runs?

Write your answer in the box shown to the right of the code.

def main():

 seq = [('one', 'two', 'three', 'four'),

 ('five', 'six', 'seven'),

 ('eight', 'nine', 'ten'),

 ['is this ok?'],

 (),

 ('123456', '1234')]

 for k in range(len(seq)):

 for j in range(len(seq[k])):

 print(j, k)

 if len(seq[k][j]) > 3:

 print(seq[k][j],

 len(seq[k][j]))

Output:

(I have put extra blank spaces
and lines in this solution to
make it more readable.)

0 0

1 0

2 0

three 5

3 0

four 4

0 1

five 4

1 1

2 1

seven 5

0 2

eight 5

1 2

nine 4

2 2

0 3

is this ok? 11

0 5

123456 6

1 5

1234 4

Page 16 of 16

22. In the space below, write an implementation for the function whose specification is shown in
the following box. Do NOT use your computer for this (or for any other of these paper-and-
pencil problems).

def shape(r):
 """
 Prints shapes per the following examples:
 When r = 5: When r = 3
 *****5 ***3
 ****54 **32
 ***543 *321
 **5432
 *54321
 Precondition: r is a non-negative integer.
 For purposes of "lining up", assume r is a single digit.

 """

One answer:

 for k in range(r):

 for j in range(r - k):

 print('*', end='')

 for j in range(k + 1):

 print(r - j, end='')

 print()

