
CSSE 120 – Introduction to Software Development

As you arrive:
1. Start up your computer and plug it in.

2. Log into Angel and go to CSSE 120.

Do the Attendance Widget –

the PIN is on the board.

3. Go to the Course Schedule web page.

Open the Slides for today if you wish.

4. Checkout today’s project:

Session XX

Session

Session14_NestedLoopsAndMutators

Line following Nested Loops

Mutators
 Box-and-pointer diagrams

Session 14

Nested Loops

and Mutators,

Line Following

14

Checkout today’s project:
 Session14_NestedLoopsAndMutators

Are you in the Pydev perspective? If not:

 Window ~ Open Perspective ~ Other then Pydev

Messed up views? If so:
 Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not there:
 Window ~ Show View ~ Other

 then SVN ~ SVN Repositories

1. In your SVN repositories view (tab), expand your repository
(the top-level item) if not already expanded.

• If no repository, perhaps you are in the wrong Workspace. Get help.

2. Right-click on today’s project, then select Checkout.

Press OK as needed. The project shows up in the

 Pydev Package Explorer
to the left. Expand and browse the modules under src as desired.

Troubles getting
today’s project? If so:

 Used frequently in:

 Robotics

 GUI’s (responding to events)

 Operating systems

 Any application where there are “events”

Wait-for-event Loop Pattern

pre-loop computation

while [the event has NOT occurred]:

 sleep for a bit

post-loop computation

def waitForEvent(robot, line):

 """

 Busy-waits for the given robot (simulated by a

 Rectangle) to cross the given vertical Line.

 """

 seconds_to_sleep_between_event_checks = 0.01

 while robot.getCenter().getX() < line.getP1().getX():

 time.sleep(seconds_to_sleep_between_event_checks)

We saw this pattern in the robot example from last session. Here is another example.
You can run this example in m1_wait_for_event_example in today’s project.

Note the repeated-
dot notation.
Make sure you
understand it!

 A nested if is an if inside the body

of another if.

 A nested loop is a loop inside the

body of another loop.

 Trace the code below. What

does it print when main runs?

Nested Loops

def classic_example_1(n, m):

 for i in range(n):

 print()

 for j in range(m):

 print(i, j, i * j)

def main():

 classic_example_1(4, 3)

0 0 0

0 1 0

0 2 0

1 0 0

1 1 1

1 2 2

2 0 0

2 1 2

2 2 4

3 0 0

3 1 3

3 2 6

This code and subsequent examples appear in
the m2_nested_loops module of the project

you checked out today.

n = 4 m = 3

i = 0 here

i = 1 here

i = 2 here

i = 3 here

1 0 0

2 0 0

2 1 2

3 0 0

3 1 3

3 2 6

Nested Loops,

Type 2

def classic_example_1(n, m):

 for i in range(n):

 print()

 for j in range(m):

 print(i, j, i * j)

def classic_example_2(n):

 for i in range(n):

 print()

 for j in range(i):

 print(i, j, i * j)

def main():

 classic_example_1(4, 3)

 classic_example_2(4)

0 0 0

0 1 0

0 2 0

1 0 0

1 1 1

1 2 2

2 0 0

2 1 2

2 2 4

3 0 0

3 1 3

3 2 6

i = 0

here

i = 1

here

Example 1 output
n = 4 m = 3

Example 2
output
n = 4

i = 2

here

i = 3

here

Nested Loops – Practice

 With your instructor, execute and examine

classic_example2a() from

m2_nested_loops
 Note how we can make there be no spaces in the output

 We will do a TODO or two from m2_nested_loops
together

 Each of the problems in this module can be solved in

several different ways.

 One approach that works for all of the pictures is to let the

outer loop do the rows (one by one), and the inner loop (or

loops) do the characters in a single row.

 You will do the rest of the TODO’s for homework

Review: The 4-step process when a

function is called (aka invoked)

1. Calling program pauses at the

point of the call.

2. Formal parameters get assigned

the values supplied by the actual

arguments.

3. Body of the function is executed.

 The function may return a

value.

4. Control returns to the point in

calling program just after where

the function was called.

 If the function returned a value,

we capture it in a variable or

use it directly.

import math

def deg_to_rads(deg):

 rad = deg * math.pi / 180

 return rad

degrees = 45

radians = deg_to_rads(degrees)

print(degrees, radians)

0: degrees is a name for

the value 45

4: Continue from

here

2: deg is another name for the value 45

3

1: Pause here

A box-and-pointer diagram

Variables and parameter passing in

Python

 In Python “everything is an object” and hence all

variable names are references to objects

 They act like sticky notes

 When we pass a variable

to a function, we are passing a

reference to an object.

 This is efficient (fast) – we copy only

the reference, not all the data that is

referenced. For example, when we

pass a list, we pass a reference to the list, not all the data in the list.

 If the object is mutable, we can mutate it in the function – this is convenient

and efficient. If the object is not mutable, we are assured that it is

unchanged when we return from the function – this makes it easier to write

correct code. So both mutable and immutable objects have their place.

y

x 10 x = 10

y = x

x = x + 3

x = x + 3

13

16

Garbage collection of 13

 With your instructor, execute and study m3_mutators.

 Uncomment each of the four chunks in main, one at a time,

and execute and study the relevant code.

 Be sure you understand:

 How lists and some other objects are mutated and what effect that

has.

 How you can copy a list or object and what effect that has.

 The box-and-pointer diagram for demo_a_tricky_example()

and how that makes it easy to understand why one list changes in the

example and the other does not.

Mutators and Makers

 Your boss wants a line-following program that works like this:

 It starts the robot, putting it in FULL mode.

 Then it enters a loop in which the user can press any of the following:

 Play Button – the robot begins following the line (and stops when it bumps

into anything).

 Advance Button – the program shuts down the robot and exits.

 Left Bumper – the program reads the two front cliff sensor values and

saves them. The program expects that the user will have placed the robot

on a WHITE surface just before pressing this bumper.

 Right Bumper – the program again reads the two front cliff sensor values

and saves them. But now the program expects that the user will have

placed the robot on a BLACK surface just before pressing this bumper.

When the robot does its line following, it uses the 2 pairs of cliff sensor

readings for calibration.

A line-following program

A structure chart for a line-following program

main

get_bumper_states

get_button_states

perform_line_following

get_front_cliff_values

update_wheel_speeds

quit

perform_white_calibration

perform_dark_calibration


 2

 state
s


 2

 state
s


 r

o
b

o
t

start_robot

Line-following

algorithms

Left light sensor sees white (light)
Right light sensor sees black (dark)
Action:
• Speed up the left wheel
• Slow down the right wheel
• So the robot veers right

Both light sensors see white
(the robot is straddling the line)
Action:
• Set wheel speeds equal
• So the robot goes straight ahead

Left light sensor sees black (dark)
Right light sensor sees white (light)
Action:
• Speed up the right wheel
• Slow down the left wheel
• So the robot veers left

 There are many algorithms

for following lines,

depending on how many

and where your sensors are,

along with other factors.

Let’s figure out a simple

2-sensor approach.

 First, what is the effect of

different wheel speeds?

 Left faster  veer right

Right faster  veer left

 Now look at the situations

to the right, starting at the

bottom. What should the

robot do in each situation?

Line-following

algorithms

Left light sensor sees white (light)
Right light sensor sees black (dark)
Action:
• Speed up the left wheel
• Slow down the right wheel
• So the robot veers right

Both light sensors see white
(the robot is straddling the line)
Action:
• Set wheel speeds equal
• So the robot goes straight ahead

Left light sensor sees black (dark)
Right light sensor sees white (light)
Action:
• Speed up the right wheel
• Slow down the left wheel
• So the robot veers left

 If you speed up to a fixed,

large amount, and slow down

to a fixed, small amount, and

ignore the middle case, that is

called bang-bang control.

 You could speed up the wheels

proportional to how far from

dark the sensor readings are:

 So completely white by a

sensor would speed up its

wheel to 100% and

completely black would slow it

to 0% of its normal speed

 Let W, D = completely white

and dark. Let L be the current

reading for the left sensor.

What should the left motor

speed be?

Line-following

algorithms

Left light sensor sees white (light)
Right light sensor sees black (dark)
Action:
• Speed up the left wheel
• Slow down the right wheel
• So the robot veers right

Both light sensors see white
(the robot is straddling the line)
Action:
• Set wheel speeds equal
• So the robot goes straight ahead

Left light sensor sees black (dark)
Right light sensor sees white (light)
Action:
• Speed up the right wheel
• Slow down the left wheel
• So the robot veers left

 Proportional control:

 Let W, D = completely

white and dark. Let L be

the current reading for the

left sensor. What should

the left motor speed be?

 Answer:

p = (L – D) / (W – D)

speed = p * some_constant

But add to speed to give it

a minimum speed, and clip

it at a maximum speed.

 Similarly for the right wheel

White numbers are large
and black are small (near 0).

 Continue working on your m9_line_follower from

Session13

 With help from your instructor and the assistants as needed

 Ask questions as needed!

 If you finish, begin HW 14

 Sources of help after class:

Assistants in the CSSE lab

 And other times as well (see link on the course home page)

 Email

 You get faster response from the above than from just your instructor

Rest of Session

CSSE lab: Moench F-217

7 to 9 p.m.

Sundays thru Thursdays

csse120-staff@rose-hulman.edu

